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Abstract—For the Hardy classes of functions analytic in the strip around real axis of a size 2β,
an optimal method of cardinal interpolation has been proposed within the framework of Optimal
Recovery [12]. Below this method, based on the Jacobi elliptic functions, is shown to be optimal
according to the criteria of Nonparametric Regression and Optimal Design.
In a stochastic non-asymptotic setting, the maximal mean squared error of the optimal interpolant is
evaluated explicitly, for all noise levels away from 0. A pivotal role is played by the interference effect,
in which the oscillations exhibited by the interpolant’s bias and variance mutually cancel each other.
In the limiting case β → ∞, the optimal interpolant converges to the well-known Nyquist–Shannon
cardinal series.
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1. INTRODUCTION

In cardinal interpolation, one seeks to recover a function f(x), x ∈ R, from its values at equidistant
nodes xj = jh, h > 0, j ∈ Z. The values f(xj) may be corrupted by random errors. The set of nodes
X = {xj} is referred to as cardinal design. In the past, the area of cardinal interpolation contributed
generously to developing effective mathematical tools and ideas, in the area at a crossroads of Approxi-
mation Theory, Signal Analysis, and Statistics.

Early on, such ideas centered around the famous cardinal series, or sinc filter, variously named
after E. Borel (1898), E.T. Whittaker (1915), H. Nyquist (1928), V.A. Kotel’nikov (1933), C.E. Shan-
non (1949), and others. Its central result, the celebrated sampling theorem, is still popular in the
communication theory and signal processing; see, e.g., [15], or [9], Section 20.2, for a quick reference.
Connections between optimal cardinal interpolation for Hardy classes and the sampling theorem will
be discussed below in Sections 3.2 and 4.3.

Later on, cardinal interpolation gained additional momentum due to the ground breaking book [17]
focusing on cardinal spline interpolation. The book, explicitly linked to the cardinal series in the
Introduction, became a driving force in developing the general theory of splines in the 70s and 80s.
Towards the end of the century, powerful tools of Optimal Recovery were introduced to the field of
cardinal interpolation. They allowed to find linear methods of interpolation, optimal among all linear as
well as non-linear recovery methods, for various functional classes, including Hardy classes of analytic
functions [14].

Cardinal design figured prominently in non-parametric regression as well; see, e.g., [2], [5], [6]. In
such models, interpolation methods are often preceded by a smoothing procedure to reduce the noise
level; cf. [8]. In the 80s and 90s, such statistical methods have been primarily used in the asymptotic
setting h → 0.

At that time, asymptotic approach seemed very attractive, offering a venue for studying various
nonparametric tools, such as kernel estimates, splines, wavelets, polynomial and rational interpolants, in
various settings including both equidistant and non-equidistant design. It turned out, however, that,
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with properly chosen parameters, all of the above methods of estimation were asymptotically efficient.
Thus, a practitioner wondering which of the estimators to use in any particular problem, often had to rely
primarily on their numerical comparison.

Gradually, the enthusiasm for the asymptotic approach started to lessen at the turn of the century.
Two developments were affecting such a change in the general approach to nonparametric problems. The
already mentioned progress in Optimal Recovery allowed to determine optimal interpolants explicitly
for some selected classes, including classes of analytic functions. Although in such problems special
elliptic functions were often used, there is hope that the general approach can be applied to more
mundane functional classes as well.

Independently, it has been demonstrated that the exact variance of the optimal interpolants could also
be found explicitly [10], [11]. As a result of comparing the exact expressions of the bias and the variance, a
very useful phenomenon of interference sprang to life: the oscillations exhibited by the interpolant’s bias
and variance can mutually cancel each other [12]. This offers a new way of resolving the long standing
problem of balancing variance vs. bias, which had previously all but dictated an asymptotic approach.
Thus, finding non-asymptotically optimal methods of interpolation became possible, in the models of
non-parametric regression.

Although [14] did not treat any statistical estimation problems, a large portion of the present paper
is based on it. Therefore, for reader’s convenience, the author thought it worthwhile to discuss some
of its results below in Sections 2.4 and 3. This seems to make sense, at least for two reasons. First,
the corresponding results, in the author’s view, exhibit a hidden jewel of classical Analysis. Second,
since [14] was originally eyeing a different audience, an interested statistician could have – as the author
has experienced himself – a rather hard time trying to fill in all the intermediate details.

The paper carries on with some ideas and definitions of [12]. The reader is presumed to be familiar with
the classical Jacobi functions. Various sources provide an excellent introduction to elliptic functions;
see, e.g., [1], [3]. User-oriented overviews of the Jacobi elliptic functions have been offered in [12], Ch. 3,
and [14], Ch. 5.4. Additionally, a brief summary of the necessary definitions and results is appended below
in Section 5.

2. INTERPOLATION WITH COUNTABLE NODES

2.1. Cardinal Interpolation in the Strip

Consider the following model of random data,

yj = f(j) + ej , j ∈ Z, (2.1)

where the values fj =: f(j) of an unknown function f are observed at given nodes xj = j, j ∈ Z, in the
presence of a discrete white noise,

E ej = 0, (2.2)

Cov(ei, ej) =

{
σ2 if i = j,

0 if i �= j.
(2.3)

Denote y = {yj}, f = {fj}, and e = {ej}, j ∈ Z. The parameter σ ≥ 0 is assumed unknown. In
the case σ = 0, one is dealing with a deterministic setting well known in the Approximation Theory.
The more general cardinal design xj = jh, h > 0, will be transformed to the present case later, see
Remark 4.3.

Let Fβ denote the class of functions f(w) real on the real line and analytic in the strip Sβ = {w ∈
C : |Imw| < β}. For Q, β > 0, the Hardy class Fβ(Q) is defined by

Fβ(Q) = {f ∈ Fβ : sup
Sβ

|f(w)| ≤ Q}. (2.4)

The pair (X , Fβ(Q)) consisting of the design set X = {xj = j} and the functional class Fβ(Q) defines
the model at hand.
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The paper will be dealing primarily with linear methods of cardinal interpolation which can be
applied equally well to deterministic and random data. Let us describe such methods in more detail.
By definition, fundamental interpolating functions Lj(w), w ∈ Sβ , j ∈ Z, satisfy, for all i, j ∈ Z,

Lj(i) =

{
1, i = j,

0, i �= j,
(2.5)

Lj(·) is real − valued for w ∈ R, (2.6)∑
j∈Z

Lj(·) converges locally uniformly in Sβ. (2.7)

It is clear from the definition, that the following linear operator,

(If)(w) ≡ If(w) =
∑
j∈Z

Lj(w)fj (2.8)

interpolates a function f on Z, i.e., If(i) ≡ f(i). Any such operator will be referred to as a cardinal linear
interpolation formula, or shortly, linear interpolant.

Applying the interpolant I to the random responses y in (2.1), one gets

(Iy)(w) =
∑
j∈Z

Lj(w)yj . (2.9)

Equations (2.8)–(2.9) will be viewed as the same operator applied to different sets of data: deterministic,
f , or random, y. Denote I the class of all linear interpolants I in (2.8)–(2.9) satisfying (2.5)–(2.7). Some
basic general results concerning infinite interpolation will be briefly discussed in Section 2.4.

Note for now that for all I ∈ I , f ∈ Fβ(Q), and x ∈ R,

E(Iy(x)) ≡ (If)(x) =
∑
j∈Z

Lj(x)fj ,

and

Var(Iy(x)) = σ2
∑
j∈Z

L2
j (x) =: σ2s(x). (2.10)

The bias of an interpolant I ∈ I ,

b(x) =: E(Iy(x)) − f(x) = If(x) − f(x),

coincides with the interpolation error in the deterministic problem corresponding to σ = 0. The mean
squared error (MSE) of an interpolant I ∈ I satisfies

E(Iy(x) − f(x))2 = Var (Iy(x)) + b2(x) = σ2
∑
j∈Z

L2
j(x) + (If(x) − f(x))2. (2.11)

For a better part of the paper, the fundamental interpolating functions will be of the from Lj(w) =
L(w − j), where L(w), w ∈ C, is the so-called interpolating kernel satisfying

L(i) =

{
1, i = 0,
0, i �= 0.

(2.12)

Remark 2.1. Often, a kernel L(w) will itself be an analytic function,

L ∈ Fβ, (2.13)

satisfying the following mild restriction: for any compact set K ⊂ Sβ , there are C > 0 and δ > 0 such
that

|L(w + x)| ≤ C

1 + |x|3/2+δ
, w ∈ K, x ∈ R. (2.14)
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Under these assumptions, the interpolant (2.9) satisfies (2.7) and defines a function belonging to Fβ

almost surely. Indeed, by (2.4), (2.3), and the Markov inequality, for some c > 0 and all j large enough,

P(|yj | > j1/2+δ/2) ≤ P
(
|ej | >

1
2
j1/2+δ/2

)
≤ c

j1+δ
.

Thus, by the Borel–Cantelli lemma, see, e.g., [18], Chap. 2, Sect. 10, for all but finitely many indices
j, |yj| ≤ j1/2+δ/2 almost surely. Together with (2.14), this implies that the interpolant (2.9) converges
locally uniformly in Sβ. It remains to use the Weierstrass theorem on uniformly converging families of
analytic functions; see, e.g., [13], Section I. 76.

Note that the variance Var Iy(x) in (2.10) does not depend on f , unlike the MSE (2.11). Obviously,
by (2.5),

sup
x∈R

E(Iy(x) − f(x))2 ≥ sup
x∈R

Var Iy(x) ≥ σ2. (2.15)

This natural lower bound motivates the following definitions, cf. [12].

Definition 2.1. An interpolant Iy(x) in (2.9) is called (a) D-optimal if

sup
x∈R

Var Iy(x) = σ2, σ ≥ 0;

(b) R-optimal for a given σ ≥ 0, w.r.t. the model (X , Fβ(Q)) if

sup
f∈Fβ(Q)

sup
x∈R

E(Iy(x) − f(x))2 = σ2.

Note that by (2.10) the property of D-optimality is equivalent to

s(x) ≤ 1, x ∈ R, (2.16)

and, therefore, is independent of σ. Obviously, R-optimality, for any given σ > 0, automatically implies
D-optimality. The inverse is not true, as will be seen below. Constructing R-optimal interpolants for
Hardy classes is the main goal of this paper. Below it will be referred to as

Problem 1. Find an R-optimal (hence, necessarily, a D-optimal) linear interpolant (2.9) for the model
(X , Fβ(Q)) given by (2.1), (2.4).

First, the deterministic case σ = 0 will be treated drawing on some recent results from Optimal
Recovery [14]. The following definition is essentially again borrowed from [12].

Definition 2.2. An interpolant I∗ ∈ I is called (a) (X , Fβ(Q))-optimal at a given point w ∈ Sβ if

inf
I∈I

sup
f∈Fβ(Q)

|If(w) − f(w)| = sup
f∈Fβ(Q)

|I∗f(w) − f(w)|;

(b) A-optimal, for the given model (X , Fβ(Q)), if

r0 =: inf
I∈I

sup
f∈Fβ(Q)

sup
x∈R

|If(x) − f(x)| = sup
f∈Fβ(Q)

sup
x∈R

|I∗f(x) − f(x)|.

A-optimal interpolants, for any Q,β > 0, will be discussed below in Section 3.2. This deterministic
problem will be referred to as

Problem 1◦. Find an A-optimal interpolant, with respect to the model (X , Fβ(Q)).

Solution to Problem 1◦ is based on some recent developments in Optimal Recovery [14]. As a tribute
to its powerful tools, some highlights of this theory will be briefly discussed in Section 2.4.
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2.2. Countable Interpolation in the Disk

It turns out that optimal interpolation in a strip Sβ is closely related to the optimal interpolation in
the unit disk S of the complex plain C. Since the general setting is quite similar, it will be discussed here
very briefly.

Consider the unit disk

S = {z ∈ C : |z| < 1}. (2.17)

Following [14], denote H the Hardy space of all functions h = h(z) analytic in S and real on (−1, 1)
such that

sup
z∈S

|h(z)| < ∞. (2.18)

Let H(Q) be the Hardy ball of functions h ∈ H such that

sup
z∈S

|h(z)| ≤ Q. (2.19)

Consider the model of random data similar to (2.1),

yj = h(zj) + ej , j ∈ Z, (2.20)

in which the values h(zj) of an unknown function h ∈ H(Q) are observed at a given countable set Z of
nodes zj ∈ (−1, 1), in the presence of white noise. Denote the corresponding sequences y = {yj} and
h = {h(zj)}.

Let lj(z), z ∈ S, be a sequence of fundamental interpolating functions satisfying the following
assumptions:

lj(zi) = δij =

{
1, i = j,

0, i �= j,
(2.21)

lj(z) are real for z ∈ (−1, 1), (2.22)∑
j∈Z

lj(z) converges locally uniformly in S. (2.23)

A linear method of interpolation i is given by

(ih)(z) =
∑
j∈Z

lj(z)h(zj), w ∈ S. (2.24)

Denote Υ = {i} the class of all interpolants (2.24) satisfying (2.21)–(2.23).
Again, for z ∈ (−1, 1),

Var(iy(z)) = σ2
∑
j∈Z

l2j (z) and (2.25)

E(iy(z) − h(z))2 = σ2
∑
j∈Z

l2j (z) + (ih(z) − f(z))2. (2.26)

By (2.21),

sup
−1<z<1

E(iy(z) − h(z))2 ≥ sup
−1<z<1

Var (iy(z)) ≥ σ2.

Definition 2.3. A method of interpolation i ∈ Υ is called (a) D-optimal if

sup
z∈(−1,1)

Var (iy(z)) = σ2, σ ≥ 0;

(b) R-optimal for a given σ ≥ 0, w.r.t. the model (Z,H(Q)) if

sup
h∈H(Q)

sup
z∈(−1,1)

E(iy(z) − h(z))2 = σ2.
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Definition 2.4. An interpolant i∗h in (2.24) is called (a) (Z,H(Q))-optimal at a given point z ∈ D
if

inf
i∈Υ

sup
h∈H(Q)

|ih(z) − h(z)| = sup
h∈H(Q)

|i∗ h(z) − h(z)|;

(b) A-optimal, w.r.t. the model (Z,H(Q)) if

r0 =: inf
i∈Υ

sup
h∈H(Q)

sup
z∈(−1,1)

|ih(z) − h(z)| = sup
h∈H(Q)

sup
z∈(−1,1)

|i∗ h(z) − h(z)|.

The two problems in the unit disk S, with random and deterministic data, will be referred to,
respectively, as
Problem 2. Find an R-optimal method of interpolation (2.24) for the model (Z,H(Q)) given by (2.19)–
(2.20).

Problem 2◦. Find an A-optimal interpolant with respect to the model (Z,H(Q)).

2.3. Equivalence of the Two Interpolation Problems

As will be seen below, for some particular choices of the interpolating nodes zj in (2.20), Problems 1
and 1◦ are equivalent to the corresponding Problems 2 and 2◦. Let us discuss the situation in some more
detail.

Suppose w = g(z) is a conformal mapping of the unit disk S onto the strip Sβ such that (−1, 1) is
mapped onto R and g(zj) = j, j ∈ Z. Such a mapping establishes a bijection between the Hardy classes
H(Q) and Fβ(Q). One can view the two interpolation models, (X , Fβ(Q)) and (Z,H(Q)), as mutually
transformed one into another, while the sequences h = f and y remain invariant under such mapping.

Let lj(z) = lj(g−1(w)) =: Lj(w), so that the fundamental interpolating functions Lj(w) satisfy
(2.5)–(2.7). The relation ih(z) = i(g−1(w)) = If(w) is a bijection between the two classes of inter-
polants, Υ for the disk S, and I for the strip Sβ . Essentially, the two models, (2.1) and (2.20), are the
same. The only difference between them is in the manner of labeling the independent variable: by z ∈ S,
or by w ∈ Sβ .

A moment’s thought leads to the conclusion that the notions of D-optimality, R-optimality, opti-
mality at a given point z ∈ D, and A-optimality of an interpolant i in (2.24) are equivalent, respectively,
to the D-optimality, R-optimality, optimality at a given point w = g(z) ∈ Sβ , and A-optimality of the
corresponding interpolant I in (2.8)–(2.9). Thus, under the above assumptions, Problems 1 and 1◦ are
equivalent, respectively, to Problems 2 and 2◦. Moreover, finding an optimal interpolant for the disk
automatically leads to a corresponding optimal interpolant for the strip, and vice versa.

2.4. Optimal Recovery: Highlights

Methods of Optimal Recovery have been successfully applied to various nonparametric estimation
problems. The goal of this section is to review some of its results which will be useful in the present paper.
Generally, Optimal Recovery is dealing with approximation of functionals of indirectly observed objects,
using only a limited or imprecise information. This includes, in particular, recovery of an unknown
function f(x) based on a countable set of point evaluations f(xj), j ∈ Z. Below, we state some basic
results of Optimal Recovery applicable to the Problems 1◦ and 2◦ discussed in Sections 2.1–2.2.

Let F = {f} and F = {f} be two linear spaces over real numbers, γ : F → C a linear functional of
interest (target value), and G : F → F a linear mapping called information operator. In the determin-
istic setting of Optimal Recovery, the value f = Gf ∈ F, containing all the available information about
an element f ∈ F , represents non-random data.

A method of recovery of the given linear functional γ(f) is any map ϕ : F → C, while a linear
method of recovery is a linear functional I : F → C. A method of recovery ϕ∗ is optimal, on a subset
F ⊂ F , if it achieves

inf
ϕ

sup
f∈F

|ϕ(f) − γ(f)|.
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An element f∗
γ ∈ F is called extremal, w.r.t. the pair (F, γ), if Gf∗

γ = 0 and

sup
f∈F : Gf=0

|γ(f)| = |γ(f∗
γ )|.

A set F is called convex balanced if for any n ≥ 1,{
f : f =

n∑
i=1

λjfj, fj ∈ F,

n∑
i=1

|λj| ≤ 1
}
⊆ F.

Obviously, such a set is convex and symmetric.

Proposition 2.1 (cf. [14], Section 1.3, Theorems 1.6–1.7). Let F ⊂ F be a non-empty convex
balanced set. Then there exists an optimal linear method of recovery I and an extremal element
f∗

γ such that

inf
ϕ

sup
f∈F

|ϕ(f) − γ(f)| = sup
f∈F

|I(f) − γ(f)| = |γ(f∗
γ )|. (2.27)

The following corollary will be useful below. Let Γ0 = {γ} be a set of linear functionals over F .
Consider the family Φ = {ϕγ} of all recovery methods and the family I = {Iγ} of all linear recovery
methods, indexed by γ ∈ Γ0.

Corollary 2.1. Let F satisfy the assumptions of Proposition 2.1. Then

inf
Φ

sup
f∈F

sup
γ∈Γ0

|ϕγ(f) − γ(f)| = sup
γ∈Γ0

|γ(f∗
γ )| . (2.28)

Indeed, by using (2.27),

inf
Φ

sup
f∈F

sup
γ∈Γ0

|ϕγ(f) − γ(f)| = inf
Φ

sup
γ∈Γ0

sup
f∈F

|ϕγ(f) − γ(f)|

= inf
I

sup
γ∈Γ0

sup
f∈F

|Iγ(f) − γ(f)| = sup
γ∈Γ0

|γ(f∗
γ )| .

Below the elements f ∈ F will be complex-valued functions defined on a given subset D ⊂ C, real on
D0 = D ∩ R, while F = �∞ will be the linear space of all bounded real sequences {fj ∈ R, j ∈ Z}. The
information operator f = Gf ∈ F represents the values f(xj), j ∈ Z, at a given set of distinct nodes
xj ∈ D0. The functional of interest γ is the point evaluation γ = f(z) at a given point z ∈ D, while
Γ0 = {f(x), x ∈ D0}.

The set F ⊂ F will be a given convex balanced subset. Additionally, it will be assumed that for any
i ∈ Z, F contains a function f such that

f(xj)

{
�= 0 if j = i,

= 0 if j �= i.

These assumptions will automatically hold in Problems 1◦ and 2◦ discussed in Sections 2.1–2.2.
Noting that Proposition 2.1 applies to every functional γ(f) = f(z), z ∈ D, denote the corresponding

optimal linear method of recovery If(z) =
∑

j∈Z
Lj(z)f(xj), where∑

j∈Z

|Lj(z)| < ∞, z ∈ D.

Thus, for any z ∈ D,

inf
ϕ

sup
f∈F

|ϕ f(z) − f(z)| = sup
f∈F

|I f(z) − f(z)|.

Obviously, if z coincides with one of the nodes xi, the optimal linear method of recovery automatically
restores f(z) without error:

If(xi) =
∑
j∈Z

Lj(xi)f(xj) = f(xi), i ∈ Z.
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Thus, the optimal linear method of recovery I f is necessarily an interpolation method. This can be
true for any f ∈ F only if

Lj(xi) =

{
1, i = j,

0, i �= j.

Thus, Lj(z) are fundamental interpolating functions. A linear method of recovery If(z), viewed as a
function of z ∈ D, will be called linear interpolant. Denote I the collection of all such interpolants. In
recovering the linear functional γ = f(z), the corresponding extremal element in F will be denoted f∗

z .

Now, let ϕ f(z) be an arbitrary collection of recovery methods, for all z ∈ D. The set of such methods
of recovery will be again denoted Φ. In agreement with the definitions given in Sections 2.1–2.2, a linear
method of interpolation I∗ is called A-optimal, if

r0 =: inf
ϕ∈Φ

sup
f∈F

sup
x∈D0

|ϕf(x) − f(x)| = inf
I∈I

sup
f∈F

sup
x∈D0

|If(x) − f(x)| = sup
f∈F

sup
x∈D0

|I∗f(x) − f(x)|.

The following result follows directly from Corollary 2.1.

Proposition 2.2. Let the interpolant I∗f(x) be an optimal linear method of recovery, for every
x ∈ D0. Then the interpolant I∗ is A-optimal and

r0 = sup
x∈D0

|f∗
x(x)| .

In particular, if the extremal element f∗
z ≡ f∗ does not depend on z ∈ D,

r0 = sup
x∈D0

|f∗(x)|.

3. A-OPTIMAL INTERPOLANTS

This section describes A-optimal interpolants for the corresponding Hardy classes in the unit disk S
and in the strip Sβ . The results are an adaptation from [14], Ch. 2.3.

3.1. Interpolation in the Disk

Let us start with the problem of countable interpolation in the disk, see (2.20). To this end, some
technical tools from Complex Analysis will be reviewed first.

3.1.1. The Hardy space H. The space H was defined above as the set of all bounded analytic functions
in the unit disk S, see (2.17)–(2.18). It is well known that functions h ∈ H have boundary values h(ζ)
almost everywhere on ∂S (see [14], Section 2.1, and further references therein); moreover, the Cauchy
integral formula holds:

h(z) =
1

2πi

∫
|ζ|=1

h(ζ) dζ

ζ − z
, z ∈ S. (3.1)

From (3.1), yet another convenient representation can be derived involving a positive kernel. Indeed, the
substitution ζ = eiθ, 0 ≤ θ ≤ 2π, in (3.1) results in

h(z) =
1
2π

∫ 2π

0

h(ζ)ζ dθ

ζ − z
=

1
2π

∫ 2π

0

h(ζ) dθ

1 − ζ̄z
, z ∈ S.

Let z ∈ S be fixed. Replacing h(ζ) by the function g(ζ) = 1−|z|2
1−ζz̄ h(ζ) such that g(z) = h(z), gives for

any h ∈ H

h(z) =
1
2π

∫ 2π

0

(1 − |z|2)h(ζ) dθ

(1 − ζz̄)(1 − ζ̄z)
=

1
2π

∫ 2π

0

1 − |z|2
|1 − z̄ζ|2 h(ζ) dθ =

1
2π

∫ 2π

0

1 − |z|2
|ζ − z|2 h(ζ) dθ. (3.2)
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In particular,

1
2π

∫ 2π

0

1 − |z|2
|ζ − z|2 dθ = 1, z ∈ S. (3.3)

Function P (z, ζ) = 1−|z|2
|ζ−z|2 is the classical Poisson kernel. In the polar coordinates ζ = eiθ, z = reiϑ, it

can be represented as

P (z, ζ) =
1 − r2

1 − 2r cos(θ − ϑ) + r2
.

The relation (3.3) reduces to the well-known standard integral, cf. [7], 3.613.2,

1
π

∫ π

0

dθ

1 − 2r cos θ + r2
=

1
1 − r2

.

In some cases, the representation (3.2) is more convenient than (3.1). In particular, the famous
maximum modulus principle for the disk S follows immediately from (3.2)–(3.3).

3.1.2. Infinite Blaschke products. Let a sequence of interpolating nodes {zj} ⊂ S satisfy the so-called
Blaschke condition,

∞∑
j=1

(1 − |zj |) < ∞. (3.4)

For a, z ∈ S, define

B(a, z) = sgn a
z − a

1 − āz
, where sgn a =

{
|a|
a , a �= 0,
1, a = 0.

It can be shown that, subject to (3.4), the product

W (z) =
∞∏

j=1

B(zj , z)

converges for every z ∈ S, W (z) ∈ H, and W (z) = 1 almost everywhere on ∂S; cf. [16], Theorem 15.21.
The function W (z), having simple roots at the nodes zj , is called infinite Blaschke product. By the
maximum modulus principle,

sup
S

|W (z)| = 1. (3.5)

In particular, let −1 < zj < zj+1 < 1, j ∈ Z, satisfy the Blaschke condition (3.4). Then the correspond-
ing infinite Blaschke product is given by

W (z) =
∞∏

j=−∞
sign zj

z − zj

1 − zjz
. (3.6)

Assume additionally that for some αj ∈ (zj , zj+1) and c > 0,

|W (αj)| ≥ c. (3.7)

Under the assumptions (3.4), (3.7), the following generalization of the residue theorem follows
from [14], Lemma 2.5: for any function h ∈ H,

1
2πi

∫
|z|=1

h(z)
W (z)

dz =
∞∑

j=−∞

h(zj)
W ′(zj)

. (3.8)
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3.1.3. Pointwise optimal interpolants. Suppose a countable set of nodes Z = {zj} in (−1, 1) satisfies
the assumptions (3.4), (3.7). Let W (z) be the corresponding Blaschke product (3.6). For a given z ∈ S,
consider the following linear functional on H,

Jh(z) =
1

2πi

∫
|ζ|=1

W (z)(1 − |z|2)h(ζ)
W (ζ)(ζ − z)(1 − z̄ζ)

dζ.

Suppose first that z �∈ Z. Then, by the generalized residue theorem (3.8),

Jh(z) = h(z) −
∞∑

j=−∞

W (z)(1 − |z|2)
W ′(zj)(z − zj)(1 − z̄zj)

h(zj). (3.9)

By continuity, the equation holds for all z ∈ S. This representation (3.9) points to the following
interpolant:

i∗h(z) =
∞∑

j=−∞
lj(z)h(zj) =:

∞∑
j=−∞

W (z)(1 − |z|2)
W ′(zj)(z − zj)(1 − z̄zj)

h(zj). (3.10)

Note that

lj(zi) = δij , i, j ∈ Z,

thus implying

i∗h(zi) ≡ h(zi), i ∈ Z.

Obviously, the interpolant i∗ satisfies (2.22), while its property (2.23) will become evident later in
Section 3.2. For a function h ∈ H, the corresponding interpolation error, at a given point z ∈ S, can
be easily evaluated using (3.9), (3.3). Indeed, by (3.3) for any h ∈ H(Q),

|i∗h(z) − h(z)| = |Jh(z)| =
∣∣∣∣ 1
2πi

∫
|ζ|=1

W (z)(1 − |z|2)h(ζ)
W (ζ)(ζ − z)(1 − z̄ζ)

dζ

∣∣∣∣
=

∣∣∣∣ 1
2π

∫ 2π

0

W (z)(1 − |z|2)h(ζ)ζ
W (ζ)(ζ − z)(1 − z̄ζ)

dθ

∣∣∣∣ =
∣∣∣∣ 1
2π

∫ 2π

0

W (z)(1 − |z|2)h(ζ)
W (ζ)(1 − ζ̄z)(1 − z̄ζ)

dθ

∣∣∣∣
≤ Q|W (z)|

2π

∫ 2π

0

1 − |z|2
|1 − ζ̄z|2

dθ =
Q|W (z)|

2π

∫ 2π

0

1 − |z|2
|ζ − z|2 dθ = Q|W (z)|.

Moreover, by choosing h∗(z) = QW (z) ∈ H(Q), cf. (3.5), one finds that for any z ∈ S,

sup
h∈H(Q)

|i∗h(z) − h(z)| = |h∗(z)| = Q|W (z)|.

The optimal properties of the interpolant i∗ are summarized in the following

Proposition 3.1 (cf. [14], Corollary 2.7, p. 49)). For a given design Z = {zj} satisfying (3.4), (3.7),
and a given z ∈ D, the interpolant i∗ is (Z,H(Q))-optimal and h∗(z) is the extremal element, i.e.,

inf
i∈Υ

sup
h∈H(Q)

|ih(z) − h(z)| = sup
h∈H(Q)

|i∗h(z) − h(z)| = Q|W (z)|.

Remark 3.1. Generally, verification of the assumptions (3.4), (3.9) can be difficult. The problem,
however, becomes straightforward for special interpolating nodes discussed next.

3.1.4. A special choice of interpolating nodes. Suppose that for some c > 0 the interpolating nodes
zj ∈ (−1, 1) are chosen as

zj = tanh j/c, j ∈ Z. (3.11)

The following results show that in this case the assumptions (3.4), (3.9) hold automatically. Moreover,
the corresponding infinite Blaschke product (3.6) can be explicitly expressed in terms of the Jacobi

MATHEMATICAL METHODS OF STATISTICS Vol. 27 No. 4 2018



ON OPTIMAL CARDINAL INTERPOLATION 255

elliptic function sn(z, k), or “elliptic sinus”, of a modulus k ∈ (0, 1). For a summary of elliptic functions
see Section 5 below.

The Jacobi functions can be characterized by various sets of parameters: by the modulus k ∈ (0, 1)
(in the normal case); by the complementary modulus k′ =

√
1 − k2; by the quarter- and half-periods,

K = K(k) and K′ = K(k′), respectively; by the so-called nome

q = q(k) = exp
(
− πK′

K

)
; (3.12)

or by the complementary nome

q′ = q(k′) = exp
(
− πK

K′

)
.

The expression of the modulus k in terms of the nome q is given below in (5.11).
Given the nodes (3.11), let us first select the modulus k such that

K′

K
= πc. (3.13)

By (3.13),

zj = tanh
πK
K′ j, j ∈ Z.

Note that replacing the modulus k by k′ is equivalent to interchanging K and K′. The corresponding
complementary nome satisfies

q′ = q(k′) = exp
(
− πK

K′

)
= exp

(
− 1

c

)
.

For typographical reasons, q′ will be denoted q1 below. In terms of q1,

zj =
1 − q2j

1

1 + q2j
1

.

Proposition 3.2. Let the set of interpolating nodes Z = {zj} satisfy (3.11) for some c > 0, the
modulus k be selected according to (3.13), and sn(z, k) denote the Jacobi elliptic function of
modulus k. Let W (z) be the infinite Blaschke product (3.6). Then:

(a)
W (z) =

√
k sn(2cK arctanh z, k), z ∈ S. (3.14)

(b) The assumptions (3.4), (3.9) are satisfied.
(c) For any z ∈ S, the interpolant (3.10) is (Z,H(Q))-optimal, h∗(z) = QW (z) is the extremal

element in H(Q), and

sup
−1<z<1

sup
h∈H(Q)

|i∗h(z) − h(z)| = Q
√

k.

(d) The interpolant i∗ is A-optimal on (−1, 1), w.r.t. (Z,H(Q)).

For reader’s convenience, a proof of this proposition, adapted from [14] with some minor changes, is
given below.

Proof. By the symmetry of the nodes zj , the Blaschke product (3.6) becomes

W (z) = z

∞∏
j=1

z2
j − z2

1 − z2
j z2

. (3.15)
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It will be convenient to work with the new variable

v =
i

π
arctanh z, (3.16)

so that z = − tanh iπv = −i tan πv, and

z2 =
cos 2πv − 1
cos 2πv + 1

. (3.17)

By substituting (3.17) in (3.15), and a bit of algebra, the Blaschke product W (z) becomes

W (z) = −i tan πv

∞∏
j=1

1 − 2q2j
1 cos 2πv + q4j

1

1 + 2q2j
1 cos 2πv + q4j

1

.

Using the representation of the elliptic sine and cosine by means of the Jacobi theta functions θi(v), i =
1, 2, and the product expansions of the latter, see (5.13)–(5.18) below, one obtains

W (z) = −i
sinπv

cos πv

∞∏
j=1

1 − 2q2j
1 cos 2πv + q4j

1

1 + 2q2j
1 cos 2πv + q4j

2

= −i
θ1(v)
θ2(v)

= −i
√

k
sn(2K′v, k′)
cn(2K′v, k′)

.

Now, by (3.16), (3.13),

W (z) = −i
√

k
sn(2icK arctanh z, k′)
cn(2icK arctanh z, k′)

.

Finally, using the second principal first degree transform, see (5.19) below, one gets

W (z) =
√

k sn(2cK arctanh z, k).

(b) The fact that the special nodes (3.11) satisfy the Blaschke assumption (3.4) is elementary. Next,
let

αj = tanh
(
(2j − 1)

πK
2K′

)
, j ∈ Z.

By Part (a) and (5.6),

W (αj) = (−1)j+1
√

k. (3.18)

Thus, the system of nodes {zj}∞−∞ satisfies the assumption (3.7).

(c) By Part (a), one gets

sup
−1<z<1

|i∗h(z) − h(z)| = Q sup
−1<z<1

|W (z)| = Q
√

k sup
−1<z<1

| sn(2cK arctanh z, k)|

= Q
√

k max
x∈R

| sn(2cKx, k)| = Q
√

k. (3.19)

(d) This is an easy consequence of Propositions 2.2 and 3.1, in view of (3.18)–(3.19).

3.2. Interpolation in the Strip

In this section, A-optimal methods of cardinal interpolation will be described for the Hardy classes
Fβ(Q). These results are based on the equivalence of the cardinal interpolation in the strip and countable
interpolation in the disk, for a special choice of the parameter c determining the sequence of interpolating
nodes (3.11); cf. [14], Ch. 3.

3.2.1. Mapping the strip onto the disk. The following conformal mapping

z = z(w) = tanh
πw

4β
(z ∈ S, w ∈ Sβ) (3.20)
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of the strip Sβ onto the unit disk S is well known; see, e.g., [13], Section I.10.52. The mapping (3.20)
can be viewed as a composition of two transformations: the first one,

w −→ w1 = exp
πw

2β
,

mapping the strip Sβ into the right half-plane Rew1 > 0 (the horizontal lines Im w = ±β are mapped
into the corresponding half-lines w1 = ±it (t > 0)) followed by the linear rational transformation

w1 −→ z =
w1 − 1
w1 + 1

,

mapping the right half-plane into the unit disk. Note that under the second transformation, the point
w1 = 1 is mapped into 0, while the imaginary axis w1 = it is mapped onto the unit circle, since∣∣∣∣ it − 1

it + 1

∣∣∣∣
2

=
∣∣∣∣(1 − t2) + 2it

1 + t2

∣∣∣∣
2

= 1.

The diffeomorphism (3.20) is, in fact, a conformal mapping, since

dz

dw
=

π

4β

(
1 − tanh2 πw

4β

)
�= 0.

The mapping (3.20) establishes the following bijections, S ←→ Sβ and H(Q) ←→ Fβ(Q), so that
for any h(z) ∈ H(Q), f(w) = h(z(ω)) ∈ Fβ(Q). Moreover, if the parameter c in (3.11) is chosen such
that

c =
4β
π

, (3.21)

the interpolating nodes (3.11) are transformed into

zj = tanh j/c ←→ j,

so that h(zj) = f(j), j ∈ Z.
Note that since by (3.13) and (3.21),

K′ = 4βK, (3.22)

the nome (3.12) satisfies

q = q(k) = exp−4πβ, (3.23)

while the modulus k is given by the equation (5.11) below.

3.2.2. The A-optimal interpolant Iβ in Sβ . Under the mapping (3.20), the optimal interpolant (3.10)
translates into

i∗h(z) =
∞∑

j=−∞
lj(z)h(zj) =

∞∑
j=−∞

Lj(w)f(j) = Iβf(w),

where

Lj(w) =: lj(z(w)), w ∈ Sβ.

Below, the fundamental interpolating functions Lj(w) are described explicitly through a combination of
elliptic and hyperbolic sinuses.

Proposition 3.3. Let the modulus k satisfy (3.23). Under the mapping (3.20), Lj(w) = L(w − j)
where the kernel L(ω) = L(w, β) is given by

L(w) =
π

4βK
sn(2Kw, k)

sinh πw
2β

. (3.24)
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Proof. By (3.14), (3.22),

W (z) =
√

k sn(2cK arctanh z, k) =
√

k sn(2Kw, k).

Using the addition formulas for the hyperbolic functions, one gets for zj ∈ (−1, 1) and z ∈ S,

lj(z) =
W (z)(1 − z2)

W ′(zj)(z − zj)(1 − zjz)
=

√
k sn(2Kw, k)

W ′(zj)
(
tanh πw

4β − tanh πj
4β

) ·
1 − tanh2 πw

4β

1 − tanh πw
4β tanh πj

4β

=

√
k sn(2Kw, k) cosh2 πj

4β

W ′(zj)
(
sinh πw

4β cosh πj
4β − cosh πw

4β sinh πj
4β

)(
cosh πw

4β cosh πj
4β − sinh πw

4β sinh πj
4β

)
=

√
k sn(2Kw, k) cosh2 πj

4β

W ′(zj) sinh
(

π
4β (w − j)

)
cosh

(
π
4β (w − j)

) =
2
√

k sn(2Kw, k) cosh2 πj
4β

W ′(zj) sinh π
2β (w − j)

= Lj(w).

Note that Lj(i) = 0 for i �= j, and by continuity, cf. (5.6),

Lj(j) =
8β

√
kK(−1)j cosh2 πj

4β

πW ′(zj)
.

On the other hand,

Lj(j) = lj(zj) = 1.

Thus,

2
√

k cosh2 πj
4β

W ′(zj)
=

(−1)jπ
4βK

,

and by (5.7) the result follows.

By the equivalence of the two interpolation problems, cf. Section 2.2, one gets from Proposition 3.2
the following

Corollary 3.1. (a) For every Q > 0 and w ∈ Sβ , the interpolant

Iβ f(w) =
π sn(2Kw, k)

4βK

∞∑
j=−∞

(−1)jf(j)
sinh

(
π
2β (w − j)

) =
π

4βK

∞∑
j=−∞

sn
(
2K(w − j), k

)
sinh

(
π
2β (w − j)

) f(j) (3.25)

is (X , Fβ(Q))-optimal.

(b) For every w ∈ Sβ , f∗(w) = Q
√

k sn(2Kw, k) is an extremal element in Fβ(Q), and

|Iβ f(w) − f(w)| ≤ |f∗(w)|. (3.26)

(c) The interpolant Iβ f is A-optimal on R w.r.t. (X , Fβ(Q)), and

r0 = inf
I∈I

sup
f∈Fβ(Q)

sup
x∈R

|If(w) − f(w)| = sup
f∈Fβ(Q)

sup
x∈R

|Iβ f(w) − f(w)| = Q
√

k. (3.27)

3.2.3. The limiting case β → ∞: sinc interpolation. This section deals with the limiting properties of
the optimal interpolant Iβ for large β. It is not difficult to see that in this case the kernel (3.24) converges
to the ever-present sinc function. Indeed, by (5.2), (5.4),

lim
β→∞

L(w;β) =
sin πw

πw
.

Thus, the interpolant Iβ is expected to approach the cardinal series

I∞f(x) =
∞∑

j=−∞

sinπ(x − j)
π(x − j)

f(j). (3.28)
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In fact, for any f ∈ L2(R) uniformly in x ∈ R,

lim
β→∞

Iβf(x) = I∞f(x). (3.29)

Named variously after E. Borel, H. Nyquist, V.A. Kotel’nikov, C.E. Shannon, and others, the interpolant
(3.28) became quite popular in signal processing. Chapter 6 of [15] provides a quick introduction to the
topic; for a broader context see [9], Section 20.2.

The optimal variance and mean squared error properties of the interpolants Iβ and I∞ will be
discussed in Section 4. In the following remarks, we focus on their bias related properties.

Remark 3.2. According to (3.26), the stochastic interpolant Iβy(x) is asymptotically unbiased when
β → ∞. Indeed, by (3.23) and (5.12), uniformly over Fβ(Q),

sup
x

|b(x)| = sup
x

|EbIβy(x) − f(x)| ≤ Q
√

k = 2Qe−πβ(1 + O(e−4πβ)), β → ∞.

This result is not particularly interesting in the case of classes Fβ(Q) with a fixed Q, since in the limit
β → ∞ they would consist of entire bounded functions, i.e., constants. However, one can sharpen the
result as follows. Consider Hardy classes Fβ(Q), with Q = Q(β). If for some A > 0 and δ > 0,

Q(β) ≤ Ae(π−δ)β , (3.30)

then the interpolant Iβy(x) is asymptotically unbiased in Fβ(Q), for β → ∞.

Remark 3.3. Denote by Eα the linear space of finite energy bandlimited functions f ∈ L2(R), real
on the real line, whose Fourier transforms vanish outside [−α,α]. Endow Eα with the L2 norm. Due to
the celebrated Paley–Wiener theorem, Eα coincides with the class of entire functions of exponential
type α, i.e., for any f ∈ Eα there are A, δ > 0 such that the continuation of f into C satisfies

|f(z)| ≤ Ae(α+δ)|z|, z ∈ C. (3.31)

By the classical sampling theorem, see e.g., [15], Ch. 6, or [9], Section 20.2, the interpolant I∞y(x) is
unbiased in Eπ,

I∞f(x) ≡ f(x), f ∈ Eπ. (3.32)

Remark 3.4. There is a further connection between the sampling theorem and the asymptotic unbi-
asedness of Iβ y(x). Denote Eπ(M) the class of all functions f ∈ Eπ such that∫ ∞

−∞
|f(x)| dx ≤ M.

One can then deduce the sampling theorem for Eπ(M) from the asymptotic unbiasedness of the
interpolant Iβy(x) discussed in Remark 3.2. Indeed, by continuity of I∞f(x) in Eα, it is sufficient
to demonstrate (3.32) for the classes Eπ−ε, ε > 0. Now, by [4], Section 6.7, for β ≥ 1, a function
f ∈ Eπ−ε(M) satisfies

|f(z)| ≤ M

2π
e(π−ε)β.

Thus, by Remark 3.2, the asymptotic unbiasedness of Iβ y(x) in Eπ(M) – and with it the unbiased-
ness of I∞y(x) – follow.
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4. R-OPTIMALITY OF THE CARDINAL INTERPOLANT Iβ

We are ready to discuss D- and R-optimality of the interpolant Iβ in the strip Sβ . From this, optimal
properties of the corresponding interpolants in the unit ball S can be immediately derived according to
Section 2.3. By (3.25), the interpolant Iβy is defined for w ∈ Sβ as

Iβy(w) =
π sn(2Kw, k)

4βK

∞∑
j=−∞

(−1)jyj

sinh
(

π
2β (w − j)

) =
π

4βK

∞∑
j=−∞

sn(2K(w − j), k)
sinh

(
π
2β (w − j)

) yj, (4.1)

with the modulus k satisfying (3.22). Note that by (5.6), (5.7), for i, j ∈ Z,

π

4βK
sn

(
2K(x − j), k

)
sinh

(
π
2β (x − j)

) ∣∣∣∣
x=i

=

{
1, i = j,

0, i �= j.
(4.2)

4.1. Variance Function of Iβ

In studying D- and R-optimality of the interpolant Iβ , the focus turns to

Var Iβy(x) =: σ2s(x), x ∈ R,

where the variance function s(x) is given by

s(x) =
( π

4βK

)2
sn2(2Kx, k)

∞∑
j=−∞

1
sinh2

(
π
2β (x − j)

) . (4.3)

By (4.3), function s(w) is well defined in the whole complex plane C and represents there a doubly
periodic meromorphic function, i.e., an elliptic function. By (4.2), s(j) = 1, j ∈ Z.

In fact, the variance function s(w) can be described in terms of sn(2Kw, k) and cn(2Kw, k) only. To
this end, consider the function

u(w) = 1 + [a1 + a2 cn2(2Kw, k)] sn2(2Kw, k), w ∈ C, (4.4)

whose coefficients a1, a2 are explicitly described in the following

Theorem 4.1. Let the coefficients a1, a2 in (4.4) be defined as

a1 =
2k2 − 1

3
+

(
π

4βK

)2(
− 1

3
+

∞∑
j=1

2
sinh2 πj

2β

)
, a2 = −k2. (4.5)

Then

s(w) = u(w), w ∈ C.

Proof. First, using (5.5), let us represent (4.4) as

u(w) = 1 + [b1 + b2 sn2(2Kw, k)] sn2(2Kz, k), (4.6)

with coefficients b1, b2 satisfying a1 = b1 + b2, a2 = −b2.
Recall that sn(·, k) is a second order (4K, 2iK′) doubly periodic elliptic function such that

sn(x + 2K) = − snx. It has simple zeros at 2jK and simple poles at 2jK + iK′, j ∈ Z. Thus, sn2(·, k)
is a second order elliptic (2K, 2iK′)-periodic function, with double poles at 2jK + iK′. By (3.22),
sn2(2Kx, k) is (1, iK′/K) = (1, 4iβ) doubly periodic, with real zeros at j ∈ Z and a double pole at
2iβ, the only pole within its period parallelogram Π =

{
z : 0 ≤ Rew < 1, 0 ≤ Imw < 4iβ

}
.

Similarly, since

sinh(w + πi) = − sinhw, (4.7)

sinh2 w is πi-periodic. Thus, sinh2 πw
2β has period 2iβ and a double root at 2iβ.
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It follows that both functions s(w) and u(w), respectively, in (4.3) and (4.6), are (1, 4iβ) doubly
periodic meromorphic functions, with the same period parallelogram Π, and that their only singularities
within Π are fourth order poles at 2iβ.

Now, to prove Theorem 4.1, it is sufficient to show that, with the coefficients a1, a2 defined by (4.5),
the principal parts of the Laurent expansions of both functions, in a vicinity of the pole w = 2iβ, coincide.
Indeed, were it the case, their difference would be an elliptic function, with no poles in the whole plane
C. By the Liouville theorem, s(w) − u(w) would be constant in C. Since both functions are equal to 1 at
w = 0, they would then coincide identically. Thus, let us take a closer look at the local behavior of these
functions in a vicinity of w = 2iβ.

1◦. Behavior of sn2(2Kw, k) in a vicinity of its double pole w = 2iβ. By (3.22) and (5.8)–(5.9),
for δ → 0, δ �= 0,

sn(2K(2iβ + δ)) = sn(4iKβ + 2Kδ) = sn(iK′ + 2Kδ)

=
1

k sn 2Kδ
=

1
2Kkδ

(
1 − 1+k2

6 (2Kδ)2 + O(δ4)
) .

Thus,
sn2(2K(2iβ + δ)) =

1
(2K)2k2δ2

(
1 +

1 + k2

3
(2Kδ)2 + O(δ4)

)
. (4.8)

2◦. Behavior of 1
sinh2(πw

2β
)

in a vicinity of the double pole w = 2iβ. By (4.7),

sinh(iπ + w) = − sinhw = −w
(
1 +

w2

6
+ O(w4)

)
, w → 0.

Thus, for δ → 0, δ �= 0,

1
sinh2

(
π
2β (2iβ + δ)

) =
1

sinh2
(
πi + πδ

2β

) =
1

sinh2 πδ
2β

=
1(

πδ
2β

)2(1 + 1
3

(
πδ
2β

)2 + O(δ4)
) =

4β2

π2δ2

(
1 − 1

3
· π2δ2

4β2
+ O(δ4)

)
. (4.9)

Also by (4.7),∑
j �=0

1
sinh2( π

2β (2iβ + δ − j)
=

∑
j �=0

1

sinh2
(
iπ − π(j+δ)

2β

) =
∑
j �=0

1

sinh2 π(j+δ)
2β

=
∑
j �=0

1
sinh2 πj

2β

+
πδ

β

∑
j �=0

cosh πj
2β

sinh3 πj
2β

+ O(δ2)
∑
j �=0

1
sinh2 πj

2β

=
∞∑

j=1

2
sinh2 πj

2β

+ O(δ2). (4.10)

3◦. Laurent expansion of the variance function s(w) in a vicinity of w = 2iβ. By (4.8)–(4.10),
for δ → 0, δ �= 0,( π

4βK

)2 sn2
(
2K(2iβ + δ), k

)
sinh2

(
π
2β (2iβ + δ)

) =
1

(2K)4k2δ4

(
1 +

δ2

3

(
(1 + k2)(2K)2 − π2

4β2

)
+ O(δ4)

)

=
1

(2K)4k2δ4
+

1
3(2K)4k2δ2

(
(1 + k2)(2K)2 − π2

4β2

)
+ O(1),

and( π

4βK

)2
sn2

(
2K(2iβ + δ), k

) ∑
j �=0

1
sinh2( π

2β (2iβ + δ − j)
=

π2

β2(2K)4k2δ2

∞∑
j=1

2
sinh2 πj

2β

+ O(1).
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Thus, by (4.3),

s(2iβ + δ) =
1

(2K)4k2δ4
+

1
(2K)4k2δ2

(
1 + k2

3
(2K)2 +

π2

4β2

(
− 1

3
+

∞∑
j=1

1
sinh2 πj

2β

))
+ O(1). (4.11)

4◦. Laurent expansion of u(w) in a vicinity of w = 2iβ. Using (4.8) and arranging the resulting
terms in (4.6) in powers of δ−1, one easily gets

u(2iβ + δ) =
b2

(2K4)k4δ4
+

1
(2K)2k2δ2

(
b1 + 2b2

1 + k2

2k2

)
+ O(1). (4.12)

5◦. Comparing Laurent expansions of s(w) and u(w) in a vicinity of w = 2iβ. One observes that
the principal parts of the Laurent expansions (4.11), (4.12) coincide if the coefficients b1, b2 satisfy the
relations

b2 = k2, b1 = −1 + k2

3
+

(
π

2βK

)2(
− 1

3
+

∞∑
j=1

2
sinh2 πj

2β

)
,

which are equivalent to (4.5). From this, Theorem 4.1 follows directly, in view of the Liouville theorem.

4.2. D-Optimality

The main result of this section is the following

Proposition 4.1. For all β > 0 the interpolants Iβy are D-optimal.

Proof. According to Definition 2.1, D-optimality of Iβy is equivalent to the property (2.16) of the
variance function s(x). By Theorem 4.1, (2.16) holds if a1 ≤ 0 in (4.5). This and more will be proved
next.

Lemma 4.1. (a) For all β > 0, the coefficient a1 in (4.5) satisfies a1 < 0.
(b) For β → ∞,

a1 ≤ − 1
2
√

6β
+ O

( 1
β2

)
.

Proof. (a) Let us represent the coefficient a1 in (4.5) as a1 = (A − 1/3) + B, where

A =
( π

4βK

)2
∞∑

j=1

2
sinh2 πj

2β

and B =
1
3

(
2k2 −

( π

4βK

)2)
.

To prove Part (a), it is sufficient to show that A− 1/3 < 0 and B < 0. Using the inequality sinhx >
x, x > 0, the classical series [7] 0.233(3)

∞∑
j=1

1
j2

=
π2

6
, (4.13)

and (5.1), one gets

A − 1
3

=
( π

4βK

)2
∞∑

j=1

2
sinh2 πj

2β

− 1
3
≤

( 1
2K

)2
∞∑

j=1

2
j2

− 1
3

=
1
3

(( π

2K

)2
− 1

)
< 0.

Next, by (3.22)

B =
1
3

(
2k2 −

( π

K′

)2)
=

1
3

(
2k2 −

( π

K(k′)

)2)
.
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Note that (5.3) implies the following relations

K(k′) ≤ π

2
+ log

1
k

<
π√
2

+
(

1
k
− 1

)
=

( π√
2
− 1

)
− 1

k

( π√
2
− 1

)
+

π√
2k

<
π√
2k

,

thus proving that B < 0.

(b) To shorten the notation, let u = π/(2β), v = u2/6. Using a stronger inequality sinhx > x + x3

6 ,
x > 0, and (5.1), one gets for β → ∞,

A =
u2

2K2

∞∑
j=1

1
sinh2 uj

<
u2

2K2

∞∑
j=1

1(
uj + (uj)3

6

)2
<

2
π2

∞∑
j=1

1

j2
(
1 + vj2

)2

<
2
π2

∞∑
j=1

( 1
j2

− v

1 + vj2

)
<

2
π2

(
π2

6
−

∫ ∞

1

v dx

1 + vx2

)

=
2
π2

(π2

6
−

√
v arctan

√
vx

∣∣∞
x=1

)
=

2
π2

(π2

6
− π

2
√

v + O(v)
)

=
2
π2

(π2

6
− π2

4
√

6β
+ O

( 1
β2

))
=

1
3
− 1

2
√

6β
+ O

( 1
β2

)
.

4.3. R-Optimality

Recall that by definition I is the class of all cardinal interpolants (2.8) satisfying (2.5)–(2.7), and Iβ

is the A-optimal interpolant (3.25), with approximation error satisfying (3.26) and maximal error
r0 = Q

√
k, where k satisfies (3.22). Denote

g = − k

a1
and σ2

0 = Q2g,

where a1 < 0 was defined by (4.5). Below x+ = max(0, x). We start with the following

Theorem 4.2. For any σ2 ≥ 0,

max(σ2, r2
0) ≤ min

I∈I
sup

f∈Fβ(Q)
sup
x∈R

E(Iy(x) − f(x))2

≤ sup
f∈Fβ(Q)

sup
x∈R

E(Iβy(x) − f(x))2 ≤ σ2 +
r2
0

σ2
0

(σ2
0 − σ2)+ . (4.14)

Proof. Combining Corollary 3.1 (b) with Theorem 4.1, one gets for any f ∈ Fβ(Q) and x ∈ R,

E(Iβy(x) − f(x))2 ≤ σ2(1 + [a1 − k2 cn2(2Kx, k)] sn2(2Kx)) + Q2k sn2(2Kx, k)

≤ σ2 + (σ2a1 + Q2k) sn2(2Kx, k).

Thus, for σ2 ≥ σ2
0 ,

sup
f∈Fβ(Q)

sup
x∈R

E
(
Iβy(x) − f(x)

)2 = σ2. (4.15)

For 0 ≤ σ2 ≤ σ2
0, one gets similarly

sup
f∈Fβ(Q)

sup
x∈R

E(Iβ y(x) − f(x))2 ≤ σ2 + sup
x∈R

(σ2a1 + Q2k) sn2(2Kx, k)

= σ2 + (σ2a1 + Q2k) = σ2 + r2
0

(
1 − σ2

σ2
0

)
= σ2 +

r2
0

σ2
0

(σ2
0 − σ2),
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Fig. 1. g = g(β), 0.1 ≤ β ≤ 1.

and the upper bound (4.14) follows. The lower bound is obvious, since

min
I∈I

sup
f∈Fβ(Q)

sup
x∈R

E(Iy(x) − f(x))2

≥ max
(

min
I∈I

sup
x∈R

Var Iy(x), min
I∈I

sup
f∈Fβ(Q)

sup
x∈R

(If(x) − f(x))2
)
≥ max(σ2, r2

0).

Corollary 4.1. For σ2 ≥ σ2
0 , the interpolant Iβy is R-optimal, i.e.,

sup
f∈Fβ(Q)

sup
x∈R

E
(
Iβy(x) − f(x)

)2 = σ2.

Note that the equation (4.15) illustrates the effect of interference which eliminates altogether the
risk invoked by the bias. Of course, no interpolant can possibly be R-optimal if σ2 is smaller than the
(exponentially small) lower bound r2

0. Incidentally, this implies that σ2
0 ≥ r2

0. Nevertheless, the above
Corollary claims that Iβ is R-optimal for all σ2 exceeding the (exponentially small) value σ2

0 ; cf., the
following

Remark 4.1. By (3.23), (5.12), and Lemma 4.1 (b), for β → ∞,

g ≤ 2
√

6βe−2πβ
(
1 + O(β−1)

)
.

A plot of g = g(β) for 0.1 ≤ β ≤ 1 is shown in Fig. 1.

Remark 4.2. As mentioned in Section 3.2.3, the limiting version of the interpolant Iβ for β → ∞ is the
famous sinc filter I∞, see (3.28). Thus, one may expect I∞ to have similar optimality properties. In fact,
these properties are almost obvious (with σ2

0 = 0).
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Proposition 4.2. The sinc interpolant I∞y is (a) D-optimal; (b) R-optimal for all σ ≥ 0, w.r.t.
the model (X , Eπ).

Indeed, D-optimality of I∞y follows from the equation, cf. [7] 1.422(4),

Var I∞y(x) =
σ2 sin2 πx

π2

∞∑
j=−∞

1
(x − j)2

≡ σ2.

The R-optimality (as well as A-optimality) of I∞y follows trivially from its unbiasedness in Eπ, cf. (3.32).

Remark 4.3 (A further generalization). The above results can be easily extended to a more general class
of cardinal designs Xh =: {xj = jh, j ∈ Z}. To this end, note first that for any h > 0, the relation

f(w) = g(wh) (4.16)

establishes a bijection between the classes Fβ(Q) = {f} and Fα(Q) = {g}, with α = βh, as well as
between the classes Eπ and Eγ , with γ = π/h.

Suppose the values g = {g(jh), j ∈ Z} of a function g in (4.16) are given at the nodes xj = jh ∈ Xh,
possibly contaminated by a white noise, yj = g(jh) + ej ≡ f(j) + ej . To get an interpolant for g(w),
one can, in principle, interpolate f(w) first, by using Iβ in (4.1), and then apply (4.16). This leads to the
following more general interpolant,

Iα,h g(x) =
πh

4αK
sn

(2Kx

h
, k

) ∞∑
j=−∞

(−1)jg(jh)
sinh

(
π
2α(x − jh)

) .

It has the same optimality properties as those described for the interpolant Iβ in Proposition 4.1 and
Theorem 4.2, where β should be replaced by α/h; see, in particular, (3.23), (4.5), and (5.11).

In the limiting case α → ∞, Iα,h g(x) converges to the cardinal series

I∞,hg(x) =
∞∑

j=−∞

sin γ(x − jh)g(jh)
γ(x − jh)

= sin γx
∞∑

j=−∞

(−1)jg(jh)
γ(x − jh)

, γ =
π

h
.

It has the same optimality properties with respect to the model (Xh, Eπ/h) as those described by
Proposition 4.2 with respect to (X , Eπ).

5. APPENDIX

This section summarizes for the reader’s convenience some properties of the Jacobi elliptic functions
used in this paper. A similar review is provided in [14]. The underlying theory can be found in [1], [3]. All
the formulas below are cited from [3], Ch. 13.

The integral

K = K(k) =
∫ 1

0

dx√
(1 − x2)(1 − k2x2)

is called the complete elliptic integral of the 1st kind of modulus k. Only the so-called normal case
0 < k < 1 is considered in this paper. The complementary modulus is defined as k′ =

√
1 − k2. Let

K′ = K(k′). Obviously, for all 0 < k < 1,

K(k) >

∫ 1

0

dx√
1 − x2

=
π

2
, (5.1)

and as k → 0,

K(k) =
π

2
+ O(k2). (5.2)

By [3], Section 13.8,

K(k) ≤ π

2
+ log

1
k′ . (5.3)
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For −1 ≤ y ≤ 1, the integral

x =
∫ y

0

du√
(1 − u2)(1 − k2u2)

defines a monotone continuous odd function x = x(y) increasing from −K to K. Its inverse is the Jacobi
elliptic sinus, y = sn x = sn(x, k) – an odd monotone function mapping [−K,K] into [−1, 1], [3],
Section 13.16. It can be continued to a (4K, 2iK′) doubly periodic meromorphic function sn(w, k),
w ∈ C. Clearly,

sn(w, 0) = sin w. (5.4)

The other main Jacobi function, cn x = cn(x, k), satisfies [3], Section 13.17

cn2 w + sn2 w = 1. (5.5)

Some properties of the Jacobi functions are:

sn(2jK, k) = 0, sn′(2jK, k) = sn((2j + 1)K, k) = (−1)j , j ∈ Z, (5.6)

sn(w − 2jK, k) = (−1)j sn(w, k), j ∈ Z, (5.7)

sn(w, k) = w
(
1 − 1 + k2

6
w2 + O(w4)

)
, w → 0. (5.8)

sn(w + iK′, k) =
1

k sn(w, k)
, (5.9)

res2jK+iK′ sn(·, k) =
(−1)j

k
. (5.10)

The parameter q = q(k) = exp(−πK′/K) is called nome. In terms of the nome, cf. [12], Eq. (3.27), or
[14], Eq. (A.38), p. 200,

k = k(q) = 4q1/2

( ∑∞
m=0 qm(m+1)

1 + 2
∑∞

m=1 qm2

)2

. (5.11)

Note that by (5.11),

k = 4q1/2(1 + O(q)), q → 0. (5.12)

The Jacobi elliptic functions can be expressed in terms of the Jacobi theta functions. These functions
can be defined as

θ1(v) = 2q1/4
∞∑

n=0

(−1)nqn(n+1) sin(2n + 1)πv,

θ2(v) = 2q1/4
∞∑

n=0

qn(n+1) cos(2n + 1)πv,

θ3(v) = 1 + 2
∞∑

n=1

qn2
cos 2nπv,

θ4(v) = 1 + 2
∞∑

n=1

(−1)nqn2
cos 2nπv.

Let
q0 =

∞∏
n=1

(1 − q2n).

The Jacobi theta functions can be represented by the following infinite products,

θ1(v) = 2q0q
1/4 sin πv

∞∏
n=1

(1 − 2q2n cos 2nv + q4n), (5.13)
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θ2(v) = 2q0q
1/4 cos πv

∞∏
n=1

(1 + 2q2n cos 2nv + q4n), (5.14)

θ3(v) = q0

∞∏
n=1

(1 + 2q2n−1 cos 2nv + q4n−2), (5.15)

θ4(v) = q0

∞∏
n=1

(1 − 2q2n−1 cos 2nv + q4n−2). (5.16)

One gets, see [3], Section 13.20,

k1/2 =
θ2(0)
θ3(0)

, k′1/2 =
θ4(0)
θ3(0)

, (5.17)

sn(2Kv, k) =
θ3(0)θ1(v)
θ2(0)θ4(v)

=
1√
k

θ1(v)
θ4(v)

, cn(2Kv, k) =
θ4(0)θ2(v)
θ2(0)θ4(v)

=

√
k′

k

θ2(v)
θ4(v)

. (5.18)

The following relation is known as the second principal first degree transform, [3], Section 13.22,
Table 11,

sn(iu, k′)
cn(iu, k′)

= i sn(u, k). (5.19)
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