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Abstract—We establish a large deviation approximation for the density of an arbitrary sequence of
random vectors, by assuming several assumptions on the normalized cumulant generating function
and its derivatives. We give two statistical applications to illustrate the result, the first one dealing
with a vector of independent sample variances and the second one with a Gaussian multiple linear
regression model. Numerical comparisons are eventually provided for these two examples.
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1. INTRODUCTION

Let (Zn) be a sequence of random vectors taking values in R
p and let bn be a sequence of real positive

numbers going to infinity as n → ∞. In this paper, we obtain a large deviation approximation with speed
bn for the probability density function of Zn. This generalizes our earlier result in [6] which deals with
real random variables.

The large deviation approximation is obtained by imposing several assumptions on the normalized
cumulant generating function (c.g.f.) of bnZn, in particular, asymptotic expansions of the c.g.f and its
derivatives. The proof follows the same lines as in [5], where large deviation theorems with speed n were
derived for the probability density function of an arbitrary sequence of random vectors n−1Tn.

Unlike those results, the asymptotic expansions of the c.g.f. and its derivatives allow us to obtain an
explicit asymptotic expression for the density function of Zn that depends on n only through the speed bn.
This can be useful, for example, when the c.g.f. of bnZn is intractable and we have to use its asymptotic
function to calculate the rate function and make the exponential change of measure (see, e.g., [2] for an
example in the one-dimensional case).

We illustrate our theorem with two statistical applications, namely, a vector of independent sample
variances and the least squares estimator of a Gaussian multiple linear regression model. Some
numerical results are also presented.

Several large deviation results dealing with the sum of random vectors can be found in the literature.
In particular, regarding the large deviation approximations for densities, one can refer to [11], [3], [9],
[12], [10], [8], [1], and [4].

The paper is organized as follows. In Section 2, we introduce the framework and assumptions, before
giving the main result and its proof. The statistical applications, along with the numerical comparisons
are then discussed in Section 3.

*E-mail: cyrille.joutard@univ-montp3.fr
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2. MAIN RESULT
2.1. Notation and Assumptions

Let (Zn) be a sequence of absolutely continuous random variables taking values in R
p, and let (bn) be

a sequence of real positive numbers such that limn→∞ bn = ∞. In what follows, we will use the following
notation for the vector products, norms, etc. For t, s ∈ R

p and γ a p-dimensional vector with nonnegative
integer components, we define

〈t, s〉 = t1s1 + . . . + tpsp, ‖t‖ = max
1≤j≤p

|tj|, |t| = |t1| + . . . + |tp|, tγ = tγ1
1 tγ2

2 · · · tγp
p .

Moreover, the determinant of a matrix A is denoted by |A|. We will also use the following big O notation
for p-vectors and p × p matrices: Op(1) and Op×p(1) as n → ∞. Regarding the matrix norm, we could
consider, for example, the following: for a p × p matrix A, ‖A‖ = maxj=1,...,p

∑p
i=1 |Aij |.

Let φn be the moment generating function (m.g.f.) of bnZn,

φn(t) = E{exp(〈t, bnZn〉)}, t ∈ R
p,

and let ϕn be the normalized c.g.f. of bnZn,

ϕn(t) = b−1
n log E{exp(〈t, bnZn〉)}.

Assume that there exists a differentiable function ϕ defined on the open set Uα = {t ∈ R
p : ‖t‖ < α},

α > 0, such that limn→∞ ϕn(t) = ϕ(t) for all t ∈ Uα. Let a ∈ R
p be such that there exists τ ∈ Uα

satisfying ∇ϕ(τ) = a (∇ϕ is the vector of first order partial derivatives). The vector τ , known in the
literature as a saddle point, is used to make an exponential change of measure, which plays a key role in
large deviation problems.

In order to prove the asymptotic approximation, several assumptions, in particular, on the normalized
c.g.f. ϕn and on the m.g.f. φn, are considered below.

(A.1) ϕn is a holomorphic function in Dp
α, where Dα = {z ∈ C : |z| < α}, and there exists M > 0 such

that |ϕn(z)| < M for all z ∈ Dp
α and n large enough.

(A.2) There exists a function H continuous at τ such that for n large enough,

ϕn(τ) = ϕ(τ) + b−1
n H(τ) + O(b−2

n ), (1)

∇ϕn(τ) = ∇ϕ(τ) + Op(b−1
n ), (2)

∇2ϕn(τ) = ∇2ϕ(τ) + Op×p(b−1
n ), (3)

where the function ϕ is twice differentiable at τ . Furthermore, the eigenvalues of the Hessian
matrix ∇2ϕ(τ) are positive.

(A.3) Given δ > 0, there exists 0 < η < 1 such that

lim sup
n→∞

sup
|t|≥δ

∣
∣
∣
∣
φn(τ + it)

φn(τ)

∣
∣
∣
∣

1/bn

≤ η. (4)

(A.4) There exist q ∈ (0, 1), l > 0 such that
∫

Rp

∣
∣
∣
∣
φn(τ + it)

φn(τ)

∣
∣
∣
∣

l/bn

dt = O(ebq
n).

Assumption (A.1) is used to bound the remainder term of the expansion of Gn defined in (6).
Assumption (A.2) plays an important role in the proof of the theorem, in particular, in dealing with

the function In (which appears in the first asymptotic approximation (9) of the density function of Zn).
Assumptions (A.3)–(A.4) ensure that the term In1 (coming from the decomposition of In) goes

exponentially fast to zero.
Assumption (A.4) is also used to apply the inversion formula.
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2.2. Large Deviation Approximation

Below is the large deviation approximation for the density of Zn.

Theorem 1. Assume that (Zn) is a sequence of absolutely continuous random variables taking
values in R

p. Let a ∈ R
p be such that there exists τ ∈ Uα satisfying ∇ϕ(τ) = a. Let assumptions

(A.1)–(A.4) hold. Then, for n large enough, we have the following asymptotic approximation for
the probability density function kn of Zn,

kn(a) =
b
p/2
n

(2π)p/2|∇2ϕ(τ)|1/2
exp(−bnI(a) + H(τ))

[
1 + O(b−1

n )
]
, (5)

where τ is such that ∇ϕ(τ) = a and I(a) = 〈τ, a〉 − ϕ(τ).

Proof. As mentioned in the Introduction, the proof follows the same lines as in [5]. First, let us set

Gn(t) = −ϕn(τ + it) + ϕn(τ) + i〈t, a〉. (6)

Then, since ϕn is a holomorphic function in Dp
α (Assumption (A.1)), using (2) and recalling that

∇ϕ(τ) = a one can find a small enough η0 > 0 such that for |t| < η0,

Gn(t) =
1
2
tT∇2ϕn(τ)t + i

∑

|γ|=3

a(n)
γ tγ − i〈t,Op(1)〉b−1

n − Rn(τ + it), (7)

where a
(n)
γ are the coefficients of the expansion of ϕn(τ + it).

Since |ϕn(z)| < M for all z ∈ Dp
α (Assumption (A.1)), there exists a constant M0 > 0 such that the

remainder term Rn satisfies

|Rn(τ + it)| ≤ M0|t|4 (8)

for |t| < η0. Using an exponential change of measure, let us define

dHn(y) = exp(〈τ, y〉 − bnϕn(τ)) dKn(y),

where Kn is the distribution function of bnZn. By (A.4), using the multivariate inversion formula, the
density function of Hn is then given by

1
(2π)p

∫

Rp

φn(τ + it)e−〈τ+it,y〉 dHn(y)
dKn(y)

dt.

Hence the density function kn of Zn is

kn(y) =
(

bn

2π

)p ∫

Rp

φn(τ + it)e−bn〈τ+it,y〉 dt.

Next, noting that (3) (where the matrix ∇2ϕ(τ) is invertible) implies that |∇2ϕn(τ)| = |∇2ϕ(τ)|(1 +
O(b−1

n )) (because |Id + εA| = 1 + tr(A)ε + O(ε2), as ε → 0, for any bounded square matrix A, and Id
is the identity matrix), we have

kn(a) =
[

bp
n

(2π)p|∇2ϕ(τ)|

]1/2

exp(−bnϕ∗(a) + H(τ))In[1 + O(b−1
n )], (9)

where ϕ∗(a) = 〈τ, a〉 − ϕ(τ). Besides, by (1),

In =
(

bn

2π

)p/2

|∇2ϕn(τ)|1/2 exp(−H(τ))

×
∫

Rp

exp(bn[ϕ∗(a) − 〈τ + it, a〉])φn(τ + it) dt

=
(

bn

2π

)p/2

|∇2ϕn(τ)|1/2 exp(−H(τ))
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×
∫

Rp

exp(bn[ϕn(τ + it) − ϕn(τ) − i〈t, a〉 + b−1
n H(τ) + O(b−2

n )]) dt

= (In1 + In2)[1 + O(b−1
n )]

with

In1 =
(

bn

2π

)p/2

|∇2ϕn(τ)|1/2

∫

|t|≥δ
exp(−bnGn(t)) dt

and

In2 =
(

bn

2π

)p/2

|∇2ϕn(τ)|1/2

∫

|t|<δ
exp(−bnGn(t)) dt,

where δ ∈ (0, η0) has to be chosen small enough. Recall that the expression of Gn is given in (6). As in
[5], by using assumptions (A.3)–(A.4) we can show that In1 goes exponentially fast to zero.

Now, we make the change of variable s =
√

bnt to get

In2 =

√
|∇2ϕn(τ)|

(2π)p

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)
[
1 + Zn(s) + Ln(s)

]
ds,

where Ln(s) = eZn(s) − 1 − Zn(s) and Zn(s) = −bnGn(b−1/2
n s) + 2−1sT∇2ϕn(τ)s. Set

In3 =

√
|∇2ϕn(τ)|

(2π)p

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)
[
1 + Zn(s)

]
ds.

Then, by (7),

In3 =

√
|∇2ϕn(τ)|

(2π)p

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)

ds

− i√
bn

√
|∇2ϕn(τ)|

(2π)p
∑

|γ|=3

a(n)
γ

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)

sγ ds

+
i√
bn

√
|∇2ϕn(τ)|

(2π)p

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)

〈s,Op(1)〉 ds

+ bn

√
|∇2ϕn(τ)|

(2π)p

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)

Rn

(
τ + i

s√
bn

)
ds.

Since exp
(
− sT∇2ϕn(τ)s

2

)
goes exponentially fast to zero as |s| → ∞, the first term of the right-hand

side is equal to 1 + O(b−2
n ). The second and third terms are equal to zero since the integrands are odd

functions. Using (8), one can easily see that the fourth term is O(b−1
n ).

Finally, by Assumption (A.2) there exists β2 > 0 such that sT∇2ϕn(τ)s ≥ β2s
T s for n large enough.

Hence, by choosing δ > 0 small enough, we can show as in [5] that
√

|∇2ϕn(τ)|
(2π)p

∫

|s|<δ
√

bn

exp
(

− sT∇2ϕn(τ)s
2

)

Ln(s) ds = O(b−1
n ).

It therefore follows that In2 = 1 + O(b−1
n ). This completes the proof of Theorem 1.

Remark. Note that we can also obtain a similar result to Theorem 1 for lattice-valued random vectors.
In this case we have to slightly change Assumption (A.3) to consider the lattice case (see [5] for further
details).
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3. APPLICATION EXAMPLES

3.1. Example 1: Vector of Independent Sample Variances

Assume that the random vector X = (X1, . . . ,Xp) follows a multivariate normal distribution with
mean vector μ = (μ1, . . . , μp) and covariance matrix Σ = diag (σ2

1 , . . . , σ
2
p), where σ2

k > 0 for each
k = 1, . . . , p. We consider the vector of independent sample variances

Zn,p =
(
(n − 1)−1

n∑

i=1

(Xi1 − X1)2, . . . , (n − 1)−1
n∑

i=1

(Xip − Xp)2
)
.

This is an unbiased estimator of the vector of variances (σ2
1 , . . . , σ

2
p).

For each k = 1, . . . , p, the statistic σ−2
k

∑n
i=1(Xik − Xk)2 follows a chi-square distribution with

n − 1 degrees of freedom. This will allow us to get an explicit expression for the moment generating
function of nZn. The following result follows then from the application of Theorem 1 with bn = n.

Corollary 1. Let Zn,p be defined as above. Then for a ∈ R
p such that ak > 0, for each k = 1, . . . , p

and n large enough, we have the following approximation for the density function of Zn,p,

fZn,p(a) =
( n

4π

)p/2 1
∏p

k=1 ak
exp

(
− (n − 1)I(a)

)
[1 + O(n−1)], (10)

where

I(a) =
1
2

p∑

k=1

[
ak

σ2
k

− log
(ak

σ2
k

)
− 1

]

.

Proof. Assumptions (A.1)–(A.2) are easily verified (see [7]). For Assumption (A.3), we have, for n
large enough,

∣
∣
∣
∣
φn(τ + it)

φn(τ)

∣
∣
∣
∣

1/n

= exp
(

− n − 1
4n

p∑

k=1

log
(

1 +
4σ4

kt
2
k(1 + 1

n−1)2

(a−1
k σ2

k − 1
n−1(1 − a−1

k σ2
k))

2

))

≤ exp
(

− 1
5

p∑

k=1

log(1 + 4a−2
k t2k)

)

.

Then, for a given δ > 0, there exists 0 < η < 1 such that

sup
|t|≥δ

exp
(

− 1
5

p∑

k=1

log(1 + 4a2
kt

2
k)

)

= exp
(

− 1
5

p∑

k=1

log(1 + 4a2
kt20,k)

)

≤ η,

where t0 is such that |t0| = δ and (A.3) is verified.
Now, for l = 4, we have

∫

Rp

∣
∣
∣
∣
φn(τ + it)

φn(τ)

∣
∣
∣
∣

l/n

dt =
∫

Rp

p∏

k=1

(

1 +
4σ4

kt
2
k(

n
n−1)2

(1 − 2σ2
kτk

n
n−1)2

)− (n−1)
n

dt

=
p∏

k=1

∫

R

(

1 +
4σ4

kt
2
k(

n
n−1 )2

(1 − 2σ2
kτk

n
n−1)2

)− (n−1)
n

dtk = O(1),

which implies (A.4).

For the numerical comparisons, we consider an example with p = 3, n = 100, σ2
i = 1, for all i =

1, 2, 3 and we compare, for different values of a ∈ R
3, the true densities fZn,3(a) and the approximations

given by (5). The results are displayed in the table below.
As one can see in Table 1, the large deviation approximation gives good results everywhere.
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Table 1. Approximations of fZn,3(a1, a2, a3) for p = 3.

a (0.5, 0.6, 0.7) (0.6, 0.7, 0.8) (0.7, 0.8, 0.9) (0.8, 0.9, 1.0) (1.0, 1.0, 1.0)

Exact 1.85e-06 0.00522 0.6440 7.453 22.00

Approx. 1.89e-06 0.00533 0.6571 7.605 22.45

a (1.0, 1.1, 1.2) (1.1, 1.2, 1.3) (1.2, 1.3, 1.4) (1.3, 1.4, 1.5) (1.4, 1.5, 1.6)

Exact 5.51 0.658 0.0281 0.00050 4.20e-06

Approx. 5.62 0.671 0.0286 0.00051 4.29e-06

3.2. Example 2: Gaussian Multiple Linear Regression Model with Deterministic Regressors

Let Y1, Y2, . . . be a sequence of random variables and let us consider the linear regression model

Yi = xT
i β + ξi, i = 1, .., n, (11)

where ξi are i.i.d. random variables following an N (0, σ2) distribution with variance σ2 > 0, xT
i =

(xi1, . . . , xip) is a p-dimensional vector of deterministic regressors that depend on n and βT =
(β1, . . . , βp) is the unknown parameter vector (T stands for transpose operation).

Let YT
n = (Y1, . . . , Yn) and Xn = (xij)1≤i≤n,1≤j≤p, n ≥ 1. Assuming that Rank(Xn) = p for some

n ≥ 1, the least squares estimator (l.s.e.) is

β̂n = (XT
n Xn)−1XT

n Yn. (12)

We also assume that there exist three p × p matrices A, B and Cn such that for n large enough,

n−1XT
n Xn = A +

B

n
+

Cn

n2
, (13)

where A is symmetric positive definite and Cn is a bounded matrix, that is Cn = Op×p(1) (see Section 2.1
for an example of matrix norm which could be used here). Assume that the Yi’s follow the linear model
(11) with the true values of the parameter vector β = β0 and of the variance σ2 = σ2

0 . Then, applying
Theorem 1 with bn = n, we have the following asymptotic approximation for the density of β̂n.

Corollary 2. Let β̂n be the l.s.e. defined in (12). Under the above assumptions, for a ∈ R
p and n

large enough, we have the following approximation for the density function of β̂n,

fβ̂n
(a) =

np/2 exp
(
− n

2σ2
0
(a − β0)T A(a − β0) − 1

2σ2
0
(a − β0)T B(a − β0)

)

(2π)p/2σp
0 |A|−1/2

[1 + O(n−1)]. (14)

Proof. Here we will use several arguments of the proof of Corollary 2 in [7]. Assumption (A.1) is easily

verified, so we turn to (A.2). First, let us set ϕ(t) = 〈t, β0〉 + σ2
0
2 tT A−1t and H(t) = −σ2

0
2 tT A−1BA−1t.

The equation ∇ϕ(t) = a has a closed-form solution, that is,

τ = σ−2
0 A(a − β0).

Next, the expansions (1), (2) and (3) follow from

ϕn(τ) = 〈τ, β0〉 +
σ2

0

2
τT A−1τ − τT σ2

0A
−1BA−1

2n
τ + O

( 1
n2

)
= ϕ(τ) +

H(τ)
n

+ O
( 1

n2

)
,

∇ϕn(τ) = β0 + σ2
0A

−1τ − σ2
0A

−1BA−1

n
τ + Op

( 1
n2

)
= ∇ϕ(τ) + Op

( 1
n

)

and

∇2ϕn(τ) = σ2
0A

−1 − σ2
0A

−1BA−1

n
+ Op×p

( 1
n2

)
= ∇2ϕ(τ) + Op×p

( 1
n

)
.
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The eigenvalues of the positive definite matrix A−1 being positive, (A.2) is verified.

For Assumption (A.3), denoting Γn = n−1XT
n Xn, we have

sup
|t|≥δ

∣
∣
∣
∣
φn(τ + it)

φn(τ)

∣
∣
∣
∣

1/n

= sup
|t|≥δ

e−
σ2
0
2

tT Γ−1
n t = e−

σ2
0
2

tT0 Γ−1
n t0 ,

where t0 is such that |t0| = δ, Γ−1
n = A−1 − A−1BA−1

n + RnA−1

n2 , and Rn is a bounded matrix (see [7]).
Since A−1 is positive definite and Rn is bounded, one can find 0 < η < 1 such that

lim sup
n→∞

e−
σ2
0
2

tT0 Γ−1
n t0 ≤ η

and (A.3) is then satisfied.

Now, regarding Assumption (A.4), we have for l > 0
∫

Rp

∣
∣
∣
∣
φn(τ + it)

φn(τ)

∣
∣
∣
∣

l/n

dt =
∫

Rp

e−l
σ2
0
2

tT Γ−1
n t dt.

The assumption is easily verified by noting that Γ−1
n → A−1 as n → ∞ and

∫
Rp e−l

σ2
0
2

tT A−1t dt < ∞.

For the numerical comparisons, we consider two examples, the first one with p = 2 and the second
one with p = 3. In both examples we compare the true densities fβ̂n

(a) and the approximations given

by (14) for different values of a ∈ R
2 (or a ∈ R

3).

(1) For this first example, we take p = 2, n = 50, β0 = (1, 1)T and σ2
0 = 3. For the regressors, we

choose xi1 = 1, xi2 = i
n , for all i = 1, . . . , n. Therefore

XT
n Xn =

⎛

⎝ n n
2 + 1

2

n
2 + 1

2
n
3 + 1

2 + 1
6n

⎞

⎠ .

Then (13) holds with A =

⎛

⎝1 1
2

1
2

1
3

⎞

⎠, B =

⎛

⎝0 1
2

1
2

1
2

⎞

⎠, Cn =

⎛

⎝0 0

0 1
6

⎞

⎠ and A is positive definite. The

numerical results are given in Table 2.

Table 2. Approximations of fβ̂n
(a1, a2) for p = 2.

a (0, 0.2) (0.2, 0.4) (0.4, 0.6) (0.6, 0.8) (0.8, 1.0) (1.0, 1.0)

Exact 3.28e-08 2.23e-05 0.00314 0.09118 0.5486 0.7656

Approx. 3.28e-08 2.23e-05 0.00314 0.09120 0.5487 0.7657

a (1.0, 1.2) (1.2, 1.4) (1.4, 1.6) (1.6, 1.8) (1.8, 2.0) (2.0, 2.2)

Exact 0.6828 0.1758 0.00937 0.000103 2.35e-07 1.11e-10

Approx. 0.6829 0.1759 0.00937 0.000103 2.36e-07 1.11e-10

(2) For the second example, we take p = 3, n = 60, β0 = (1, 1, 1)T and σ2
0 = 5. For the regressors,

we choose xi1 = 1, for all i = 1, . . . , n, xi2 = (−1)i, if i ≤ n − 2 = 58 and xi2 = 0 otherwise, xi3 = 0, if
i ≤ n/2 and xi3 = 1 otherwise.
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Therefore

XT
n Xn =

⎛

⎜
⎜
⎜
⎝

n 0 n
2

0 n − 2 0
n
2 0 n

2

⎞

⎟
⎟
⎟
⎠

.

Then (13) holds with A =

⎛

⎜
⎜
⎜
⎝

1 0 1
2

0 1 0
1
2 0 1

2

⎞

⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎝

0 0 0

0 −2 0

0 0 0

⎞

⎟
⎟
⎟
⎠

, Cn = 03×3 and A is positive definite. The

numerical results are shown in Table 3.

Table 3. Approximations of fβ̂n
(a1, a2, a3) for p = 3.

a (0, 0.2, 0.4) (0.2, 0.4, 0.6) (0.4, 0.6, 0.8) (0.8, 1.0, 1.2) (1.0, 1.0, 1.0)

Exact 7.29e-07 0.000314 0.02554 1.1508 1.2975

Approx. 7.41e-07 0.000319 0.02598 1.1705 1.3197

a (1.0, 1.2, 1.4) (1.2, 1.4, 1.6) (1.4, 1.6, 1.8) (1.6, 1.8, 2.0) (1.8, 2.0, 2.2)

Exact 0.6366 0.06670 0.00132 4.97e-06 3.54e-09

Approx. 0.6475 0.06784 0.00135 5.06e-06 3.60e-09

As in the case of the sample variances, for both examples, the large deviation approximation turns
out to be very accurate for all values, in particular, in Table 2.
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