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Abstract—In this work we suppose that the random vector (X, Y ) satisfies the regression model
Y = m(X) + ε, where m(·) belongs to some parametric class {mβ(·) : β ∈ K} and the error ε is
independent of the covariate X . The response Y is subject to random right censoring. Using a
nonlinear mode regression, a new estimation procedure for the true unknown parameter vector β0

is proposed that extends the classical least squares procedure for nonlinear regression. We also
establish asymptotic properties for the proposed estimator under assumptions of the error density.
We investigate the performance through a simulation study.
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1. INTRODUCTION

Nonlinear models are often used when analyzing a possibly censored survival time depending on a
covariate. For example, in medical surveys, the relationship between the survival time and the age of a
patient who has received a given treatment is often nonlinear and the survival time is subject to right
censoring since the patient may decide to leave the study, die due to another cause than the disease from
which he suffers or the study itself can be stopped. To extend the above relation to regression setting, let
(X,Y ) be a random vector, where X is a d-dimensional covariate and Y (∈ R) represents the response.

We suppose that Y is subject to random right censoring, i.e., instead of observing Y we only observe
(Z, δ), where Z = min(Y,C), δ = 1{Y �C} and C represents the censoring time, which is supposed to
be independent of Y conditionally on X. Let (Yi, Ci,Xi, Zi) (i = 1, . . . , n) be n independent copies of
(Y,C,X,Z). We assume that the relation between X and Y is given by:

Y = m(X,β0) + ε, (1)

where m(·) is a known function, β0 = (β1, · · · , βp)T ∈ K is an unknown p × 1 parameter to be esti-
mated, the error term ε is independent of the covariate X and K is a compact subset of R

p.
This formulation includes both the conditional mean and conditional median (or more general

quantile) regression models. In many cases, economic theory implies a particular functional form for
an empirical model specification. An incorrect parametrization of the regression equation might result in
inconsistent estimates. Sometimes the researcher might feel more confident about the functional form of
some parts of the regression equation but be less confident about the form of the other parts. Combining
the parametric and nonparametric techniques to yield the semi-parametric regression model could then
help obtain consistent estimates of the parameters of interest.

In this paper, a new estimation procedure for the true unknown parameter vector β0 is proposed
that extends the classical least squares method (LSM) for nonlinear regression to the case where the
response is subject to censoring. For that, we propose a semi-parametric modal regression estimator
for the case in which the dependent variable has a continuous conditional density with a well-defined
global mode. The estimator is semi-parametric in that the conditional mode is specified as a parametric
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function, but only mild assumptions are made about the nature of the conditional density of interest. We
show that the proposed estimator is consistent and has a tractable asymptotic distribution.

Classically, the conditional mean r(x) = E(Y | X = x) = m(x, β0) or median estimation are used
to model the link function and the parameter β0 is estimated by the least-squares method or any of
its robust or weighted version. But it is not uncommon in many fields to encounter data distributions
that are highly skewed (e.g., wages, prices, energy intake) with several peaks or contain outliers. Then
other alternative statistics are necessary to model the link function. Among them, the mode of the
condition distribution of Y | X = x which leads to less bias (than r). This parameter will be called
mode regression (MR). It can bring some helpful information to understand relationships between
the covariate X and a response variable Y . MR may provide shorter prediction intervals than other
regression approaches for a nominal confidence level. It is robust to outliers and is very justified in
situations where conditional distributions are highly skewed. Mode regression is potentially a very useful
addition to current data analysis tools. However, estimation of modal regression coefficients is not trivial.
In this work we propose an expectation-maximization (EM) algorithm that minimizes a kernel-based
objective function for estimating mode regression coefficients.

In the literature, model (1) has been thoroughly investigated for parametric/semi-parametric mean
regression, where m(·) is characterized by a finite-dimensional parameter and E(ε | X) = 0. In this
context and using the ordinary least squares (OLS) method, Yatchew [32] estimates the relationship
between variable costs of distributing electricity per customer as a nonlinear function of the scale of
operation as measured by the number of customers.

Semi-parametric regression models are less studied but are extremely useful due to their flexibility to
accommodate non-linearity and to circumvent curse of dimensionality [9, 24, 32, 15]. In particular, we
consider the general setup with m(x) = m(x, β0), where β0 is a finite-dimensional parameter. The main
interest is often in making inference about β0.

In partially linear model, Severini and Staniswalis [25] outlined a method for estimating the parameter
β0 of this type of semi-parametric model using a quasi-likelihood function. Algorithms for computing
the estimates are given and the asymptotic distribution theory for the estimators is developed.

Liang and Härdle [20] considered a simple modification of the last estimator and derived its
asymptotic distribution theory. For nonrandom design Jennrich [10] proved strong consistency of the
least-squares estimator and derived its limit distribution. Liang, Härdle and Carroll [21] have studied
heteroscedastic partially linear mean regression models using a quasi-likelihood function. Lee [17]
introduced a semi-parametric method and used a uniform kernel to estimate mode regression coefficients
based on a loss function.

In fact, in complete data, nonparametric estimation of mode had been discussed in decades (see [23,
6, 7]. Shoung and Zhang [26] studied the least squares estimators of the mode and Ziegler [35] proved
its asymptotic normality).

In incomplete data, a number of extensions to censored data of the least squares procedure for
estimating β1, . . . , βp have been studied in the literature. The list of first-generation estimators includes,
e.g., Müller [22] who studied a least squares regression, Buckley and James [3] who gave a definition
of the β estimator using a mean regression and studied its asymptotic properties, Koul, Susarla, Van
Ryzin [16] and Leurgans [19] who studied a linear model using a synthetic data, while more recent
contributions have been made in [34, 27, 1, 2, 29]. Recently, Khardani et al. [13–15] established strong
uniform convergence with a rate for the kernel estimator under random censorship and stated its
asymptotic normality.

In this paper, using a synthetic data, we study the estimation of the parameter β0 (based on both
the MR) using a kernel smoother. This paper is organized as follows. In Section 2, we introduce some
notation and describe the estimation procedure in detail. In Section 3 we state asymptotic normality
of the regression parameter estimators and the weak convergence results. In Section 4 we analyze the
finite-sample performance of the proposed estimator via a simulation study, while the Appendix contains
the proofs of the results of Section 5.
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2. DESCRIPTION OF THE MODEL AND ESTIMATOR

Consider a randomly right-censored model given by two nonnegative stationary random sequences
Y1, . . . , Yn (survival times) and C1, . . . , Cn censoring times. Assume that the latter are i.i.d. and inde-
pendent of the survival times (Yi)1≤i≤n. For any distribution function (df) L, let τL = sup{t, L(t) < 1}
be the right endpoint of its support.

Further, we will denote by H(·) (resp. G(·)) the df of Y (resp. of C) and by τH (resp. τG) the upper
endpoints of the survival function H ( resp. of G). In the following we assume that τH < ∞, G(τH) > 0
and let τ < min(τH , τG).

In this kind of model, it is well known that the empirical distribution is not a consistent estimator
for the distribution function G. Therefore Kaplan and Meier [11] proposed a consistent estimator for the
survival function Ḡ = 1 − G which is defined as

Ḡn(t) =

⎧
⎨

⎩

∏n
i=1

(
1 − 1−Δ(i)

n−i+1

)1{Z(i)≤t}
if t < Z(n),

0 otherwise,

where Z(1) < Z(2) < · · · < Z(n) are the order statistics of (Zi)1≤i≤n and Δ(i) is the concomitant of Z(i).

The purpose of this paper is to present a way to overcome this problem by imposing the following
weak model assumption: we assume that the relation between Yi and Xi is given by

Yi = m(Xi, β0) + εi, (i = 1, . . . , n), (2)

where m : R
d × K −→ R is a known function measurable on R

d for each β ∈ K and continuous on K (a
compact subset of R

p, p � d); β0 is an unknown p × 1 vector to be estimated.

Now, there exists a loss function whose expectation is minimized at the conditional mode of Y given
X = x. In model (2), we assume that: mode (Y | X = x) = m(x, β0) ⇔ mode (ε | X = x) = 0.

Second, we recall that the model (2) suffers from censorship data. For that, we use the so-called
“synthetic data” which allow us to take into account the censoring effect on the lifetime distribution.

For this purpose, we let

ϕ(Y ∗
i ) =

δiϕ(Zi)
G(Zi)

, 1 ≤ i ≤ n, (3)

for any measurable function ϕ, where G = 1 − G, Zi = min(Yi, Ci) and δi = 1{Yi<Ci}.

Assuming a sequence of covariates is given, we observe the triplets (Zi, δi,Xi)1�i�n. All along this
paper we suppose that

(Yi,Xi)i and (Ci)i are independent. (4)

Then from (3) and (4) we get

E
[
ϕ(Y ∗

1 ) | X1

]
= E

[
δ1ϕ(Z1)
G(Z1)

| X1

]

= E

{

E

[
δ1ϕ(Z1)
G(Z1)

| Y1,X1

]

| X1

}

= E

{

E

[
δ1ϕ(Y1)
G(Y1)

| Y1,X1

]

| X1

}

= E

{
ϕ(Y1)
G(Y1)

E[1{Y1≤C1} | Y1] | X1

}

= E(ϕ(Y1) | X1). (5)

In order to take in account the censoring phenomenon, the idea in Lee [17, 18] for complete data is
adapted. Using (4) and (5) we have

E

[1{Y1≤C1}K0

(Z1−m(X1,β)
hn

)

G(Z1)
| X1

]

= E

[

K0

(
Y1 − m(X1, β)

hn

)

| X1

]

, (6)

where K0(·) denotes a smooth kernel function and hn a bandwidth.
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From (6), using a mode regression to estimate the parameter β0, we propose maximizing the kernel
based objective function

S̄n(β) :=
1

nhn

n∑

i=1

1{Ti≤Ci}Ḡ
−1(Zi)K0

(
Zi − m(Xi, β)

hn

)

. (7)

In practice Ḡ(·) is unknown, hence it is replaced by its Kaplan–Meier estimate Ḡn(·). Therefore the
feasible estimator of S̄n is given by

Ŝn(β) :=
1

nhn

n∑

i=1

δiḠ
−1
n (Zi)K

(
Zi − m(Xi, β)

hn

)

. (8)

Then a natural estimator of β0 is

β̂n = arg max
β

Ŝn(β). (9)

3. ASSUMPTIONS AND MAIN RESULTS

Throughout the paper, when no confusion is possible, we denote by M and/or C any generic positive
constant and by

‖K0‖∞ = sup
t∈R

K0(t), ‖K0‖2
2 =

∫ ∞

−∞
K2

0 (t) dt, K ′
0(t) =

∂K0

∂t
(t), Ŝ(j)

n (β) =
∂j Ŝn

∂jβ
(β),

ṁ(x, β) =
∂m

∂β
(x, β), m̈(x, β) =

∂2m

∂2β
(x, β), g

(i)
T |X(t | x) =

∂igT |X
∂it

(t | x).

Let (Xi, εi)i≤1 be a sequence of i.i.d. random variables. For any x denote by gε|X(· | x) the conditional
probability density function of εi given Xi = x and assume that the covariate X has df F (·).

Now we give the assumptions needed to get our results.

For any sequences (un) and (vn) we put un = O(vn) if |un| � C|vn| for all n (if the property holds in
probability we use the symbol OP).

(A1): ∀(ε1, ε2) ∈ R × R, ∀(x1, x2) ∈ R
d × R

d,

|gε|X(ε1 | x1) − gε|X(ε2 | x2)| ≤ C
(
‖x1 − x2‖ + |ε1 − ε2|

)
.

(A2): The conditional density gε|X is differentiable up to order 3,

(i) supx,ε |g
(j)
ε|X(ε | x)| < ∞ for 0 ≤ j ≤ 3,

(ii) gε|X(ε | x) < gε|X(0 | x) for all ε 	= 0 and x.

(A3): The kernel K0 is differentiable up to order 3 and:

(i)
∫

R
tK0(t) dt = 0, (ii)

∫

R
t2K0(t) dt < ∞, (iii) lim

|t|→∞
K0(t) = 0,

(iv) sup
t

|K(j)
0 (t)| < ∞ for 0 ≤ j ≤ 3,

(v)
∫

R
K

(i)
0 (t) dt < ∞ for 0 ≤ i ≤ 2.
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(A4): The set

F0 =
{
K0

(t − ·
h

)
, t ∈ R, h ∈ R

∗
}

is a VC-class of measurable functions.

(A5): ∀x ∈ R
d, ∀(β1, β2) ∈ K

2, |m(x, β1) − m(x, β2)| ≤ f(x)‖β1 − β2‖ for some integrable positive
function f .

(A6): All partial derivatives of m(x, β) with respect to x and the components of β of order 0, 1 or 2 exist
and are continuous in (x, β) for all (x, β).

(A7): (i) E
[
supβ∈K(ṁ(Xi, β))5+s

]
< ∞, s > 0,

(ii) E
[
supβ∈K |m̈(Xi, β)|

]
< ∞,

(iii) For all ε > 0, inf‖β−β0‖>ε E
[(

m(Xi, β) − m(Xi, β0)
)2]

> 0,

(iv) E
[(

ṁ(Xi, β0)
)2 × g

(2)
ε|X(0 | Xi)

]
is nonsingular.

(A8): (i)
nh5

n

log n
−→∞,

(ii) nh7
n −→ 0 as n → +∞.

Discussion of the Assumptions and Examples

• The independence assumption between (Cn)n and (Xn, Yn)n in (4) may seem to be strong and
one can think of replacing it by a classical conditional independence assumption between (Cn)n
and (Yn)n given (Xn)n.

• Assumptions (A1), (A2 (i)), and (A3) are classical in nonparametric estimation.

• Assumption (A2 (ii)) is specific to the context of mode regression and requires that the conditional
density of ε has a mode at 0. An example that satisfies condition (A2 (ii)) is the following (mixture
of two Gaussian densities):

gε|X(ε | x) =
1

2
√

2π

{
exp−1

2
(ε − x)2 + exp−1

2
(ε + x)2

}
.

Here gε|X(· | x) is symmetric about 0 and E(ε | X = x) = Mode (ε | X = x) = x + (−x) = 0.

• Assumption (A4) is a consequence of Theorems 4.2.1 and 4.2.4 in [5]. This assumption is needed
in order to use Talagrand’s inequality.

• Assumptions (A5), (A6) and (A7) specify the model. Example: Let (X,Y ) satisfy the model
assumptions (A5)–(A7),

Y = m(X,β) + ε,

where m(X,β) = β0 + β1X + X2 and ε (with conditional density gε|X) is independent of X.

• Assumption (A8) gives conditions for the bandwidth which allow to get the rate of convergence.

Theorem 3.1. Under Assumptions (A1)–(A7), we have

β̂T
n

P−→ βT
0 as n −→ ∞.
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Corollary 3.2. Under Assumptions (A1)–(A7) and (A8 (i)), we have

‖β̂n − β0‖ = OP

(( log n

nhn

)1/4
)

as n −→ ∞, (10)

where P−→ denotes convergence in probability.

Theorem 3.3. Assume that (A1)–(A8) hold. We have
√

nh3
n(β̂n − β0)

D−→ N (0,Ω2),

where D−→ denotes convergence in distribution, where

Ω2 = Ω−1
1 Ω0Ω−1

1 , (11)

Ω0 = ‖K ′
0‖2

2E

[
ṁ2(Xi, β0)gε|X(0 | Xi)

Ḡ(m(Xi, β0))

]

, (12)

Ω1 = E
[
(ṁ(Xi, β0))2 × g

(2)
ε|X(0 | Xi)

]
. (13)

Remark 3.4. In complete data, Parzen [23] and Eddy [6] and Khardani et al. [12] in censored data
have proven similar asymptotic results for kernel estimators of the mode of the distribution of a variable
response Y without conditioning on X. Therefore the results of [23, 6] can be considered as special
cases of Theorem 3.3 when there is no predictor involved. By Theorem 3.3, the asymptotic variance is
Ω2/(nh3

n).

Theorem 3.3 generalizes the result of [31] in the linear case and when Ḡ = 1. We give the same rate
of convergence of β̂n, which is

√
nh3

n, except that the effect of censoring is present in our case in the
variance by 1/Ḡ: which increases this quantity. A theoretic optimal bandwidth hn for estimating can be
obtained by minimizing the asymptotic weighted mean squared errors.

Theorem 3.5. Assume that (A1)–(A8) hold. We have

Ω2
n

P−→ Ω2,

where

Ω2
n = Ω̂−1

1,nΩ̂0,nΩ̂−1
1,n,

Ω̂1,n =
1

nh3
n

n∑

i=1

δi

Ḡ(Zi)

[

K ′′
0

(
Zi − m(Xi, β̂n)

hn

)

ṁ2(Xi, β̂n) − hnK ′
0

(
Zi − m(Xi, β̂n)

hn

)

m̈(Xi, β̂n)
]

,

Ω̂0,n =
1

nhn

n∑

i=1

[(
δi

Ḡ(Zi)
K ′

0

(
Zi − m(Xi, β̂n)

hn

)

ṁ(Xi, β̂n)
)2]

.

Corollary 3.6. Based on Ω̂0,n and Ω̂1,n we easily get a plug-in estimator Ω̂2
n for Ω2 which, under

the assumptions of Theorem 3.5, gives a confidence interval of asymptotic level 1 − α for β0

βi
0 ∈

[

β̂i
n − Ω̂i

n√
nh3

n

× η1−α/2, β̂i
n +

Ω̂i
n√

nh3
n

× η1−α/2

]

,

where Ω̂i
n = Var(β̂i

n) for i = 1, . . . , p and η1−α/2 denotes the (1 − α/2)-quantile of the standard
normal distribution.
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4. SIMULATION STUDY

In this section, we discuss the feasibility and the performance of our estimates β̂n = (β̂0n, β̂1n)T . We
are interested in the behavior of the bias, variance and MSE of the two estimators. In the first setting, we
generate independently and identically distributed (i.i.d.) sample (Xi, Yi)1≤i≤n from the following model

Y =
4
3

exp(β0X + β1X
2) + σε, (14)

where β0 = 4
5 and β1 = 1. The sample (Xi, Yi)1≤i≤n was generated as follows: Xi with a uniform

distribution on [−2, 2] and the error term εi a standard normal random variable. The censoring variable
C satisfies C = θ0 exp(θ1X + θ2X

2) + ση for certain choices of θ0, θ1, θ2 and σ, where η has a standard
normal distribution. We assume that ε and η are independent of X and that ε is independent of η.

Our simulation scheme is as follows: N independent samples of size n were generated. We worked
with the standard normal density K0(x) = 1√

2π
exp

{
− 1

2x2
}

. Estimation of β = (β0, β1))T defined by

(9) can be seen as solving the set of moment conditions

E

[

exp
(

(Yi − m(Xi, β))2

2h2
n

(
Yi − m(Xi, β)ṁ(Xi, β)

)
)]

= 0. (15)

A Newton-type algorithm is used. In nonparametric estimation, it is well known that optimality (in
the MSE sense) is not seriously affected by the choice of kernel K0 but can be swayed by that of
the bandwidth hn. In the censored model, the estimator depends on the choice of many parameters:
the bandwidth hn, the sample size n, the percentage of censoring CP (controlled by σ). Now, for this
empirical study we use the Gaussian kernel and we consider the well-known smoothing parameter
defined by hn = σ2

nn−0.143 (to satisfy (A8)), where

σ2
n =

1
n − 1

n∑

i=1

(Xi − X̄)2 and X̄ =
1
n

n∑

i=1

Xi.

We performed simulation studies based on data that were obtained in the following manner. We consider
the values for the response and explanatory random variables X and Y given by the models (14) and (16)
below, but we keep in mind that the ‘observable’ variables are (X,Z, δ) defined in Section 1. Recall that
the proportion of censoring (in % and denoted in the tables) is computed as the average of P(δ = 0 | x)
for an equispaced grid of values of x. To evaluate the finite sample performance of our estimator at each
scenario, a sample of size n = 100 and N = 500 replications were used. The distance measure that was
approximated is the mean squared error total (MSE). Tables 1, 2 summarize the results of this simulation
study: we show the effect of a variation of the constant σ (obviously its effect on the term of variance),
the size of the sample and the effect of the choice of the bandwidth. These tables include variation in the
three parameters (bias, variance, MSE) depending on (n, h, θ0, θ1, σ, CP ).

In the second setting, we generate i.i.d. data from the regression model

Y =
β0

11
cos(β1X

2) + σε, (16)

where β0 = β1 = 11, σ2 = 0.4 or 1. The sample (Xi, Yi)1≤i≤n was generated as follows: Xi with a
uniform distribution on [−2, 2] and the error term εi a standard normal random variable. The censoring
variable C satisfies C = θ0

11 cos(θ1X
2) + σε∗ for certain choices of (θ0, θ1), where ε∗ has a standard

normal distribution. By a simple calculus, under this model

P(δ = 0 | X = x) = 1 − Φ
(

θ0/11 cos(θ1x
2) − β0/11 cos(β1x

2)√
2σ

)

.
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Table 1. Average values of β̂0n and β̂1n of the model (14)

θ0 θ1 θ2 β̂0n β̂1n

σ2 C.P Bias Var MSE Bias Var MSE

1.3 1.2 1 0.002 0.074 0.076 −0.01 0.1 0.1

1 35

1.3 0.9 1 0.03 0.086 0.087 −0.08 0.15 0.1564

1 46

1.3 0.5 1.5 0.046 0.26 0.28 −0.1 0.2 0.21

0.75 57

1.3 0.8 0.95 0.03 0.045 0.05 0.06 0.07 0.08

0.5 38.5

Table 2. Average values of β̂0n and β̂1n of the model (16)

θ0 θ1 β̂0n β̂1n

σ2 C.P Bias Var MSE Bias Var MSE

11 12 0.8 2.4 3.04 0.4 0.18 0.34

0.5 53

11 11 −0.56 2.01 2.33 0.15 0.077 0.097

1 46

25 1.5 −0.30 1.85 2 −0.07 0.063 0.07

0.5 37

24 1.6 −0.5 2.9 3.03 0.039 0.162 0.18

0.5 35

5. APPENDIX: AUXILIARY RESULTS AND PROOFS

Proof of Theorem 3.1. There are two parts of the proof of this theorem. First, in Lemma 5.1 below we
establish that S̄(β) = limn→∞ E(Ŝn(β)) exists and is continuous in β with a unique global maximum
at β = β0. Second, in Lemma 5.2 below we establish the almost sure uniform convergence of Ŝn(β) to
S̄(β).

Lemma 5.1. Under Assumptions (A1)–(A7) we have that

Ψ(β, h) =
∫

R

∫

Rd

K0(s)gε|X(m(x, β) − m(x, β0) + hs | x) ds dFX (x)

exists and is continuous for all (β, h). In addition, limn→∞ E(Ŝn(β)) is equal to Ψ(β, 0)) and has
a unique global maximum over a compact set around β = β0.

Proof. First, observe that

1{Y1≤C1}ϕ(Z1) = 1{Y1≤C1}ϕ(Y1), (17)
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for any measurable function ϕ. Using the fact that supt<τ |Ḡn(t) − Ḡ(t)| = O
(√ log log n

n

)
= o(1) as

n → ∞ (see formula (4.28) in [4]) and by the conditional expectation properties, we have

E[Ŝn(β)] =
1

nhn

n∑

i=1

E

[

δiḠ
−1(Zi)K0

(
Zi − m(Xi, β)

hn

)]

=
1
hn

E

[

K0

(
Yi − m(Xi, β)

hn

)

E
[
δiḠ

−1(Zi) | (X1, Y1)
]
]

=
1
hn

∫

R

∫

Rd

K0

(
ε + m(x, β0) − m(x, β)

hn

)

gε|X(ε | x) dε dFX (x)

=
∫

R

∫

Rd

K0(w)gε|X
(
m(x, β) − m(x, β0) + hnw | x

)
dw dFX(x).

By Assumptions (A1), (A2 (i)) and (A6), and by dominated convergence we obtain that Ψ(β, hn)
exists and is continuous for every (β, h). We have E[Ŝn(β)] = Ψ(β, hn) and the continuity of Ψ(β, hn)
implies

lim
n→+∞

E[Ŝn(β)] = E
[
gε|X((m(Xi, β) − m(Xi, β0)) | Xi)

]
= Ψ(β, 0) = S̄(β).

Secondly, by (A2 (ii)) gε|X(ε | x) achieves a strict global maximum at ε = 0 for every x and by (A7 (iii))

it follows that S̄(β) = limn→+∞ E[Ŝn(β)] achieves a strict global maximum at β = β0.

Lemma 5.2. Under Assumptions (A1)–(A8 (i)) we have

sup
β∈K

|Ŝn(β) − S̄(β)| = O

(√
log n

nhn

)

a.s.

Proof. K is a compact set, hence it admits a covering by a finite number ln of balls Bk(β∗
k , rn) centered

at β∗
k, 1 ≤ k ≤ ln,

K ⊂
ln⋃

k=1

B(β∗
k , rn),

where

rn = n−1/2h3/2
n . (18)

Since K is bounded, there exists a constant κ > 0 such that ln ≤ κr−p
n . For any β ∈ K, there exists k

such that

‖β − β∗
k‖ ≤ rn. (19)

We write

sup
β∈K

|Ŝn(β) − S̄(β)| ≤ sup
β∈K

|Ŝn(β) − Ŝn(β∗
k)| + sup

β∈K

|Ŝn(β∗
k) − EŜn(β∗

k)| + sup
β∈K

|EŜn(β∗
k) − S̄(β)|

:= Σ1n + Σ2n + Σ3n.

We have

Σ1n = O
( 1√

nhn

)
a.s.; Σ3n = O

( 1√
nhn

)
a.s. (20)

and

Σ2n = O

(√
log n

nhn

)

a.s. (21)
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Proof of (20). From (18), we have

Σ1n = sup
β∈K

|Ŝn(β) − Ŝn(β∗
k)|

= sup
β∈K

∣
∣
∣
∣

1
nhn

n∑

i=1

δiḠ
−1
n (Zi)K0

(
Zi − m(Xi, β)

hn

)

− 1
nhn

n∑

i=1

δiḠ
−1
n (Zi)K0

(
Zi − m(Xi, β

∗
k)

hn

)∣
∣
∣
∣

≤ CE(f(Xi))
Ḡ(τ)h2

n

sup
β∈K

|β − β∗
k | = O

(
1√
nhn

)

.

For Σ3n we clearly have Σ3n ≤ E[Σ1n] ≤ C
(

1√
nhn

)
.

Proof of (21). In order to study Σ2n, we use an exponential inequality which was first derived in [28]. For
that we consider the family of functions defined on R × R × R

p by

ψβ(u, v, x) =
1

nh
1{u<v}Ḡ

−1(u)K0

(
u − m(x, β)

h

)

, x ∈ R
p, u ∈ R, v ∈ R.

Under (A3 (iv)) and (A4) and using Lemma (2.6.20) in [30, p. 148], the set

F1 :=
{

ψβ(u, v, x) =
1

nh
1{u<v}Ḡ

−1(u)K0

(
u − m (x, β)

hn

)

, x ∈ R
p, y ∈ R

}

is a VC-class of measurable functions.
Now we write

Σ2n =
n∑

i=1

{
[ψβ(Ti, Ci,Xi)] − E[ψβ(Ti, Ci,Xi)]

}
. (22)

To deal with (22), we first note that the envelope of F1 is Un := ‖K0‖∞
Ḡ(τ)

1
nhn

. Moreover, proceeding as in

(5) and using (A3 (iv)), we get

sup
x,t�τ

E
[
ψ2

β(Ti, Ci,Xi)
]
≤

‖K0‖2
∞‖gε|X‖∞ × M

n2hn
:=

M2
n2hn

= σ2
n,

with σn ≤ Un for n large enough.

Now applying Talagrand’s inequality (see Proposition A in [8]), there exist two positive constants m1

and m2 such that

P

{

sup
ψβ(u,v,x)∈F1

∣
∣
∣
∣

n∑

i=1

{ ψβ(Ti, Ci,Xi) − E[ψβ(Ti, Ci,Xi)]}
∣
∣
∣
∣ > t

}

≤ m1 exp
{

− t

m1U
log

[

1 +
tU

m1

(
σn

√
n + U

√
log(m2U/σn)

)2

]}

.

Then, under (A8), simple algebraic calculations show that σn
√

n � U
√

log(m2U/σn) for n large
enough, which gives

P
[

sup
ψβ(x,y)∈F1

|Σ2,n| > t
]
≤ m1 exp

{

− t

m1U
log

[

1 +
tU

4m1nσ2
n

]}

. (23)

Taking t = B3

√
log n
nhn

, where B3 is a positive constant, a Taylor expansion using log(1 + w) ∼ w (for

w → 0) shows that the right-hand side in (23) is of order

m1 exp
{
− B2

3

4m2
1M2

log n
}
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which, for B3 > 2m1

√
M2, is the general term of a convergent Riemann series which in turn, by Borel–

Cantelli’s lemma proves that

Σ2n = O

(√
log n

nhn

)

a.s.

Finally, Lemma 5.1 and Lemma 5.2 end the proof of Theorem 3.1.
Proof of Corollary 3.2. Standard argument gives us

|S̄(β̂n) − S̄(β0)| ≤ |S̄(β̂n) − Ŝn(β̂n)| + |Ŝn(β̂n) − S̄(β0)|
≤ sup

β∈K

|Ŝn(β) − S̄(β)| +
∣
∣ sup

β∈K

Ŝn(β) − sup
β∈K

S̄(β)
∣
∣

≤ 2 sup
β∈K

|Ŝn(β) − S̄(β)|. (24)

The a.s. consistency of β̂n follows then immediately from Theorem 3.1. Now a Taylor expansion gives

S̄(β̂n) − S̄(β0) =
1
2
(β̂n − β0)2S̄(2)(β̄	

n), (25)

where β̄∗
n is between β0 and β̂n. Then by (24) and (25) we have

|β̂n − β0| ≤ 2

√
supβ∈K |Ŝn(β) − S̄(β)|

∣
∣S̄(2)(β̄∗

n)
∣
∣

,

and Lemma 5.2 completes the proof.

Proof of Theorem 3.3. Denote

∇β0
n =

∂Ŝn(β)|β0

∂β
= − 1

nh2
n

n∑

i=1

δiḠ
−1
n (Zi)K ′

0

(
εi

hn

)

× ṁ(Xi, β0). (26)

By the definition in (9), we have Ŝ
(1)
n (β̂n) = 0. Now using a Taylor expansion of Ŝ

(1)
n (·) in the neighbor-

hood of β0, we get

β̂n − β0 = − Ŝ
(1)
n (β0)

Ŝ
(2)
n (β̄n)

, (27)

where β̄n belongs to segment [β̂n , β0] if the denominator does not vanish.
From (27), we have

√
nh3

n(β̂n − β0) =
√

nh3
n

Ŝ
(1)
n (β0)

Ŝ
(2)
n (β̄n)

=
√

nh3
n

∇β0
n − E(∇β0

n )

S
(2)
n (β̄n)

+
√

nh3
n

E(∇β0
n )

S
(2)
n (β̄n)

=
I1n

S
(2)
n (β̄n)

+
I2n

S
(2)
n (β̄n)

. (28)

We complete the proof by showing that I2n is negligible (see Lemma 5.3), whereas I1n is asymptotically
normal (see Lemma 5.4) and the denominator converges in probability to S̄(2)(β) (see Lemma 5.5).

Lemma 5.3. Assume (A1)–(A8). Then we have

I2n −→ 0 a.s. as n −→ ∞.

Proof. Using (17) and integrating by parts we obtain

−I2n =
√

nh3
nE(∇β0

n ) =
√

nh3
nE

[
1

nh2
n

n∑

i=1

δi

Ḡn(Zi)
K ′

0

( εi

hn

)
ṁ(Xi, β0)

]
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=
√

nh3
nE

[
1
h2

n

K ′
0

( εi

hn

)
ṁ(Xi, β0)E[1{Y1≤C1}Ḡ

−1(Z1) | (X1, Y1)]
]

= n
1
2 h

− 1
2

n

∫ ∫

K ′
0

( ε

hn

)
ṁ(x, β0)gε|X(ε | x) dε dFX (x)

=
∫

n
1
2 h

1
2
n

[

K0

( ε

hn

)
gε|X(ε | x)

]+∞

−∞
ṁ(x, β0) dFX(x)

− n
1
2 h

1
2
n

∫ ∫

K0

( ε

hn

)
ṁ(x, β0)g

(1)
ε|X(ε | x) dε dFX (x)

= Sn
1 + Sn

2 .

Under Assumptions (A3 (iii)) and (A7 (i))

Sn
1 = o(1). (29)

On the other hand, using a change of variable we can write

Sn
2 = n

1
2 h

1
2
n

∫ ∫

K0

( ε

hn

)
ṁ(x, β0)g

(1)
ε|X(ε | x) dε dFX (x)

= n
1
2 h

3
2
n

∫ ∫

K0(w)ṁ(x, β0)g
(1)
ε|X(hnw | x) dw dFX(x).

Using (A2 (i)), we obtain by a Taylor expansion

g
(1)
ε|X(hnw | x) = g

(1)
ε|X(0 | x) + hnwg

(2)
ε|X(0 | x) +

h2
nw2

2
g
(3)
ε|X(t∗ | x), t∗ ∈ [0, hnw].

Integrating by parts, we have by (A3 (ii))

Sn
2 = n1/2h3/2

n

∫ ∫

K0(w)
[

g
(1)
ε|X(0 | x) + hnwg

(2)
ε|X(0 | x) +

h2
nw2

2
g
(3)
ε|X(t∗ | x)

]

ṁ(x, β0) dε dFX (x)

= n1/2h5/2

∫ ∫

wK0(w)g(2)
ε|X(0 | x)ṁ(x, β0) dw dFX(x)

+ n1/2h7/2

∫ ∫

w2K0(w)g(3)
ε|X(t∗ | x)ṁ(x, β0) dw dFX(x)

= A1n + A2n.

Moreover, under Assumptions (A2 (i)), (A3 (i)) and (A7 (i))

A1n = n1/2h5/2
n

∫

wK0(w) dw

∫

g
(2)
ε|X(0 | x)ṁ(x, β0) dFX(x) = o(1).

In addition,

A2n = n1/2h7/2
n

∫ ∫

w2K0(w)g(3)
ε|X(t∗ | x)ṁ(x, β0) dw dFX(x)

= n1/2h7/2
n

∫

w2K0(w) dw

︸ ︷︷ ︸
<∞

∫

g
(3)
ε|X(t∗|x)ṁ(x, β0) dFX(x)

︸ ︷︷ ︸
<∞

= o(1).

Under (A2 (i)), (A3 (ii)), (A7 (i)), and (A8 (ii)), we conclude

Sn
2 = o(1). (30)

Finally (29) and (30) finish the proof of Lemma 5.3.

Lemma 5.4. Under (A1)–(A8) we have

Var
[
I1n] −→ Ω0 a.s. as n −→ +∞,
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where

Ω0 = ‖K ′
0‖2

2E

[
ṁ2(Xi, β0)gε|X(0 | Xi)

Ḡ(m(Xi, β0))

]

.

Proof. We have

Var(I1n) = Var
[√

nh3
n(∇β0

n − E[∇β0
n ])

]
= nh3

n Var[∇β0
n ]

= nh3
n Var

[
1

nh2
n

n∑

i=1

δi

Ḡn(Zi)
K ′

0

( εi

hn

)
ṁ(Xi, β0)

]

=
1
hn

Var
[

δ1

Ḡn(Y1)
K ′

0

( ε1

hn

)
ṁ(X1, β0)

]

=
1
hn

E

[

Ḡ−2(Y1)
(
K ′

0

( ε1

hn

)
ṁ(Xi, β0)

)2
E[1{Y1≤C1}|X1, Y1]

]

− 1
hn

E

[

Ḡ−1(Y1)
(
K ′

0

( ε1

hn

)
ṁ(Xi, β0)

)
E[1{Y1≤C1}|X1, Y1]

]2

=: Ψ1n + Ψ2n.

On the one hand, by Lemma 5.3

Ψ2n = n−1I2
2n −→ 0 as n −→ ∞.

We have

Ψ1n =
1
hn

E

[

Ḡ−2(Y1)
(
K ′

0

( ε1

hn

)
ṁ(X1, β0)

)2
E[1{Y1≤C1} | X1, Y1]

]

.

Then, since Gn(·) is continuous and consistent, we have

lim
n→∞

Ψ1n =
∫

K ′2
0 (w) dw

∫
ṁ2(x, β0)gε|X(0 | x) dFX(x)

Ḡ(m(x, β0))

= ‖K ′
0‖2

2 E

[
ṁ2(Xi, β0)gε|X(0 | Xi)

Ḡ(m(Xi, β0))

]

,

which gives the result.

Now, to complete the proof of Theorem 3.3, it suffices to prove that

Ŝ(2)
n (β̄n) P−→ S̄(2)(β0).

Lemma 5.5. Under Assumptions (A1)–(A8) we have

sup
β∈K

∣
∣Ŝ(2)

n (β) − S̄(2)(β)
∣
∣ P−→ 0 as n −→ ∞.

Proof. Using the triangle inequality we have

sup
β∈K

∣
∣Ŝ(2)

n (β) − S̄(2)(β)
∣
∣ ≤ sup

β∈K

∣
∣Ŝ(2)

n (β) − Ŝ(2)
n (βk)

∣
∣ + sup

β∈K

∣
∣Ŝ(2)

n (βk) − E[Ŝ(2)
n (βk)]

∣
∣

+ sup
β∈K

∣
∣E[Ŝ(2)

n (βk)] − E[Ŝ(2)
n (β)]

∣
∣ + sup

β∈K

∣
∣E

[
Ŝ(2)

n (β)
]
− S̄(2)(β)

∣
∣

= γ1n(β) + γ2n(β) + γ3n(β) + γ4n(β).

We have by (8)

Ŝ(2)
n (β) =

1
nh3

n

n∑

i=1

δiḠ
−1
n (Zi)

(
ṁ(Xi, β)

)2
K

′′
0

(
Yi − m(Xi, β)

hn

)
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− 1
nh2

n

n∑

i=1

δiḠ
−1
n (Zi)m̈(Xi, β)K ′

0

(
Yi − m(Xi, β)

hn

)

= V1,n(β) + V2,n(β). (31)

The result is then a consequence of the following Lemmas 5.6 and 5.7 below.

Lemma 5.6. Assume (A3), (A5)–(A6) and (A7 (i)–(ii)). Then

γ1n(β) −→ 0 a.s., γ3n(β) −→ 0 ; a.s.

Proof. Using the same idea as in the proof of Lemma 5.2 by taking

r′n = hξ
n, ξ > 4. (32)

Lemma 5.7. Assume (A1)–(A8). Then we have

γ2n(β) −→ 0 a.s., γ4n(β) −→ 0 a.s.

Proof. Under equation (31), we can write

γ2n(β) = γ1
2n(β) + γ2

2n(β),

where γj
2n(β) = Vj,n(β) − E(Vj,n(β)) for j = 1, 2.

We will now prove the convergence to zero of the first quantity. The second is proved in the same way.

For γj
1n(β), we set

ζin,1(β) =
1
h3

n

(ṁ(x, β))2δiḠ
−1
n (Zi)K

′′
0

(
Zi − m(Xi, β)

hn

)

1[(ṁ(x,β))2≤h−2
n ],

ζin,2(β) =
1
h3

n

ṁ(x, β))2δiḠ
−1
n (Zi)K

′′
0

(
Zi − m(Xi, β)

hn

)

1[(ṁ(x,β))2>h−2
n ],

Kin,k(β) =
1
n

n∑

i=1

ζin,k(β) − E(ζin,k(β)) for k = 1, 2.

We get |ζin,1(β) − E(ζin,1(β))| ≤ 2h−5
n Ḡ−1(τ)‖K ′′

0 ‖∞ and by Assumptions (A2), (A3) and (A7 (i,iv))

Var
(
ζin,1(β) − E(ζin,1(β))

)
≤ E

[
E(ζ2

in,1(β) | (X1, Y1))
]

= E

[(

h−3
n

(
ṁ(x, β)

)2
K ′′

0

(
Yi − m(x, β)

hn

))2

E[δ1Ḡ
−2(Z1) | (X1, Y1)]

]

≤ h−6
n

Ḡ(τ)

∫ [

K ′′
0

(
ε + m(x, β0) − m(x, β)

hn

)]2(
ṁ(x, β)

)4
gε|X(εx) dε dFX (x)

≤ Mh−5
n

∫

[K ′′
0 (w)]2dwE

[
(ṁ(Xi, β))4

]
= c0h

−5
n ,

where c0 is a finite positive constant as a consequence of Assumptions (A2 (i)), (A3), and (A7). Then,
from Bernstein’s inequality, we have

P

{∣
∣
∣
∣
1
n

n∑

i=1

ζin,1(β) − E(ζin,1(β))
∣
∣
∣
∣ > ε

}

≤ 2 exp
{

− 3nh5
nε2

6c0 + 4ε‖K ′′
0 ‖∞

}

.

Consequently,

P

{

sup
β∈K

∣
∣
∣
∣
1
n

n∑

i=1

ζin,1(βk) − E(ζin,1(βk))
∣
∣
∣
∣ > ε

}

≤
λn∑

k=1

P

{∣
∣
∣
∣
1
n

n∑

i=1

ζin,1(βk) − E(ζin,1(βk))
∣
∣
∣
∣ > ε

}
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≤ 2(r′n)−1 exp
{

− 3nh5
nε2

6c0 + 4‖K ′′
0 ‖∞ε

}

.

Since (r′n)−1 ∼ h−ξ
n , it follows from Assumption (A8 (i)) that P

{
supβ∈K |Kin,1(β)| > ε

}
tends to zero

as n → ∞ for any fixed value of ε, and thus

sup
β∈K

|Kin,1(β)| = oP(1). (33)

Secondly, by Assumption A3(iv),

sup
β∈K

|Kin,2(β)| ≤ sup
β∈K

|E(ζin,2(β))| + 1
h3

n

‖K ′′
0 ‖∞

1
n

n∑

i=1

(
(ṁ(Xi, β))21[(ṁ(Xi,β))2>h−2

n ]

)
.

Now, it is clear that

E
{

sup
β∈K

|Kin,2(β)|
}
≤ 2

1
h3

n

‖K ′′
0 ‖∞E

{
sup
β∈K

(ṁ(Xi, β))21[(ṁ(Xi,β))2>h−2
n ]

}
.

Take p > 1 such that E|supβ∈K |ṁ(Xi, β)|2p| < ∞, then by Hölder’s inequality we have

E
{

sup
β∈K

(ṁ(Xi, β))21[(ṁ(Xi,β))2>h−2
n ]

}
≤

[
E| sup

β∈K

ṁ(Xi, β)|2p
]1/p[

E|1[(ṁ(Xi,β))2>h−2
n ]|

q
]1/q

,

where 1/p + 1/q = 1. Since s < 0, we have by Markov’s inequality
[
E|1[(ṁ(Xi,β))2>h−2

n ]|
q
]

= E
[
1[(ṁ(Xi,β))2>h−2

n ]

]
= P

[
[(ṁ(Xi, β))2 > h−2

n ]
]

= P
[
[(ṁ(Xi, β))2p > h−2p

n ]
]
≤ h2p

n E
[(

sup
β∈K

ṁ(Xi, β)
)2p]

.

Hence

E
{

sup
β∈K

(ṁ(Xi, β))21[(ṁ(Xi,β))2>h−2
n ]

}
≤

[
E| sup

β∈K

ṁ(Xi, β)|2p
]1/p

[
E
[
[(ṁ(Xi, β))2p]

]

h−2p
n

]1/q

= E
[
[(ṁ(Xi, β))2p]

]
h2p/q

n .

Then, since 2p/q = 2(p − 1), we have

E
{

sup
β∈K

(ṁ(Xi, β))21[(ṁ(Xi,β))2>h−2
n ]

}
≤ E

[
[(ṁ(Xi, β))2p]

]
h2(p−1)

n ,

and we conclude that

E
{

sup
β∈K

|Kin,2(β)|
}

= O(h2p−5
n ).

Taking p = (5 + ξ)/2, we get E
{

supβ∈K |Kin,2(β)|
}

= O(hξ
n) = oP(1). Hence

sup
β∈K

|Kin,2(β)| = O(hξ
n) = oP(1). (34)

We conclude by (33) and (34) that γ1
2n(β) = oP(1) and in the same way we prove that γ2

2n(β) = oP(1).
Using integration by parts and a change of variable, under (A1)–(A3) and (A6)–(A7), we have

γ4n(β) = oP(1). Then

lim
n

EŜ(2)
n (β) = lim

n
E(V1,n(β)) + lim

n
E(V2,n(β))

=
∫ ∫

K0(w)(ṁ(x, β))2g(2)
ε|X

(
m(x, β) − m(x, β0) | x

)
dw dFX(x)

−
∫ ∫

K0(w)m̈(x, β)g(1)
ε|X

(
m(x, β) − m(x, β0) | x

)
dw dFX(x)
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=
∂2

∂β∂β′ S̄(β) = S̄(2)(β).

It follows that

sup
β∈K

∣
∣
∣
∣
∂2Ŝn(β)
∂β∂β′ − ∂2S̄(β)

∂β∂β′

∣
∣
∣
∣ = oP(1).

Now the final step in the proof of Theorem 3.3 is to show the Lindberg condition for I1. For that, in
view of (28), put

I1 =:
n∑

i=1

Δi,n(x, ε),

where

Δi,n(x, ε) = (nhn)−1/2
{

δiḠ
−1
n (Zi)K0

( εi

hn

)
ṁ(Xi, β0) − E

[
δiḠ

−1
n (Zi)K0

( εi

hn

)
ṁ(Xi, β0)

]}
.

Then we have from Lemma (5.4)

Var
( n∑

i=1

Δi,n(x, ε)
)

= nh3
n Var(∇β0

n ) −→ ‖K ′
0‖2

2E

[
(ṁ(Xi, β0))2 × gε|X(0 | Xi)

Ḡ(m(Xi, β0))

]

:= ω2. (35)

Lemma 5.8. Under Assumptions (A1)–(A8) we have

∀η > 0,
n∑

i=1

∫

{Δ2
i,n(x,ε)>η2 Var(Δi,n(x,ε))}

Δ2
i,n(x) dP(x, ε) −→ 0 as n → ∞.

Proof. On the one hand, we have

Δ2
i,n(x, ε) ≤ 2

nhnḠ2(τ)
K2

0

( εi

hn

)
(ṁ(Xi, β0))2 +

2
nhnḠ2(τ)

E
2

[

K0

( εi

hn

)
ṁ(Xi, β0)

]

. (36)

Note that by Lemma 5.3 the second term in the right-hand side of (36) goes to zero as n → ∞:

2
nhn

E
2

[

K0

( εi

hn

)
ṁ(Xi, β0)

]

−→ 0 as n −→ ∞. (37)

On the other hand, taking η = ω2

2 we have by (35) that ∃n0 ∈ N
∗ such that ∀n > n0

Var
( n∑

i=1

Δi,n(x, ε)
)
≥ ‖K ′

0‖2
2E

[
(ṁ(Xi, β0))2 × gε|X(0 | Xi)

Ḡ(m(Xi, β0))

]

. (38)

Now, set

W (x, ε) =
1

Ḡ2(τ)
K2

0

(
εi

hn

)

(ṁ(Xi, β0))2 + E
2

[
1

Ḡ2(τ)
K0

( εi

hn

)
ṁ(Xi, β0)

]

.

We clearly have from (36) that

Δ2
i,n(x, ε) ≤ 2Wi,n(x, ε)

nhn
.

Now, set η′ = η2ω2

4 , then using (38) we have for n ≥ n0

{
Δ2

i,n(x, ε) > η2 Var
( n∑

i=1

Δi,n(x, ε)
)}

⊂
{
Δ2

i,n(x, ε) > η2ω2
}

=
{
Δ2

i,n(x, ε) > 2η′
}

:=
{
Wi,n(x, ε) > η′nhn

}
⊂

{
K2

0

( εi

hn

)
(ṁ(Xi, β0))2 >

η′nhn

2

}
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∪
{

E
2
[
K0

( εi

hn

)
ṁ(Xi, β0)

]
>

η′nhn

2

}
=: Σ1,n ∪ Σ2,n.

By (37), for n large enough, we have

Σ2,n =
{

E
2
[
K0

( εi

hn

)
ṁ(Xi, β0)

]
>

η′nhn

2

}
= ∅. (39)

In the same way, by (A2)–(A3) and (A7)–(A8) we have for n large enough that Σ1,n is empty.

Therefore
{
Δ2

i,n(x, ε) > η2 Var
(∑n

i=1 Δi,n(x, ε)
)}

is empty for n large enough, which completes the
proof.

Proof of Theorem 3.5. It is sufficient to establish convergences in probability Ω̂0,n to Ω0 and Ω̂1,n to

Ω1. By consistency of β̂n to β0 it follows from Theorem 3.1 and Lemma 5.5 that Ω̂1,n
P−→ Ω1. Secondly,

to establish that Ω̂0,n
P−→ Ω0, we use an approach similar to that used in the proofs of Lemma 5.2 and

Lemma 5.5 above.
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