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Abstract—When the classical nonparametric bootstrap is implemented by a Monte-Carlo proce-
dure one resamples values from a sequence of, typically, independent and identically distributed ones.
But what happens when a decision has to be taken based on such resampled values? One way to
quantify the loss of information due to this resampling step is to consider the deficiency distance, in
the sense of Le Cam, between a statistical experiment of n independent and identically distributed
observations and the one consisting of m observations taken from the original n by resampling with
replacement. By comparing with an experiment where only subsampling with a random subsampling
size has been performed one can bound the deficiency in terms of the amount of information
contained in additional observations. It follows for certain experiments that the deficiency distance
is proportional to the expected fraction of observations missed when resampling.
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1. INTRODUCTION

The use of the bootstrap and similar procedures appears to have become almost synonymous with
their approximation by Monte-Carlo methods. While this may be what make them tractable in practice
they entail some form of resampling which is a perturbation of the data on top of whatever noise and
general uncertainty is already inherent in the statistical experiment. Our goal here is to quantify the
amount of information relevant to inference that is lost due to this randomization when resampling with
replacement.

Formally we consider a statistical experiment E = (X,Pθ ; θ ∈ Θ) given by a family of probability
measures (Pθ)θ∈Θ on a sample space X indexed by a parameter space Θ. This description captures
all relevant information of the scenario where one is observing a quantity from X with probability law
governed by Pθ for some unknown θ ∈ Θ. Based on this experiment we may form two different exper-
iments. First E⊗n will correspond to observing n independent and identically distributed observations
from E . Secondly RmE⊗n will be obtained by observing a vector of m values given by resampling with
replacement from a collection of n independent and identically distributed values as in E⊗n. Typically one
would have m = an for some positive integer a.

The deficiency δ(RmE⊗n, E⊗n) as introduced by Le Cam [11] can then be given the following
operational interpretation. It is the smallest ε ≥ 0 such that any decision, for any suitable decision
space and normalized loss function, based on n independent and identically distributed observations
is matched by a decision with a risk at most ε greater based on m resampled observations. From this
point of view our goal is to bound this deficiency in terms of m, n, and E . Another way to pose our
question is given by asking how well, in the worst case scenario, a procedure based on resampling
can perform relative to an optimal one that does not. Such procedures include ideas such as bootstrap
aggregation (bagging) and at least roughly describe many more traditional applications of the bootstrap.
Bootstrap procedures are often studied, in an appropriate sense, conditionally on the underlying vector of
observations resampled from. We are here interested in the unconditional behavior. Indeed, conditioning
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on the underlying vector would eliminate the dependence on Θ and thus tell us little regarding the effect
on inference about Θ.

Our primary tool will be an approximation given by considering only the information lost due to
samples not being included when resampling. This means ignoring any additional confusion introduced
by certain values appearing in a larger or smaller proportion than in the original sample. When the
original is known to contain no duplicates, for example when working with continuous measures on
the real numbers, this approximation is actually exact, since any duplicates among the resampled values
must be artefacts of resampling. When duplicates are allowed, for example in the discrete case, it is still
the case that any observations not resampled cannot be recovered. In the general case one therefore gets
a bound from below. Under very mild regularity conditions an experiment is equivalent to a continuous
one, in an appropriate sense. In other words, the experiment is equivalent to an experiment where the
inequality is an equality.

The above argument can be formalized by somewhat cumbersome but essentially elementary means.
Doing so yields non-asymptotic inequalities relating the deficiency of the resampled experiment to
the amount of information gained, again in the sense of deficiency, from additional observations. This
quantity is somewhat better understood thanks to the work of Torgersen [25, 27], Le Cam [12],
Helgeland [6], and Mammen [13].

If every observation is essential, so that removing even one will give a maximal deficiency, the question
is closely related to the coupon collectors problem. A different situation arises in the parametric setting
studied in the above papers by Le Cam, Helgeland, and Mammen. Here additional observations become
less and less useful so that missing a few has a less dramatic effect. Indeed, we show that for such
experiments the rate at which the number of resamples must increase with the original sample size for
the deficiency to tend to zero is different from the rate in the coupon collectors problem.

Recall that the empirical measure of an independent and identically distributed sample will always be
a sufficient statistic assuming the original sample size is known. In particular, any decision based on the
original is matched by the one at least as good based only on the empirical measure and the deficiency
from observing it instead of the original sample is zero. What we are considering here is thus only the
effect of resampling, not the behavior of decision based on substituting the empirical measure for the
unknown underlying measure. Results in the latter direction can be found, for example, in Putter and
Van Zwet [19] or Mammen [14] and references therein.

While the author is unaware of any previous results in exactly this direction, it is conceptually similar
to a number of other publications that consider approximate sufficiency of an experiment after some
perturbation. First of all there are the already mentioned results of Torgersen, Le Cam, Helgeland,
and Mammen on the amount of information lost due to dropping observations. Beyond these, without
making any claim as to completeness, it is worth mentioning results by Marohn [17] and Falk and
Marohn [3] on censoring, a series of papers by Reiss, Falk and Weller [21], Reiss [20], Janssen and
Reiss [7], Marohn [16] and Janssen and Marohn [8] on information in various order statistics, papers by
Milstein and Nussbaum [18], Konakov, Mammen and Woerner [10], Mariucci [15] and Genon-Catalot
and Larédo [4] on the deficiency introduced by discretely observing diffusion processes and Strasser [24]
on quantization.

The structure of the paper is as follows. Section 2 defines our notation and very briefly surveys some
definitions. Section 3 presents the main results, given as Theorems 9 and 11, and examples collected
in Corollary 12. Sections 4 and 5 contain the bulk of theory and proofs, the former with the goal of
proving Theorem 9 and the latter towards Theorem 11 and examples collected in Corollary 12. After
some concluding remarks in Section 6 one finds Appendix A containing a number of auxiliary results
used in the paper, but which do not quite belong to the main narrative, and Appendix B to which the
more technical and routine proofs have been condemned.

2. NOTATION AND CONVENTIONS

Throughout let X = (X ,X ), Y = (Y,Y ), and Z = (Z,Z ) be measurable spaces and let S :
X →k Y and T : Y →k Z be Markov kernels.

If B([0, 1]) is the σ-algebra of Borel sets on [0, 1], we have that S is, formally, a function X × Y →
[0, 1], that is (X ,B([0, 1]))-measurable when the second argument is fixed and defines a probability
measure whenever the first argument is fixed. We will often write Sx(B) := S(x,B) and treat S as a

MATHEMATICAL METHODS OF STATISTICS Vol. 27 No. 2 2018



THE DEFICIENCY INTRODUCED BY RESAMPLING 147

measurable map from X into the space of probability measures on Y , equipped with the smallest σ-
algebra such that for all B ∈ Y the map μ �→ μ(B) is measurable. Markov kernels act on probability
measures with SP being the measure on Y defined by SP (A) =

∫
Sx(A)P (dx) for A ∈ Y .

Given two measures P on X and Q on Y their product measure on X ⊗ Y is denoted by P ⊗ Q
with powers denoted by P⊗n = P ⊗ · · · ⊗ P (where the right-hand side has n factors P ). Their direct
sum P ⊕Q on the disjoint(!) union of X and Y is determined by (P ⊕Q)(A) = P (A ∩ X) + Q(A ∩ Y ).
If P and Q are probability measures and α ∈ [0, 1], then αP ⊕ (1 − α)Q is also a probability measure.
The notion extends in the obvious way to finite indexed families (Pi)i∈I and probability measures μ
on I with the corresponding measure denoted by

⊕
i∈I μ({i})Pi. In other words if I is a finite set with

some probability measure Pi for each i ∈ I on disjoint (Xi,Xi), then for any A ∈ σ(
⋃

i∈I Xi) we have
(
⊕

i∈I μ({i})Pi)(A) :=
∑

i∈I μ({i})Pi(A ∩ Xi). The use of
⊕

rather than
∑

is due to the latter being
reserved for taking (not necessarily direct) sums as signed measures.

An experiment with parameter space Θ is specified as (X,Pθ ; θ ∈ Θ) or (Pθ; θ ∈ Θ) depending
on whether the underlying measurable space is required. A generic experiment is denoted by E . For
experiments E and F with a common parameter space Θ and Markov kernel S, we let E ⊗ F , SE and so
on be defined point-wise for each parameter θ ∈ Θ.

The deficiency of E = (Pθ; θ ∈ Θ) with respect to F = (Qθ; θ ∈ Θ) will be denoted by δ(E ,F). It is
characterized either as a supremum over the difference in achievable risk over a good class of decision
problems or as the infimum over an appropriate class of linear maps, often given by Markov kernels,
sending Pθ to a measure close in total variation to Qθ for every θ ∈ Θ (see a standard reference such as
the textbook of Torgersen [28]). If δ(E ,F) = 0 the latter experiment F is said to be less informative
than E and will be denoted F ≺ E . If also E ≺ F , the experiments are said to be equivalent, denoted
E ∼ F .

The total variation distance between measures, and consequently the deficiency between experi-
ments, is taken to be normalized between 0 and 1. Note that it is also common to normalize the quantities
to lie between 0 and 2, which corresponds to allowing negative test functions and losses.

Finally Urn(n,m) will denote the law of the number of non-empty urns after independently and
uniformly throwing m balls into n initially empty urns. For a standard reference see Johnson, Kemp and
Kotz [9]. At times we will (explicitly) introduce the abbreviation υ = υ(n,m) = Urn(n,m), depending
on whether dependence on n,m needs to be made explicit.

3. MAIN RESULTS AND EXAMPLES

For positive integers m and n let Fm,n denote the set of functions from {1, . . . ,m} to {1, . . . , n}. One
may think of a probability measure α on Fm,n as a sampling strategy: if f has law α, it corresponds
to picking f(1), . . . , f(m) from the population {1, . . . , n}. Replacing Fm,n by Fn :=

⋃
m Fm,n one can

allow for random sample sizes.

Proposition 6. Let m,n ∈ N be positive integers, α a probability measure on Fm,n and X a
measurable space with underlying set X . One can then define a Markov kernel Rα,X : X⊗n →k

X⊗m for x ∈ X n by (Rα,X)x =
∑

f∈Fm,n
α({f})δxf

, where xf = (xf(1), . . . , xf(m)) and δxf
denotes

the point measure at xf .

More generally, if α is a probability measure on Fn =
⋃

m Fm,n, the above definition gives a
Markov kernel Rα,X : X⊗n →k

⊕
m X⊗m.

Note that the construction is contravariant in the sense that picking functions going from {1, . . . ,m}
to {1, . . . , n} gives a Markov kernel from X⊗n to X⊗m.

We will be concerned almost exclusively with two special cases Rm,n,X and Sm,n,X . The former
corresponds to having α be the uniform measure on Fm,n and the latter is defined when m ≤ n and
then corresponds to taking α as the uniform measure of the subset of injective functions. These special
cases correspond to uniformly resampling m elements from a vector of n with and without replacement,
respectively.
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Proposition 7. Let m,n,X,X be as in Proposition 6 and let Rm,n,X = Rα,X , where α is the uniform
measure on Fm,n. For any x = (x1, . . . , xn) ∈ X n, it then holds that (Rm,n,X)x is the law of a vector
of size m taken uniformly and with replacement from x.

In case m ≤ n let Sm,n,X = Rβ,X with β the uniform measure on the set of injective functions
in Fm,n. Analogously (Sm,n,X)x is the law of a vector of size m taken uniformly without replace-
ment from x.

For some experiment E = (X,Pθ ; θ ∈ Θ) our objective is now to study RmE⊗n, an experiment given
by first taking n independent and identically distributed observations according to E and observing
a vector of m values taken uniformly, with replacement, from this vector. When resampling with
replacement one will, in general, miss some values from the original vector even if m ≥ n. Thus if one
takes m values from (x1, . . . , xn) one is implicitly choosing randomly some subvector (xi1 , . . . , xiκ) of
random size κ ≤ n from which to sample exhaustively. Thinking of sampling as throwing m balls into
n urns, the random size κ corresponds to the number of non-empty urns in the classical uniform urn
occupancy problem (see Section 2), the law of which we denote Urn(n,m).

Proposition 8. Fix any positive integers n,m ∈ N and introduce the shorthand υ = Urn(n,m).
For any measurable space X one then has

Rm,n,X = DSυ,n,X , (1)

where Sυ,n,X =
∑n

m=1 υ({m})Sm,n,X , Rm,n,X and Sm,n,X are as in Proposition 6, and D is a Markov
kernel.

The Markov kernel D above simply corresponds to randomly padding a vector of length k to a vector
of length m by copying values.

In general the effect of resampling will depend in a non-trivial way on the structure of the underlying
set of measures. The most manifest case is an experiment E = (X,Pθ; θ ∈ Θ), where X is countably
separating and (Pθ)θ∈Θ is continuous in the sense that Pθ({x}) = 0 for each x and θ. Recall that being
countably separating means that there exists a countable family of measurable sets that separates the
point of X. This is equivalent to the diagonal set in X⊗2 being measurable and implies that all singleton
sets are measurable as well as continuous measures being the same as non-atomic measures [1]. In
this situation any duplicates found in the resampled vector are almost surely artefacts of the resampling
procedure and one can recover the exact random subset of values not missed during resampling. In
this case the resampled experiment Rm,n,XE⊗n is equivalent to the experiment Sυ,n,XE⊗n, where only
subsampling, of size governed by Urn(n,m), has been performed.

Theorem 9. Fix some n,m ∈ N, a measurable space X, and let υ = Urn(n,m) and Sυ,n,X be as in
Proposition 8. For any experiment E on X one has

δ(Rm,n,XE⊗n, E⊗n) ≥ δ(Sυ,n,XE⊗n, E⊗n). (2)

Moreover if X is countably separating, then the equality holds at least whenever E is
continuous or non-atomic and the lower bound is the best that depends only on the equivalence
class of E .

Note that countably separating is certainly weaker than being countably generated (separable). It
therefore holds at least for Polish spaces and thus in many, if not most, practical examples.

Applying a projection onto a set of k coordinates chosen independently of the observation gives an
experiment equivalent to E⊗k, so that Sυ,n,XE⊗n is equivalent to a mixture experiment, where one first
picks κ according to Urn(n,m) and then observes E⊗κ. Since deficiency is convex with respect to taking
mixtures this allows one to get an upper bound on the right-hand side in terms of the expected value of
δ(E⊗κ, E⊗n). To get an approximately matching lower bound it suffices for those situations we shall
consider to use a very weak type of concavity of the deficiency.
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Proposition 10. Fix some n,m ∈ N, a measurable space X, and let υ = Urn(n,m) and Sυ,n,X be
as in Proposition 8. For any experiment E on X one then has

max
k

(
δ(E⊗k, E⊗n)P(κ ≤ k)

)
≤ δ(Sυ,n,XE⊗n, E⊗n) ≤ E(δ(E⊗κ, E⊗n)), (3)

where the probability on the left-hand side and the expectation on the right-hand side are taken
with respect to κ ∼ Urn(n,m).

As a consequence of Theorem 9 and Proposition 10 we have that δ(Rm,n,XE⊗n, E⊗n) = 0 only if
δ(E⊗k, E⊗n) = 0 for all k. Such experiments are degenerate in the sense that any pair of measures are
either equal or singular [28, p. 285].

Consider a more general situation, where one has access to some appropriate bounds on δ(E⊗k, E⊗n).
Plugging such bounds into Proposition 10 one may attempt to balance k on the left-hand side of
Proposition 10 so as to match the right-hand side up to some constant. This balancing act works at
least in the following situation.

Theorem 11. Consider a measurable space X, abbreviate υ(m,n) = Urn(n,m), m,n ∈ N, and let
Sυ(m,n),n,X be as in Proposition 8.

If E is an experiment on X satisfying c0l/n ≤ δ(E⊗n−l, E⊗n) ≤ C0l/n for some constants
C0 ≥ c0 > 0, then

c1Em,n ≤ δ(Sυ(m,n),n,XE⊗n, E⊗n) ≤ C0En,m (4)

for some constant c1 > 0 depending only on c0, where En,m = (1 − 1/n)m is the expected propor-
tion of observations missed when resampling m elements from n with replacement.

The rate δ(E⊗n−l, E⊗n) � l/n is not chosen simply to give a nice result but appears naturally. Explicit
examples are given in Corollary 12 below and the rate has been established by Mammen [13] and
Helgeland [6] to be, at least asymptotically, the correct rate for all finite-dimensional exponential families.
Based on the ideas by Le Cam [12] Mammen generalized this upper bound to experiments satisfying
certain metric dimensionality conditions with respect to Hellinger distance.

Generalizing the lower bound is a less well understood problem, but we recall the following, abbrevi-
ated, partial justification due to Helgeland [6]. Assume for simplicity that the experiment E is identifiable.
By restricting to finite subsets of the parameter space and using results concerning the convergence of
experiments with finite parameter spaces one sees that the only possible limit experiment of E⊗n is a
totally informative experiment E�, where the measures are pairwise singular [27]. It is also known that
δ(E⊗n, E�) = 1 for all n as soon as, for example, E has an accumulation point for set-wise convergence
or contains an uncountable dominated subexperiment [27, Proposition 5.6]. Thus one should not, in
general, expect E⊗n to have a limit unless the parameter space is finite. Therefore, since the metric space
of experiment types is complete, the sequence E⊗n, in general, will not be a Cauchy sequence. But for
n, k > 0 we have δ(E⊗n, E⊗n+k) ≤

∑k
i=1 δ(E⊗n+i−1, E⊗n+i), so that δ(E⊗n+i−1, E⊗n+i) must at least

decrease more slowly than n−(1+α) for any α > 0.
Torgersen [26, pp.1393–1394] derived a number of relatively explicit formulas for the deficiency for a

number of examples. Using these we can apply Theorem 11 to two concrete examples. These examples
turn out to be particularly nice in that δ(E⊗n−l, E⊗n) can be written as a convex function of l/n.

Corollary 12. Let E be one of the following two experiments:

1. The normal location experiment (N(μ, σ2) | μ ∈ R), where N(μ, σ2) is the normal distribu-
tion with mean μ and variance σ2;

2. The experiment (Unif(0, θ); θ ∈ R>0), where Unif(0, θ) is the uniform distribution on [0, θ].

Letting Rm,n,R be as in Proposition 6, one has δ(Rm,n,RE⊗n, E⊗n) � En,m, where En,m =
(1 − 1/n)m. In particular, δ(R(aini),ni,RE⊗ni , E⊗ni) → 0 if and only if ai → ∞.

As mentioned in the Introduction, the rate in Corollary 12 is different from the rate in the classical
coupon collectors problem. In our setting the coupon collectors problem corresponds to considering
a continuous/non-atomic experiment E satisfying δ(E⊗n, E⊗n+1) = 1. In this case one would need to
have ai/ log(n) → ∞, as can be seen from the results of Erdős and Rényi [2].
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4. RESAMPLING AND SUBSAMPLING

The goal of this section is to give the proof of Theorem 9, leaving some details for the appendices. The
proofs of Propositions 6 and 7 are routine and will therefore be postponed until Appendix B.

While the exact form of the Markov kernel D in Proposition 8 is, for present purposes, not conceptu-
ally important for our main results, we will need it for some of the proofs leading up to Theorem 9. In this
section we will therefore work with the following slightly more specific statement.

Proposition 13. Let αk be the uniform measure on the set of surjective functions from {1, . . . ,m}
to {1, . . . , k} and let Rαk,X : X⊗k →k X⊗m be as in Proposition 6. Define the Markov kernel
D :

⊕n
k=1 X⊗k →k X⊗m such that for each x ∈ X k one has Dx = (Rαk,X)x. The statement of

Proposition 8 holds with this D.

Given a vector of length k ≤ m, the Markov kernel D will pad it to the one of length m by copying
values, generally changing the order while doing so.

The proof boils down to the basic that a function f from {1, . . . ,m} to {1, . . . , n} factors as a
surjective map onto {1, . . . , k} followed by an injective map from {1, . . . , k} into {1, . . . , n}, where k
is the cardinality of the image of f . The two factors D and Sυ,n,X in the right-hand side of (1) correspond
then to the surjective and injective parts of the function picked in the left-hand side kernel Rm,n,X .
Beyond this observation the proof of Proposition 13 is only bookkeeping and is therefore relegated to
Appendix B.

Inequality (2) in Theorem 9 follows immediately from Proposition 13 by the general fact that applying
a Markov kernel, here D, gives rise to a less informative experiment.

In general the diagonal set in X⊗2 need not be measurable. Its non-measurability is, for example,
inevitable in spaces of large cardinality [22, p. 550]. In practical terms this means that given two X-
valued random variables the set of outcomes such that the two variables are equal is not necessarily
an event. Recall from Section 3 that we get around this issue by assuming the space to be countably
separating. Recall also that being countably separating implies that singleton sets are measurable and
that continuous and non-atomic measures coincide.

When taking independent and identically distributed samples from a non-atomic measure on a
countably separating space one will almost surely not observe any duplicate values. In particular,
therefore, any duplicates when resampling must be artefacts of the resampling. If one is resampling
exhaustively, so that all values are guaranteed to be picked at least once, the original collection of values
can be recovered by simply throwing out any duplicates, only the original order is lost.

Lemma 14. Let m,n ∈ N, X be a countably separating measurable space and D be as in Proposi-
tion 13. There exists a Markov kernel D′ such that D′DP = P for any mixture P =

∑r
i=1 αiPi

⊗ki ,
where Pi are continuous/non-atomic probability measures on X and k1, . . . , kr ∈ {1, . . . , n}.

Intuitively the proof is simply what was said above, one may throw out any duplicates in order to
recover the original vector. The details of the proof are left for Appendix B.

The usefulness of Lemma 14 stems from the fact that for experiments E on countably separating
spaces, where all measures are non-atomic, the Markov kernel D in Proposition 13 can be cancelled.
This is exactly what is needed for the second half of Theorem 9.

Before proceeding we need to note that subsampling acts on independent and identically distributed
sequences simply by giving a shorter sequence of still independent and identically distributed values.

Proposition 15. Let X and Sυ,n,X be as in Proposition 8 and let P be a probability measure on X.
Then Sυ,n,XP⊗n =

∑n
k=1 υ({k})P⊗k .

Proof. Recall that Sυ,n,X =
∑n

k=1 υ({k})Sk,n,X by definition. By linearity we need therefore only show
that Sk,n,XP⊗n = P⊗k. But this follows from the fact that a subvector of independent and identically
distributed random variables is also independent and identically distributed.

We can now fulfil the stated goal of this section.
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Proof of Theorem 9. Write Rm,n,X = DSυ,n,X as in Proposition 13. This directly implies the inequality
δ(Rm,n,XE⊗n, E⊗n) = δ(DSυ,n,XE⊗n, E⊗n) ≥ δ(Sυ,n,XE⊗n, E⊗n) in (2) since applying a Markov kernel
gives rise to a less informative experiment (see any standard text such as Torgersen [28, Corol-
lary 6.2.26]).

For the remaining part, let E = (X,Pθ; θ ∈ Θ) with X countably separating, so that we may take D′

to be as in Lemma 14.

Assume now that all Pθ are, moreover, continuous/non-atomic. Using again that applying a
Markov kernel cannot result in a more informative experiment we have δ(DSυ,n,XE⊗n, E⊗n) ≤
δ(D′DSυ,n,XE⊗n, E⊗n). By Proposition 15 and Lemma 14 the experiment D′DSυ,n,XE⊗n is equal to
Sυ,n,XE⊗n, so that

δ(Sυ,n,XE⊗n, E⊗n) ≤ δ(Rm,n,XE⊗n, E⊗n)

≤ δ(D′DSυ,n,XE⊗n, E⊗n) = δ(Sυ,n,XE⊗n, E⊗n),

which means that (2) is an equality.

By Proposition 18 in Appendix A there exists an experiment E ′ = (Y,Qθ; θ ∈ Θ), where Y is
countably separating, E ∼ E ′ and Qθ is continuous/non-atomic. This concludes the proof, since E and E ′

are equivalent and (2) is an equality for E ′.

Proposition 10 now follows from convexity properties of the deficiency.

Proof of Proposition 10. Since Markov kernels act point-wise, we have by Proposition 15 that
Sυ,n,XE⊗n =

∑n
k=1 υ({k})E⊗k .

The upper bound of (3) is now a direct consequence of convexity of the deficiency with respect to
mixtures of experiments [28, Corollary 6.3.22]. For the lower bound apply Proposition 20 and then
maximize over K.

5. BOUNDS IN THE PARAMETRIC CASE

The goal for this section is to prove Theorem 11 and its consequences in Corollary 12.

Getting something useful out of Proposition 10 boils down to choosing a k in the left-hand side of (3)
yielding a value sufficiently close to the maximum. In this section we will perform this balancing act for
experiments E , where δ(E⊗n−l, E⊗n) � l/n.

In order to make clear what we are trying to achieve in the lower bound we begin by computing the
upper bound.

Lemma 16. Let E be an experiment such that there exists some constant C satisfying

δ(E⊗n−l, E⊗n) ≤ Cl/n

for all n ∈ N and k = 0, . . . , n. Then E(δ(E⊗κ, E⊗n)) ≤ CEn,m, where the expectation is taken with
respect to κ ∼ Urn(n,m) and En,m = (1 − 1/n)m.

Proof. The expected value of an Urn(n,m)-distributed random variable is n − nEn,m, as can be seen
by a short computation or using the general (factorial) moment formula [9, p. 416]. Plugging this into
our expectation gives

E(δ(E⊗κ, E⊗n)) ≤ C E(n − κ)/n = CnEn,m/n = CEn,m.
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Note that the constant being independent of n and m is crucial as the conclusion holds trivially for
C = E−1

n,m, it always being true that δ(E⊗n−l, E⊗n) ≤ 1 ≤ nl/n.

Given an experiment E such that δ(E⊗n−l, E⊗n) > cl/n for some c > 0 we wish now to match this
bound by finding a c′ such that maxk δ(E⊗k, E⊗n) P(κ ≤ k) ≥ c′En,m.

Depending on the size of Em,n we will use different strategies. When Em,n is very small the result is
fairly direct, since one needs only consider the probability of any value at all being lost. Otherwise one
either bounds the deficiency factor while keeping the probability P(κ ≤ k) fixed (utilizing Lemma 21) or
bounds the probability while the deficiency factor is fixed (utilizing Lemma 23).

Proof of Theorem 11. The upper bound is Lemma 16, so that only the lower bound remains. Applying
Proposition 10 gives δ(Sυ,n,XE⊗n, E⊗n) ≥ maxkδ(E⊗k, E⊗n)P(κ ≤ k), where κ ∼ Urn(n,m). We need
therefore bound maxk(1 − k/n) P(κ ≤ k) from below. The proof proceeds for three different cases
corresponding to the marginal probability of missing En,m = (1 − 1/n)m being “very small”, “small”
and “large”.

For the “very small” case, when m is much larger than n, one can directly apply the Bonferroni
inequality after setting k = n − 1. Write κ =

∑n
i=1 κi, where κi are Bernoulli 1 − Em,n indicator

variables corresponding to the individual urns and compute

max
k

n − k

n
P(κ ≤ k) ≥ 1

n
P(κ �= n) =

1
n

P

(⋃

i
κi = 0

)

≥ 1
n

(∑

i
P(κi = 0) −

∑

i<j
P(κi = 0, κj = 0)

)

= P(κ1 = 0)
(
1 − (n − 1)P(κ2 = 0 | κ1 = 0)

)

≥ P(κ1 = 0)(1 − En,mn) = En,m(1 − En,mn), (5)

where the last inequality is due to the conditional distribution of κ ∼ Urn(n,m) given κ1 = 0 being
Urn(n − 1,m).

We proceed with the “small” case where the idea is to control the first factor 1 − k/n. Applying
Lemma 23 with ξ = Em,n and then Lemma 24 gives

max
k

(1 − k/n)P(κ ≤ k) ≥ Em,nP(κ ≤ E(κ)) ≥ Em,n

(
1
4

+
log(En,m)En,m

1 − En,m

)

, (6)

whenever log(4/3)/n ≤ Em,n and where we recall that E(κ) =
∑

i E(κi) = n(1 − En,m).

For the “large” case let κ′ be an independent copy of κ, so that by Lemma 21 we have

max
k

(1 − k/n)P(κ ≤ K) ≥ (1 − E(max(κ, κ′))/n)/2.

Recall that En,m = n− E(κ1) = (1− E(κ)/n), so that proving 1− E(max(κ, κ′))/n ≥ c′En,m for some
c′ > 0 is equivalent to proving E(max(κ, κ′)) ≤ (1 − c′)n − c′ E(κ). Applying Lemma 22 yields

E(max(κ, κ′)) ≤ (1 − En,2m)n = (1 − E2
n,m)n = (1 + En,m)(1 − En,m)n

= (1 − En,m)n + En,m E(κ),

so that

max
k

(1 − k/n)P(κ ≤ k) ≥ En,m
En,m

2
. (7)

It remains to combine (5), (6) and (7) to get a lower bound on Am,n := maxk(1 − k/n)P(κ ≤ k)
independent of m and n.

From (5) we have that Am,n ≥ c′′Em,n if En,m ≤ (1 − c′′)/n. Next (7) gives Am,n ≥ c′′Em,n if
Em,n ≥ 2c′′. We need therefore choose a c′′ > 0 such that (6) gives Am,n ≥ c′′Em,n when (1 − c′′)/n <
En,m < 2c′′.

MATHEMATICAL METHODS OF STATISTICS Vol. 27 No. 2 2018



THE DEFICIENCY INTRODUCED BY RESAMPLING 153

First of all (6) holds only if log(4/3)/n ≤ Em,n. But choosing c′′ ≤ 1 − log(4/3) ≈ 0.7 means the
case log(4/3)/n ≥ Em,n is covered by Eq. (5). It remains to pick any c′′ ≤ 1 − log(4/3) such that

g(Em,n) :=
1
4

+
log(En,m)En,m

1 − En,m
≥ c′′

when (1 − c′′)/n < Em,n < 2c′′. Since g is monotone decreasing, we need only verify

g(2c′′) =
1
4

+
log(2c′′)c′′

1 − c′′
≥ c′′

for some c′′ > 0. But this can be verified, for example, by c′′ = 1/20. The result then follows by taking
c1 = c′′c0.

The factor c′′ = 1/20 is probably overly conservative. It arises due to the unsharp inequality in
Lemma 24, where numerical investigation suggests that the extra term log(En,m)En,m/(1 − En,m)
should not be necessary.

Both examples in Corollary 12 satisfy the requirements of the above theorem by way of the following
simple observation.

Lemma 17. Let E be an experiment such that for all n ∈ N and 0 ≤ l ≤ n

δ(E⊗n−l, E⊗n) = f(l/n)

for some convex function f : [0, 1] → [0, 1]. Then

cl/n ≤ δ(E⊗n−l, E⊗n) ≤ l/n,

where c is any subdifferential of f at 0.

Proof. First note that f(1) = δ(E⊗0, E⊗n) ≤ 1 and f(0) = δ(E⊗n, E⊗n) = 0, so that by convexity
δ(E⊗n−l, E⊗n) = f(l/n) ≤ (1 − l/n)f(0) + (l/n)f(1) ≤ l/n.

Similarly for the lower bound we use convexity by recalling that a convex function always lies above
its support lines δ(E⊗n−l, E⊗n) = f(l/n) ≥ f(0) + c(l/n) = cl/n.

We will now make use of this observation together with Torgersen’s computations to prove that both
examples in Corollary 12 fall within the purview of Theorem 11.

Proof of Corollary 12. By Lemma 17 it suffices to find a convex f with appropriate subdifferentials
such that δ(E⊗n−l, E⊗n) = f(l/n). Both formulas are due to Torgersen [26, pp.1393–1394]. The extra
factor 1/2 in the second example stems from the different normalising constant for the total variation
distance.

In Example 1 we have E = (N(μ, σ2) | μ ∈ R) and

δ(E⊗n−l, E⊗n) = ‖N(0, 1/n) − N(0, 1/(n − l)) = ‖N(0, 1) − N(0, 1 − l/n)‖ = f(l/n).

For Example 2 we have E = (Unif(0, θ); θ ∈ R>0) and

δ(E⊗n−l, E⊗n) =
1
2

∫ 1

0
|(n − l)xn−l−1 − nxn−1| dx = (1 − l/n)n/l−1 l/n = g(l/n).

We wish to show that f and g are convex with appropriate subdifferentials at 0.
For f we may as well prove convexity of x �→ f(1 − x). Call μx = N(0, 1/x), then

f(1 − x) = ‖N(0, 1) − N(0, x)‖ = ‖N(0, 1/x) − N(0, 1)‖ = ‖μ1 − μx‖.
By definition ‖μ1 − μx‖ = supA |μ1(A) − μx(A)|, where the supremum ranges over all measurable sets.
Computing the intersection points of the normal distribution densities one finds that the supremum is
achieved on the symmetric interval (−s(x), s(x)), where s(x) =

√
− log(x)/2(1 − x), so that

f(1 − x) = sup
a>0

|μx((−a, a)) − μ1((−a, a))| = |μ1((−s(x), s(x))) − μx((−s(x), s(x)))|.
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For any a > 0 and x ∈ (0, 1)

|μ1((−a, a)) − μx((−a, a))| = μ1((−a, a)) − μx((−a, a)) = erf(a) − erf(a
√

x).

Setting a = s(x) and computing the right derivative of f at 0 gives 1/
√

2πe ≈ 0.24 > 0. Since
f(1 − x) = supa>0(erf(a) − erf(a

√
x)) convexity of f would follow from convexity of x �→ erf(a) −

erf(a
√

x) for each fixed a > 0. But
√

x is concave on [0, 1] and − erf is convex and decreasing on [0,∞),
so the required convexity does hold.

Next consider g(1 − x)/2 = xx/(1−x) − x1/(1−x). Computing the right derivative gives e−1 ≈
0.37 > 0. On the analogy of the previous example we may rewrite xx/(1−x) − x1/(1−x) as a difference
of exponential terms exp(x log(x)/(1 − x)) − exp(log(x)/(1 − x)). Similarly to the normal location
experiment we have

exp(x log(x)/(1 − x)) − exp(log(x)/(1 − x)) = sup
a∈R

(exp(xa) − exp(a))

so that convexity follows by convexity of x �→ exp(xa) for each a ∈ R.

One cannot in general find a single function, whether convex or not, that describes the deficiency
of E⊗n−l with respect to E⊗n as a function of l/n. To find a counterexample, one can use another
example of Torgersen’s. Take E to be given by the family of exponential distributions. In this case
δ(E⊗n−l, E⊗n) is not equal, for example, to δ(E⊗2n−2l, E⊗2n). Numerical computations and heuristics
suggest, though, that one can find a decreasing sequence of convex functions f1, f2, . . . such that
fn(l/n) = δ(E⊗n−l, E⊗n). If this is indeed true then the same idea as in the proof of Corollary 12 can
be applied.

6. CONCLUDING REMARKS

The results presented here suggest at least two questions. What upper bounds can be given for the
deficiency in Theorem 9 when the experiment is not sufficiently regular to have an equality in (2) and what
happens to the deficiency in Theorem 11 when E is not of the “parametric” type δ(E⊗n−l, E⊗n) � l/n.

For the latter there is no immediate reason for why the same idea of the proof as was used here could
not be applied to some other rates. That being said, fairly little appears to be known about what rates
can appear. Rates significantly faster than l/n, as with a finite parameter space, imply convergence to
a totally informative limit. This case is therefore somewhat uninteresting, the deficiency tends to zero
as soon as m tends to infinity at an arbitrary rate relative to n. At the other extreme one may construct
experiments that are very large in the sense that δ(E⊗n−1, E⊗n) = 1. In this case the deficiency term
in (3) vanishes and the optimal K is n − 1. One is then left with the coupon collector problem.

As for the former question recall why (2) was an equality for continuous/non-atomic experiments.
The vector of values actually resampled from was reconstructed simply by throwing away any duplicates.
In the general case such a reconstruction can still be attempted, though it will no longer be exact.
Indeed, one cannot even be certain of the size of this unknown vector. A naive application of this idea
can be realized using a fairly simple concentration argument. The resulting upper bound is of the type
exp(−Cm/n2) for some C > 0. While this bound holds for arbitrary experiments it does not seem sharp
for any.

Finally it should be noted that while the results are general in that they cover any type of procedure
based purely on resampling one should take care when interpreting their meaning. The deficiencies
being small does not directly entail that any a priori chosen bootstrap-type method works, only that
there always exists some procedure based on resampled values. Conversely, the deficiency being large
does not mean the situation will always be hopeless. Rather it means that there exist some problem for
which the situation is hopeless. Compare the performance, for example, on any trivial decision problem.
Moreover, in general, the problem for which the difference is large may well change with the number of
observations.

It may therefore be interesting to compare more systematically the performance of specific bootstrap-
type procedures relative to optimal ones and see if the rates agree.
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APPENDIX A: AUXILIARY RESULTS

Proposition 18. Any experiment E is equivalent to a continuous experiment. Moreover if E is
countably separating then it is equivalent to a continuous/non-atomic countably separating
experiment.

Proof. Let E = (X ,X , Pθ; θ ∈ Θ) and U = (R, Qθ; θ ∈ Θ), where all Qθ are the same Unif(0, 1)
distribution. Since U is non-informative, E is equivalent to E ⊗ U . For any (x, r) ∈ X × R the event
X × {r} certainly contains (x, r) and (Pθ ⊗ Qθ)(X × {r}) = 0.

To see that the above construction preserves being countable separating, it suffices to show that the
product of two countably separating spaces is countably separating. Both X and Y being countably
separating is equivalent to the diagonals A and B in X⊗2 and Y ⊗2 being countably separating [1]. But
(X ⊗ Y )⊗2 is Borel-isomorphic to X⊗2 ⊗ Y ⊗2 in a way that preserves the diagonal, where the diagonal
in the latter is simply A × B and thus measurable.

Lemma 19. Let E , F and F ′ be experiments on a common parameter space such that F � F ′. For
any α ∈ [0, 1] one has

δ(αE + (1 − α)F ′,F) = αδ(E ,F).

Proof. Note that the upper bound δ(βE + (1 − β)F ′,F) ≤ βδ(E ,F) follows directly by convexity.
Call the parameters Θ and write E = (Pθ; θ ∈ Θ), F = (Qθ; θ ∈ Θ) and F ′ = (Q′

θ; θ ∈ Θ). Using the
randomization characterization of deficiency we compute

α inf
T

max
θ

‖TPθ − Qθ‖ = inf
T

max
θ

‖αTPθ + (1 − α)Qθ − Qθ‖

= inf
T,T′

max
θ

‖αTPθ + (1 − α)T′Q′
θ − Qθ‖

= inf
T,T′

max
θ

‖(T ⊕ T′)(αPθ + (1 − α)Q′
θ) − Qθ‖,

= inf
T′′

max
θ

‖T′′(αPθ + (1 − α)Q′
θ) − Qθ‖.

The second equality uses the fact that F � F ′.

Proposition 20. Let E be an arbitrary experiment and E(1), . . . , E(n) a finite collection of experi-
ments, all with a common parameter space Θ. For β any probability measure on {1, . . . , n} one
has

δ
( n∑

k=1

β({k})E(k), E
)
≥ β({k})δ(E(k) , E) for k = 1, . . . , n.

Moreover, if E(1) � · · · � E(n) then

δ
( n∑

k=1

β({k})E(k), E
)
≥ β([1,K])δ(E(K), E) for K = 1, . . . , n.

Proof. Let E� be a fully informative experiment on Θ. The main trick for the first part of the theorem is
to inflate the information of all experiments except Ek by substituting the fully informative experiment.
Formally we have

∑n
k=1 β({k})E(k) � β({k})E(k) + (1− β({k}))E�. It remains then only to realize that

δ(β({k})E(k) + (1 − β({k}))E�, E) = β({k})δ(E(k), E) by Lemma 19.
For the second statement consider first any K such that 0 < β([1,K]) < 1 and collect the smaller

terms
n∑

k=1

β({k})E(k) ∼ β([1,K])
( K∑

k=1

β({k})
β([1,K])

E(k)

)

+
(
1 − β((K,n])

)
( n∑

k=K+1

β({k})
1 − β((K,n])

E(k)

)

.
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Using the first part of this statement one finds

δ

( n∑

k=1

β({k})E(k), E
)

≥ β([1,K])δ
( K∑

k=1

β({k})
β([1,K])

E(k), E
)

.

Finally one applies the assumption that E(k) is increasing, so that

K∑

k=1

β({k})
β([1,K])

E(k) �
K∑

k=1

β({k})
β([1,K])

E(K) ∼ E(K).

This concludes the proof since the inequality trivially holds when β([1,K]) ∈ {0, 1}.

Lemma 21. For any real-valued random variable X and bounded function f : R → R one has

sup
x

f(x)P(X ≤ x) ≥ 1
2

E
(
f(max(X,X ′))

)
,

where X ′ is an independent copy of X.

Proof. Let X ′ be an independent copy of X and bound the supremum by an average value,
supx f(x)P(X ≤ x) ≥ E

(
f(X ′)P(X ≤ X ′)

)
. By Fubini’s theorem this can be rewritten as

E
(
f(X ′)P(X ≤ X ′)

)
= E

(
f(X ′)1X≤X′

)
,

where 1X≤X′ is the indicator function of the event X ≤ X ′. Now use that X ≤ X ′ if and only if
X ′ = max(X,X ′) and that 1X≤X′ is independent of max(X,X ′) to compute

E
(
f(X ′)1X≤X′

)
= E

(
f(max(X,X ′))1X≤X′

)
= E(f(max(X,X ′)))P(X ≤ X ′).

Since X and X ′ are independent, P(X ≤ X ′) = (1 + P(X = X ′))/2 ≥ 1/2 and the desired result
follows.

Lemma 22. Let κ, κ′ ∼ Urn(n,m) be independent. Then P(max(κ, κ′) ≥ k) ≤ P(κ′′ ≥ k) for any
k ∈ N, where κ′′ ∼ Urn(n, 2m).

Proof. Write κ = |{Z1, . . . , Zm}| and κ′ = |{Z ′
1, . . . , Z

′
m}|, where (Zi) and (Z ′

i) are pairwise inde-
pendent uniform on {1, . . . , n}. Consider the explicit coupling given by taking κ′′ = |{Z1, . . . , Zm} ∪
{Z ′

1, . . . , Z
′
m}|. By definition κ′′ is Urn(n, 2m)-distributed such that the stochastic domination follows

from

{Z1, . . . , Zm}, {Z ′
1, . . . , Z

′
m} ⊆ {Z1, . . . , Zm} ∪ {Z ′

1, . . . , Z
′
m}.

Lemma 23. Let f : R → R be a left-continuous nonnegative decreasing function and X a (real-
valued) random variable. For any ξ ≥ minx f(x) one has

supx f(x)P(X ≤ x) ≥ ξP(f(X) ≥ ξ).

Proof. Let x′ = sup{x | f(x) ≥ ξ}, then

supx f(x)P(X ≤ x) ≥ f(x′)P(X ≤ x′) = ξP(X ≤ x′) = ξP(f(X) ≥ ξ).

Lemma 24. Let κ ∼ Urn(n,m) with n > 1 and m are such that log(4/3)/n ≤ En,m, where En,m =
(1 − 1/n)m is the marginal probability of missing an urn. Then

P(κ ≤ E(κ)) ≥ 1
4

+
log(En,m)En,m

1 − En,m
.
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Proof. For brevity, let p = 1 − En,m and take X ∼ Bin(n, p). Then

P(κ ≤ E(κ)) ≥ P(X ≤ E(X)) − ‖Urn(n,m) − Bin(n, 1 − En,m)‖.

Using [5], P(X ≤ E(X)) ≥ 1
4 as long as p ≤ 1 − 1

n . The result is easily extended to p ≤ 1 − log(4/3)
n

as follows. Let c′ be such that p = 1 − c′

n > 1 − 1
n . Then in particular E(X) > n − 1 and

P(X ≤ E(X)) = 1 − P(X = n) = 1 − (1 − c′/n)n ≥ 1 − e−c′ .

One needs now only note that 1 − e−c′ ≥ 1
4 as long as c′ ≥ log(4/3).

For the total variation term ‖Urn(n,m) − Bin(n, 1 − En,m)‖ we use the Chen–Stein bound estab-
lished in [23, Example 3],

‖Urn(n,m) − Bin(n, 1 − En,m)‖ ≤ mEn,m
1 − (1 − En,m)n+1

(n + 1)(1 − En,m)
.

Rewriting m = log(En,m)
log(n−1)−log(n) one has

mEn,m
1 − (1 − En,m)n+1

(n + 1)(1 − En,m)
=

− log(En,m)En,m

1 − En,m

1 − (1 − En,m)n+1

(n + 1)(log(n) − log(n − 1))
,

so that it remains only to realize that for any c ∈ (0, 1)

1 − cn+1

(n + 1)(log(n) − log(n − 1))

is increasing in n, tending to 1.

APPENDIX B: ADDITIONAL PROOFS

Proof of Proposition 6. Assume first that α is finitely supported, which especially covers the simple
case with fixed sample size, since |Fm,n| = nm < ∞.

Let f : {1, . . . ,m} → {1, . . . , n}. For any measurable space X the projection map (x1, . . . , xn) �→
(xf(i)) from X⊗n to X is measurable meaning also that (x1, . . . , xn) �→ (xf(1), . . . , xf(m)) is measurable.
Denoting xf = (xf(1), . . . , xf(m)) for x = (x1, . . . , xn), this means that x �→ δxf

defines a Markov
kernel. Since Rα,X in the statement is simply a convex combination of a finite number of these it must
also be a Markov kernel.

If α is not finitely supported, then (Rα,X)x is still a probability measure for every x ∈ X , so that
we need only argue for measurability. But

⋃
m Fm,n is countably infinite, so that by restricting α to,

say,
⋃N

m=1 Fm,n and letting N tend to infinity, one finds x �→ Rα,X(A) for any measurable set A as a
monotone increasing sequence of measurable functions.

Proof of Proposition 7. Let (X1, . . . ,Xm) = (xf(1), . . . , xf(m)), where f is uniformly chosen in Fm,n.
By definition (X1, . . . ,Xm) ∼ (Rm,n,X)x. We wish to prove that {X1, . . . ,Xm} are independent with
marginal law P =

∑n
i=1 n−1δxi . Let Sn and Sm be the groups of permutations on {1, . . . , n} and

{1, . . . ,m}, respectively. For any σ ∈ Sn we have σ ◦ Fm,n := {σ ◦ g | g ∈ Fm,n} = Fm,n and similarly
for any π ∈ Sm it holds that Fm,n ◦ π = Fm,n. Since f is uniform on Fm,n, this means that σ ◦ f and f ◦ π
are both equal in law to f . The latter says exactly that (X1, . . . ,Xm) is exchangeable. For any 1 ≤ i ≤ m
and 1 ≤ j, j′ ≤ n let τ be the transposition such that τ(j) = j′. The former invariance then implies
P(Xi = xj) = P(xτ◦f(i) = xτ(j)) = P(xf(i) = xj′). This means that P(Xi = xj) = |{j′ | xj′ = xj}|/n,
which is exactly the uniform distribution in the statement.

For (Rm,n,X)x it remains therefore only to show independence. We do this by proving that
(X1, . . . ,Xm−1,Xm) is equal in law to (X1, . . . ,Xm−1,X

′
m), where X ′

m is an independent copy of Xm.
Using exchangeability one can then inductively replace each Xi by an independent copy. The above can
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be realized by taking (X ′
1,X2, . . . ,Xm) = (xf ′(1), xf ′(2), . . . , xf ′(m)), where f ′|{1,...,m−1} = f |{1,...,m−1}

and f ′(m) is independent of f and uniform on {1, . . . , n}. For any f0 ∈ Fm−1,n, we compute

P(f |{1,...,m−1} = f0) = P(f(1) = f0(1), . . . , f(m − 1) = f0(m − 1))

=
n∑

i=1

P(f(1) = f0(1), . . . , f(m − 1) = f0(m − 1), f(m) = i)

= nn−m = n−(m−1),

so that f |{1,...,m−1} is uniform on Fm−1,n. For any f1 ∈ Fm,n it then follows that

P(f ′ = f1) = P
(
f ′|{1,...,m−1} = f1|{1,...,m−1}, f

′(m) = f1(m)
)

= P
(
f |{1,...,m−1} = f1|{1,...,m−1}, f

′(m) = f1(m)
)

= P(f |{1,...,m−1} = f1|{1,...,m−1})P(f ′(m) = f1(m))

= n−(m−1)n−1 = n−m.

Consider now the case m < n and let (Y1, . . . , Ym) = (xf(1), . . . , xf(m)), where f is chosen uniformly
among injective functions in Fm,n. By definition (Y1, . . . , Ym) has law (Sm,n,X)x. Since the set of
injective functions is preserved under pre- and post-composition by permutations, we have exactly as in
the previous case that (Y1, . . . , Ym) is exchangeable with the correct marginal laws. We need therefore
only show that the conditional law of f |{1,...,m−1} on the event f(m) = n is uniform on injective functions
in Fm−1,n−1. But this follows directly from the fact that the restriction of a uniform measure to a subset
is still uniform.

Proof of Proposition 13. Our first step is to reduce the problem to the one not involving the arbitrary
measurable space X. Rather we will directly deal with random functions from Fm,n, where we recall that
Fm,n denotes the set of functions from {1, . . . ,m} to {1, . . . , n}.

Fix some x = (x1, . . . , xn) ∈ X n and let κ ∼ Urn(n,m). Conditionally on κ = k let f be uniform on
injective functions in Fk,n. Then xf = (xf(1), . . . , xf(κ)) by definition has law (Sυ,n,X)x, where we recall
the shorthand υ = Urn(n,m). Independently of f but still conditionally on κ = k let g be uniform among
surjective functions in Fm,k. Then (xf )g = (xf(g(1)), . . . , xf(g(m))) = xf◦g has law (DSυ,n,X)x.

Let h be uniform on Fm,n. Then xh = (xh(1), . . . , xh(m)) has law (Rm,n,X)x. To prove the statement
it suffices therefore to show that h is equal in law to f ◦ g. To see this we will construct κ′, f ′ and g′ such
that h = f ′ ◦ g′ and (κ′, f ′, g′) equal in law to (κ, f, g).

Let A = {f(g(1)), . . . , f(g(m))} be the image of f ◦ g and A′ = {h(1), . . . , h(m)} be the image of h.
Since both the law of h and the law of f ◦ g are invariant under post-composition by permutations
of {1, . . . , n} the probabilities P(A = A0) and P(A′ = A0) for A0 ⊂ {1, . . . , n} depend only on the
cardinality of A0. The law of κ = |A| is Urn(n,m) by construction, while the law of κ′ := |A′| may be
taken as the definition of Urn(n,m).

We proceed now conditionally on A′ = A0 for some non-empty A0 ⊂ {1, . . . , n} such that, in
particular, κ′ = |A0|. Since h is uniform on Fm,n, the conditional law is the uniform measure on the set
of surjective functions from {1, . . . ,m} onto A0. Let f ′ be conditionally independent of everything else
with conditional law the uniform measure on the set of injective functions from {1, . . . , κ′} to {1, . . . , n}
with image A0.

Let π be a random permutation on {1, . . . , n} such that π(x) = y when f ′(y) = x and defined
arbitrarily when x �∈ A0. Define g′ = π ◦ h and note that it does not depend on the arbitrary extension
used in the definition of π. For each fixed realization of π the map h′ �→ π ◦ h′ defines a bijection
between surjective functions from {1, . . . ,m} onto A0 and surjective functions from {1, . . . ,m} onto
π(A0) = {1, . . . , κ′}. Since π and h are conditionally independent, it then follows that the conditional
law of g′ is the uniform distribution on surjective functions in Fm,κ′ .

It remains now to establish that f ′ and g′ have the correct marginal laws and are independent also
conditionally on κ′ = k0, rather than on A′ = A0.
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Consider any 1 ≤ k0 ≤ n and g0, g1 ∈ Fm,k0 . Using the above we have

P(g′ = g0 | κ′ = k0) =
∑

|A0|=k0

P(g′ = g1 | A′ = A0)P(A′ = A0 | κ′ = k0)

=
∑

|A0|=k0

P(g′ = g0 | A′ = A0)P(A′ = A0 | κ′ = k0)

= P(g′ = g1 | κ′ = k0),

so that g′ is uniform on Fm,k0 also conditionally on κ′ = k0.
Similarly consider any pair of injective functions f0, f1 ∈ Fκ′,n with images A0 = {f0(1), . . . , f0(κ′)}

and A1 = {f1(1), . . . , f1(κ′)}. Then

P(f ′ = f0 | κ′ = k0) = P(f ′ = f0, A
′ = A0 | κ′ = k0)

= P(f ′ = f0 | A′ = A0)P(A′ = A0 | κ′ = k0)

= P(f ′ = f1 | A′ = A1)P(A′ = A1 | κ′ = k0)

= P(f ′ = f1 | κ′ = k0),

so that f ′ must be uniform on the set of injective functions in Fk0,n conditionally on κ′ = k0.
If we can prove that f ′ and g′ are independent conditionally on κ′ = k0, we are done. We have

P(f ′ = f0, g
′ = g0 | κ′ = k0)

= P(f ′ = f0, g
′ = g0 | A′ = A0)P(A′ = A0 | κ′ = k0)

= P(f ′ = f0, h = f ′ ◦ g0 | A′ = A0)P(A′ = A0 | κ′ = k0)

= P(h = f ′ ◦ g0 | f ′ = f0)P(f ′ = f0 | A′ = A0)P(A′ = A0 | κ′ = k0)

= P(h = f ′ ◦ g0 | f ′ = f0)P(f ′ = f0 | κ′ = k0).

Finally,

P(h = f ′ ◦ g0 | f ′ = f0) = P(h = f0 ◦ g0 | f ′ = f0)

= P(h = f0 ◦ g0 | A′ = A0) = P(h = f ′ ◦ g0 | A′ = A0)

=
∑

|A1|=k0

P(h = f ′ ◦ g0 | A′ = A0)P(A′ = A1 | κ′ = k0)

=
∑

|A1|=k0

P(h = f ′ ◦ g0 | A′ = A1)P(A′ = A1 | κ′ = k0)

= P(h = f ′ ◦ g0 | κ′ = k0),

where the third equality follows from the uniform law of h and conditional independence of h and f ′.

Proof of Lemma 14. We wish to pick D′ by sending any vector of values to a subvector consisting of all
distinct values.

Specify X = (X ,X ) and define a function f : Xm →
⋃

k X k as follows. For any x = (x1, . . . , xm) ∈
Xm let k(x) = |{x1, . . . , xm}| be the number of distinct components and define i1(x) < · · · < ik(x)(x)
as follows. Let i1(x) = 1 and then recursively let ir+1(x) be the smallest value such that xir+1 �∈
{x1, . . . , xir}. For later convenience let ik(x)+r+1(x) = ik(x)+r + 2. By assumption

ci,j(x) =

{
1, xi �= xj,

0, otherwise,

is measurable for 1 ≤ i, j ≤ m. Consequently also

ni(x) =
i−1∏

j=1

ci,j(x) =

{
1, xi �∈ {x1, . . . , xi−1},
0, otherwise,
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is measurable for 1 ≤ i ≤ m. Since k(x) =
∑n

i=1 ni(x) and ir(x) = r +
∑r

i=1(1 − ni(x)), they are also
measurable. Any projection πr(x) = xr is measurable. For any measurable ι : X⊗m → {1, . . . , n} the
map πι(x) = xι(x) is measurable, since for any A ∈ X one has π−1

ι (A) =
⋃n

i=1 ι−1(i) ∩ π−1
i (A). This

means that the function f ′(x) = (xi1(x), . . . , xin(x)) is measurable. Using the same argument, mutatis
mutandis, the map f(x) = (xi1(x), . . . , xik(x)(x)) is measurable. By construction f(x) sends x to a
subvector consisting of all distinct values in order of appearance.

Let D′
x = δf(x) be the deterministic Markov kernel induced by f . For any x consisting of distinct

values, (D′D)x =
∑

σ∈Sm
β({σ})δxσ is the law of a random permutation xσ = (xσ(1), . . . , xσ(m)) of x,

where β is some probability measure on the symmetric group Sm on {1, . . . ,m}.

If a probability measure P on X is non-atomic, we claim that P⊗k(ci,j) = 0 for all 1 ≤ i < j ≤ k
from which it follows that the probability of all values being distinct is 1. It suffices to show this for the
case k = 2, i = 1 and j = 2.

Take any ε > 0. By assumption for each x ∈ X there exists a set Ax ∈ X such that x ∈ Ax and
P (Ax) < ε. By Fubini’s theorem P⊗2(c1,2) =

∫∫
c1,2(x1, x2)P (dx1)P (dx2) ≤

∫
P (Ax2)P (dx2) ≤ ε.

Since ε is arbitrary, we have P⊗2(c1,2) = 0.

By the above two facts, D′DP⊗k =
∑

σ∈Sm
β({σ})P⊗k = P⊗k. The result now follows by linearity.
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