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Abstract—Jittering estimators are nonparametric function estimators for mixed data. They extend
arbitrary estimators from the continuous setting by adding random noise to discrete variables. We
give an in-depth analysis of the jittering kernel density estimator, which reveals several appealing
properties. The estimator is strongly consistent, asymptotically normal, and unbiased for discrete
variables. It converges at minimax-optimal rates, which are established as a by-product of our
analysis. To understand the effect of adding noise, we further study its asymptotic efficiency and
finite sample bias in the univariate discrete case. Simulations show that the estimator is competitive
on finite samples. The analysis suggests that similar properties can be expected for other jittering
estimators.
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1. INTRODUCTION

Multivariate density estimation is a central field in nonparametric statistics. Yet many popular
methods have a significant drawback in applications: they can only be applied to continuous data. Some
estimators have been specifically designed to allow for mixed continuous and discrete data [1, 2, 6, 11],
but the number is small compared to the methods available in a purely continuous framework.

A common trick among practitioners is to make the discrete variables continuous by adding a small
amount of noise. The noisy data is continuous and the usual nonparametric estimators apply. But the
addition of random noise can introduce bias, so this procedure generally lacks justification. Nagler [14]
showed that adding noise still allows for valid estimates when the noise comes from a certain class of
distributions. Then any nonparametric density estimator can be used in the mixed data setting. The
resulting estimators are called jittering estimators.

Jittering estimators have so far been neglected in academic research, likely due to the widespread
concern that jittering causes a loss in efficiency. The main objective of this article is to demonstrate that
this concern is usually unjustified. To this end, we give an in-depth analysis of a simple instance from
the class of jittering estimators: the jittering kernel density estimator, which is the jittering analog
of the classical kernel density estimator [15, 17, 23]. We shall show that it maintains all the properties
expected from a good nonparametric density estimator:

1. It is asymptotically normal and asymptotically unbiased for discrete variables (Theorem 1).

2. It is strongly and uniformly consistent (Theorem 2).

3. It is relatively efficient, even fully efficient in specific cases (Section 4.1).

4. It converges at minimax-optimal rates for a large class of target densities (Theorems 3 and 4). To the
best of the author’s knowledge, these are the first results on minimax-optimality of nonparametric
density estimators for mixed data.
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Although focus is on only one instance of the class of jittering estimators, we can expect that others have
similar properties.

The remainder of this article is organized as follows. Section 2 introduces the jittering estimator and
some assumptions. Section 3 gives a comprehensive asymptotic analysis which is complemented by a
study of the asymptotic efficiency and finite sample bias in the univariate discrete setting (Section 4).
Section 5 establishes minimax-optimal rates for density estimation in a nonparametric mixed data
model. Section 6 demonstrates that the estimator is also competitive on finite samples; Section 7 offers
conclusions. Proofs of all theorems are deferred to Appendix A.

2. THE ESTIMATOR

Suppose that (Z,X) is a random vector with discrete component Z ∈ Z
p and continuous component

X ∈ R
q. We explicitly allow for the cases where p ≥ 1, q = 0 (all variables are discrete) and p = 0, q ≥ 1

(all variables are continuous). Our goal is to estimate the density f of (Z,X) based on ‘observations’
(Zi,Xi), i = 1, . . . , n, which are iid random vectors having the same distribution as (Z,X). In this
context, f is the density with respect to the product of the counting and Lebesgue measures, i.e.,

fZ,X(z,x) =
∂q

∂x1 · · · ∂xq
Pr(Z = z,X ≤ x).

Let K be a real-valued function, called kernel, and abbreviate K(w) =
∏k

j=1 K(wj) for any w ∈ R
k,

k ∈ N. The classical kernel density estimator is defined as

f̂(z,x) =
1

nhp
nbq

n

n∑

i=1

K

(
Zi − z

hn

)

K

(
Xi − x

bn

)

, (1)

where hn, bn > 0 are called bandwidth parameters and control the amount of smoothing. The above
definition of the estimator is simplified to ease our exposition: we use only one parameter (hn) for
smoothing all components of Z and one parameter (bn) for smoothing the components of X. In practice,
one would use a single parameter for each variable or even a bandwidth matrix (see, e.g., [18]).

The estimator f̂ only works for continuous random vectors. To make it applicable to mixed data, we
make all discrete variables continuous by adding noise. Let Ei ∈ R

p, i = 1, . . . , n, be iid random vectors
independent of (Zi,Xi), i = 1, . . . , n. Suppose further that the p components of Ei are iid with density
η. The jittering kernel density estimator is defined as the classical kernel density estimator applied to
(Zi + Ei,Xi), i = 1, . . . , n:

f̃(z,x) =
1

nhp
nbq

n

n∑

i=1

K

(
Zi + Ei − z

hn

)

K

(
Xi − x

bn

)

. (2)

To facilitate our analysis, the following conditions are imposed on the kernel function:
Assumptions.

K1: K : [−1, 1] → R≥0 is a continuous function satisfying
∫

K(t) dt = 1.

K2: There is � ∈ N, � ≥ 2, such that for k = 1, . . . , � − 1,
∫

[0,1]
tkK(t) dt = 0,

∫

[0,1]
t�K(t) dt > 0.

Remark 1. A kernel function satisfying K2 is called �th order kernel (see, e.g., [12]).

We further assume that the noise density η belongs to the class Eγ1,γ2 , as defined in [14].

Definition 1. We say that η ∈ Eγ1,γ2 for some 0 < γ1 ≤ 0.5 ≤ γ2 < 1 if

(i) η is an absolutely continuous probability density function,
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(ii) η(x) = 1 for all x ∈ [−γ1, γ1],

(iii) η(x) = 0 for all x ∈ R \ (−γ2, γ2).

The density of (Z + E,X) is given by

fη(z,x) =
∑

z′∈Zp

f(z′,x)
p∏

j=1

η(zj − z′j), (z,x) ∈ Z
p × R

q.

The class Eγ1,γ2 ensures that fη is well behaved. The most important properties are summarized in the
following result, see Propositions 1 and 2 in [14].

Lemma 1. Suppose the components of E are iid with density η ∈ Eγ1,γ2 . Then the joint density fη

of (Z + E,X) satisfies for all (z,x) ∈ Z
p × R

q, and m ∈ N
p such that

∑p
k=1 mk = m,

fη(z,x) = f(z,x),
∂mfη(z,x)

∂zm1
1 · · · ∂z

mp
p

= 0.

The first equality implies that we can equivalently estimate fη instead of f . This is convenient because
fη is the density of a purely continuous random vector. The second equality states that all derivatives
w.r.t. z vanish, which makes estimation even easier.

Remark 2. The estimator f̃ is similar to the estimators in [1] and [11]. The difference lies in the kernel
function for discrete data. The estimators in [1] and [11] use a deterministic kernel function which is
defined on the integers. In contrast, the jittering kernel density estimator (2) uses a random kernel
K{(· + Ei)/bn} defined on a compact subset of R

p where randomness is induced by Ei.

3. ASYMPTOTIC ANALYSIS IN THE GENERAL SETTING
3.1. Asymptotic Distribution

We first study the asymptotic distribution of the jittering kernel density estimator. To motivate our
first theorem, we recall a classical result from kernel density estimation in the purely continuous setting
(see, e.g., [23]). If f is the density of a continuous random vector (Z,X), sufficiently smooth, � = 2, and
hn, bn → 0, nhp

nbq
n → ∞, then

E
{
f̂(z,x)

}
= f(z,x) +

h2
nσ2

2

p∑

k=1

∂2f(z,x)
∂z2

k

+
b2
nσ2

2

q∑

j=1

∂2f(z,x)
∂x2

j

+ o(h2
n + b2

n),

Var
{
f̂(z,x)

}
=

κp+qf(z,x)
nhp

nbq
n

+ o
( 1

nhp
nbq

n

)
.

(3)

Recall that f̃ is nothing else than f̂ applied to (Zi + Ei,Xi), i = 1, . . . , n. Lemma 1 shows that
fη(z,x), the density of (Zi + Ei,Xi), has vanishing derivatives with respect to z. We can thus expect
the first sum in the bias term in (3) to vanish asymptotically. In fact, it becomes exactly zero when
hn ≤ min{γ1, 1 − γ2}. The following result improves upon the properties implied by (3) by taking these
considerations into account.

Assumptions.

A1: f(z,x) is � + 1 times continuously differentiable with respect to x.

A2: K1 and K2 hold with � ≥ 2.

A3: η ∈ Eγ1,γ2 .

A4: bn → 0 and nhp
nbq

n → ∞ as n → ∞.

A5: There is n0 ∈ N such that hn ≤ min{γ1, 1 − γ2} for all n ≥ n0.
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Theorem 1. Under assumptions A1–A5, it holds for any (z,x) ∈ Z
p × R

q,

E
{
f̃(z,x)

}
= f(z,x) +

b�
nσ�

�!

q∑

j=1

∂�f(z,x)
∂x�

j

+ o(b�
n),

Var
{
f̃(z,x)

}
=

f(z,x)
nbq

n

{
h−p

n κp+q − bq
nf(z,x)

}
+ o

( 1
nhp

nbq
n

)
,

where σ� =
∫ 1
−1 s�K(s) ds and κ =

∫ 1
−1 K2(s) ds. If further nhp

nbq+2�
n = O(1),

f̃(z,x) − E
{
f̃(z,x)

}

Var
{
f̃(z,x)

}
d→ N (0, 1).

Remark 3. The assumptions in Theorem 1 differ from those usually made in the continuous framework.
There are no assumptions on the smoothness of f̂Z+E,X(z,x) with respect to z, because its local
behavior is controlled by η ∈ Eγ1,γ2 . Further, hn is not required to vanish asymptotically, but should
be less than min{γ1, 1 − γ2} for large n. This is sufficient to ensure that there is no bias with respect to
z. Further decreasing hn does not change the bias, but inflates the variance.

Remark 4. The asymptotic variance does not involve η or its class parameters γ1 and γ2 (and neither
does the asymptotic bias). Intuitively, we would expect an increase in the estimator’s variance because
we are adding random noise. Apparently this effect is dominated by the sampling variability in the original
data and asymptotically negligible. So there should be no benefit from averaging over multiple jitters (at
least asymptotically). This is in contrast to empirical processes of jittered data [4].

3.2. Asymptotically Optimal Bandwidths

A standard tool for studying optimal bandwidths is the asymptotic mean squared error,

AMSE
{
f̃(z,x)

}
=

[
E

{
f̃(z,x)

}
− f(z,x)

]2 + Var
{
f̃(z,x)

}
.

Under the assumptions of Theorem 1, we get

AMSE
{
f̃(z,x)

}
≈ b2�

n σ2
�

(�!)2

( q∑

j=1

∂�f(z,x)
∂x�

j

)2

+
f(z,x)

nbq
n

{
h−p

n κp+q − bq
nf(z,x)

}
.

For hn = O(1), it is easy to check that the bandwidth bn minimizing the AMSE satisfies bn ∼
n−1/(2�+q). This is well known as the optimal rate for the classical kernel density estimator when
p = 0. The AMSE further suggests that it is optimal to choose hn as large as possible. The largest
hn allowed by A5 is hn = min{γ1, 1 − γ2}. Asymptotically, this is the optimal bandwidth. We shall
see shortly that this choice means that we are not smoothing the discrete variables at all. This is not
unreasonable: in contrast to the continuous case, smoothing discrete variables is not necessary for
consistent nonparametric estimation (for a discussion, see [19]).

On finite samples hn = min{γ1, 1− γ2} can be too small. If hn ≤ min{γ1, 1− γ2}, the estimator can
be written as

f̃(z,x) =
1

nhp
nbq

n

∑

i : Zi=z

K

(
Ei

hn

)

K

(
Xi − x

bn

)

.

Indeed, the estimator neglects all observations where Zi 	= z and, thus, does not smooth with respect
to the discrete variables. This also means that f̃(z,x) = 0 if Zi 	= z for all i = 1, . . . , n. Theorem 1
implicitly assumes that n is large enough to provide sufficiently many observations with Zi = z. This is
guaranteed asymptotically whenever P (Z = z) > 0, but often demands sample sizes much larger than
what is common.

We conclude that Theorem 1 is not useful for bandwidth selection on samples of small or moderate
size. Cross-validation techniques are more appropriate tools in the mixed data setting (see, e.g., [5, 10,
16].
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3.3. Consistency

Theorem 1 implies pointwise consistency of the jittering kernel density estimator, but Assumption A1
is more strict than necessary. The following result weakens this assumption and additionally establishes
strong uniform consistency.

Assumption.

A1′: The (� − 1)th derivative of f(z,x) exists and is uniformly Lipschitz on S ⊆ Z
p × R

q.

Theorem 2. Suppose that Assumptions A1′, A2–A5 hold. Then, for all (z,x) ∈ S,

f̃(z,x) − f(z,x) = Op

{
b�
n + (nhp

nbq
n)−1/2

}
, (4)

sup
S

∣
∣f̃(z,x) − f(z,x)

∣
∣ = Oa.s.

{

b�
n +

(
max{log log n, log h−1

n , log b−1
n }

nhp
nbq

n

)1/2}

. (5)

Remark 5. If there are h0 > 0, n0 ∈ N such that hn ∈ (h0,min{γ1, 1 − γ2}] for all n ≥ n0, the rates
of convergence in Theorem 2 do not involve p, the dimension of the discrete variables. So adding more
discrete variables does not change the convergence rate of the estimator. In particular, there is no cost
for recoding unordered categorical variables into several binary variables.

Remark 6. (i) The best rate in (4) is n−�/(2�+q) and is achieved when hn ∼ 1 and bn ∼ n−1/(2�+q).

(ii) For q > 0, the best rate in (5) is (n/ log n)−�/(2�+q) and is achieved when hn ∼ 1,
bn ∼ (n/ log n)−1/(2�+q).

(iii) For q = 0, the best rate in (5) is (n/ log log n)−1/2 and is achieved when hn ∼ 1.

4. A CLOSER LOOK AT THE UNIVARIATE DISCRETE SETTING

The jittering kernel density estimator f̃ handles continuous variables just like the classical kernel
density estimator. How it smooths discrete variables is less obvious. To gain a better understanding,
we study its asymptotic efficiency and finite sample bias when there is only one discrete variable (p = 1,
q = 0).

4.1. Asymptotic Efficiency

For convenience, set hn ≡ min{γ1, 1 − γ2}. The expectation and variance in Theorem 1 become

E
{
f̃(z)

}
= f(z), Var

{
f̃(z)

}
=

f(z)
n

[
min(γ1, 1 − γ2)−1κ − f(z)

]
+ o(n−1),

The most efficient point estimator for a discrete probability f(z) is the sample frequency fn(z) =
n−1

∑n
i=1 1(Zi = z). It satisfies

E
{
fn(z)

}
= f(z), Var

{
fn(z)

}
=

f(z)
n

{
1 − f(z)

}
.

The asymptotic relative efficiency (ARE) of f̃ relative to fn is defined as

ARE
{
f̃(z) : fn(z)

}
=

AVar{fn(z)}
AVar{f̃(z)}

,

where AVar denotes the leading term of an asymptotic expansion of the variance. The ARE is interpreted
as follows: If the estimator f̃ is used with n observations, then one needs ARE×n observations to obtain
the same accuracy with fn. If the ARE is less than one, then fn needs less observations, i.e., fn is more
efficient than f̃ . If the ARE is greater then one, it is the other way around. If it is exactly one, the two
estimators are equally efficient.
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Straightforward calculations yield

ARE
{
f̃(z) : fn(z)

}
=

1 − f(z)
min{γ1, 1 − γ2}−1κ − f(z)

=
(

1 +
min{γ1, 1 − γ2}−1κ − 1

1 − f(z)

)−1

≤ 1.

The relative efficiency depends on three quantities:

• It is increasing in min{γ1, 1 − γ2} and the most efficient choice is γ1 = γ2 = 1/2, which cor-
responds to the uniform error density on (−1/2, 1/2). On the other hand, the relative efficiency
approaches 0 for γ1 → 0 or γ2 → 1.

• It is decreasing in κ, which is the roughness of the kernel K. The ‘least rough‘ kernel is the
uniform kernel, i.e., K(x) = 2−11(|x| ≤ 1), for which κ = 1/2. But this kernel is rather unpopular
in practice. A more widely used kernel is the Epanechnikov kernel,

K(x) = 3/4(1 − x2)1(|x| ≤ 1) for which κ = 0.6.

• It is decreasing in f(z). The worst case is that f(z) = 1, for which the ARE is zero. For a
Bernoulli(1/2) variable, Uniform(−1/2, 1/2) noise, and the Epanechnikov kernel, we get ARE ≈
0.71.

Remark 7. Suppose η is the uniform density on (−1/2, 1/2) (for which γ1 = γ2 = 1/2), hn = 1/2,
and K is the uniform kernel (for which κ = 1/2). Then the two estimators are equally efficient. In fact,
the estimator f̃ becomes

f̃(z) =
1

nhn

n∑

i=1

2−11(|Zi + Ei − z| ≤ hn)

=
2
n

n∑

i=1

2−11(|Zi + Ei − z| ≤ 1/2) =
1
n

n∑

i=1

1(Zi = z),

which is exactly the sample frequency estimator fn.

4.2. Finite sample bias

Assuming hn ≤ min{γ1, 1 − γ2}, Theorem 1 shows that f̃ is unbiased in a purely discrete setting.
On small samples, it is often necessary to choose a larger bandwidth (see Section 3.2). When hn >

min{γ1, 1 − γ2}, the estimator f̃ is usually biased.

Lemma 2. Suppose that η ∈ Eγ1,γ2 and K satisfies K1–K2. Then

E
{
f̃(z)

}
− f(z) =

�hn−1/2�∑

k=1

ρη
k(hn)f(z + k) −

{
ρη

k(hn) + ρη
−k(hn)

}
f(z) + ρη

−k(hn)f(z − k)
k2

,

where

ρη
k(hn) = k2

∫

Aη
k(hn)

K(t)η(k − hnt) dx

and

Aη
k(hn) =

[
(1 − γ2 − k)h−1

n , (−1 + γ2 − k)h−1
n

]
∩ [−1, 1].

To interpret the bias, it is helpful to focus on a simple case first.
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Corollary 1. Suppose that η(x) = 1(|x| ≤ 1/2) and K is a symmetric function satisfying K1–K2.
Then for all z ∈ Z,

E
{
f̃(z)

}
= f(z) +

�hn−1/2�∑

k=1

ρk(hn)Δ2
kf(z),

where

Δ2
kf(z) =

f(z + k) − 2f(z) + f(z − k)
k2

,

and

ρk(hn) = k2

∫

Ak(hn)
K(t) dt

with

Ak(hn) =
[
(1/2 − k)h−1

n , (−1/2 − k)h−1
n

]
∩ [−1, 1].

The operator Δ2
k is known as the second-order central difference operator (see, e.g., [13]). It is

commonly used as numerical approximation of second-order derivative of real-valued functions, which
is

d2f(x)
dx2

= lim
s→0

f(x + s) − 2f(x) + f(x − s)
s2

.

We can interpret Δ2
kf as a discrete analogue to the second order derivative of a real-valued function. In

this aspect, the discrete setting is similar to the continuous one (where the bias of f̃ is proportional to
the second order derivative).

The parameter k is called the step size and determines how local the derivative approximation
is. The bias of f̃ is a weighted sum of such ‘derivatives’ for several values of k. The bandwidth hn

limits the maximal step size and thereby controls the locality of the bias. Although not universally
true, smaller values of hn typically correspond to a smaller bias. A simple counterexample is when
f(z + k) = f(z − k) = f(z) for all k ≤ 
hn − 1/2�, where the bias is zero for all h′

n ≤ hn. There are also
situations where decreasing hn leads to a larger bias. This phenomenon also exists in the continuous
setting, but is disguised by asymptotic approximations. When hn ≤ 1/2 as in Theorem 1, the estimator
is unbiased.

The bias in Lemma 2 can be interpreted similarly. But Δ2
k is replaced by a weighted approximation

of the derivative. If η or K are asymmetric, different weights will be assigned to the ‘forward derivative’
k−1{f(z + k) − f(z)} and the ‘backward derivative’ k−1{f(z − k) − f(z)}.

5. MINIMAX RATE OPTIMALITY
The maximum risk associated with a class of densities F and a (semi-) distance d is defined as

Rn(f̂ ,F , d) = sup
f∈F

Ef

{
d2(f̂ , f)

}
. (6)

We consider two semi-distances related to pointwise and uniform consistency of f̂ , respectively:

d(z,x)(f̂ , f) =
∣
∣f̂(z,x) − f(z,x)

∣
∣ for some (z,x) ∈ Z

p × R
q,

d∞,S(f̂ , f) = sup
S

∣
∣f̂(z,x) − f(z,x)

∣
∣ for some S ⊂ Z

p × R
q.

For F , we shall consider all bounded density functions whose continuous part belongs to a Hölder class.
For a ∈ N

q
0, we use the multi-index notation |a| =

∑q
j=1 aj , xa = xa1

1 · · · xaq
q , and denote the partial

derivatives of f with respect to x as

Da
xf(z,x) =

∂|a|f(z,x)
∂a1x1 · · · ∂aqxq

. (7)
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Definition 2. For λ < ∞ and β = r + α, r ∈ N0, 0 < α ≤ 1, the class H(β, λ) is defined as all functions
f : Z

p × R
q → R such that for all a ∈ N0 with |a| ≤ r,

(i) f is a probability density on Z
p × R

q,

(ii) Da
xf(z,x) exists for all (z,x) ∈ Z

p × R
q and

sup
z∈Zp,x,x′∈Rq

{∣
∣Da

xf(z,x) − Da
xf(z,x′)

∣
∣

‖x − x′‖α
2

+ f(z,x)
}

≤ λ.

Remark 8. If p ≥ 1 and q = 0, H(β, λ) contains all densities on Z
p. If p = 0 and q ≥ 1, it is a Hölder

class on R
q.

The following result establishes convergence rates of the jittering kernel density estimator with
respect to the maximum risk.

Theorem 3. Denote by f̃ the estimator defined by Eq. (2). Suppose f ∈ H(β, λ) and Assump-
tions A2–A4 of Theorem 1 hold with � ≥ r + 1, β = r + α, 0 < α ≤ 1, λ < ∞. Assume further that
there are h0 > 0, n0 ∈ N such that hn ∈ (h0,min{γ1, 1 − γ2}] for all n ≥ n0. Then there exists c > 0
such that

lim sup
n→∞

r−2
n Rn(f̂ ,F , d) ≤ c,

in each of the following cases:

(i) rn = n−β/(2β+q), d = d(z,x),

(ii) rn = (n/ log n)−β/(2β+q), d = d∞,S , q ≥ 1,

(iii) rn = n−1/2, d = d∞,S , q = 0, |S| < ∞,

(iv) rn = (n/ log log n)−1/2, d = d∞,S , q = 0, |S| = ∞,

for arbitrary (x, z) ∈ Z
p × R

q and S ⊂ Z
p × R

q.

We shall see that the rates in Theorem 3 (i)–(iii) are optimal in a minimax sense. The minimax risk is
defined as

R∗
n(F , d) = inf

f̂
Rn(f̂ ,F , d) = inf

f̂
sup
f∈F

Ef

{
d2(f̂ , f)

}
,

where the infimum is taken over all possible estimators f̂ of f . In our context, an ‘estimator’ is any
measurable function of (Zi,Xi), i = 1, . . . , n.

Definition 3. A sequence of positive real numbers rn is called

(i) an upper bound on the minimax rate if there is c such that

lim sup
n→∞

r−2
n R∗

n(F , d) ≤ c;

(ii) a lower bound on the minimax rate if there is c > 0 such that

lim inf
n→∞

r−2
n R∗

n(F , d) ≥ c;

(iii) a minimax-optimal rate of convergence if both (i) and (ii) hold.
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In a purely continuous setting, optimal rates have long been established [9, 20, 21]. To the best of the
author’s knowledge, there are no results on optimal rates in the mixed data setting.

To show that a rate is minimax-optimal, we have to check that it is both an upper and lower bound
on the minimax rate. Theorem 3 already gives us an upper bound, since, for any estimator f̂ ,

R∗
n(F , d) = inf

f̂
Rn(f̂ ,F , d) ≤ Rn(f̂ ,F , d).

Lower bounds on the minimax rate can be deduced easily by considering subsets of H(β, λ) for which
lower bounds are known (see Section A.4).

Theorem 4. Let S ⊂ Z
p × R

q and (z,x) ∈ S. The minimax-optimal rate of convergence r∗n associ-
ated with the class H(β, λ) and distance d satisfies

(i) r∗n = n−β/(2β+q) for d = d(z,x),

(ii) r∗n = (n/ log n)−β/(2β+q) for d = d∞,S , q ≥ 1,

(iii) r∗n = n−1/2 for d = d∞,S , q = 0, |S| < ∞,

(iv) r∗n ∈ [n−1/2, (n/ log log n)−1/2] for d = d∞,S , q = 0, |S| = ∞.

Remark 9. Theorems 3 and 4 imply that the jittering kernel density estimator converges at minimax-
optimal rates for cases (i)–(iii).

Remark 10. Theorem 4 only provides an interval for the optimal rate in case (iv). Minimax analysis for
this setting is surprisingly hard; see [7] for minimax rates with respect to the �1 distance. The interval
is quite narrow, differing only by a factor of size log log n. The exact rate, however, remains an open
problem.

6. SIMULATION EXPERIMENTS

The jittering kernel density estimator has appealing asymptotic properties. This may come as a
surprise: since we are adding noise to the data, we could expect that the data become less informative and
uncertainty increases. We complement our asymptotic arguments with a small numerical experiment
that illustrates the small sample performance of the estimator. Because of its wide use and close
resemblance to our approach, we will use the estimator of [11] as a benchmark.

We use the following setup:

• We compare three estimators

1. jkde: the jittering kernel density estimator with noise density η(x) = 1(|x| < 1/2), for
which γ1 = γ2 = 1/2.

2. jkde2: the jittering kernel density estimator with noise density η(x) = fU1/4,5
(x) (as in

Example 3 in [14]), for which γ1 = 3/8, γ2 = 5/8.

3. liracine: the estimator of [11] as implemented in the np package [8].

Contrary to (2), we use one bandwidth parameter for each variable. Both estimators use likelihood
cross-validation for bandwidth selection.

• We estimate the density f of a vector (Z,X) ∈ Z
p × R

q, where Zj ∼ Binomial(m, 0.3) for all j =
1, . . . , p, Xj ∼ N (0, 1) for all j = 1, . . . , q. For the sake of simplicity, all variables are simulated
independently.

• Results are based on Nsim = 1000 simulated data sets with sample sizes n = 50, 200.
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Fig. 1. RASE achieved by the two estimators for various choices of p, q, and m. Each estimator is represented by two
boxes; the left box corresponds to n = 50, the right to n = 200.

• As a performance measure we use the root average square error (RASE) computed over a grid
in Z

p × R
q. More specifically, we use Z = {0, . . . ,m}, X = {−2,−1.6, . . . , 2}, and

RASE
(
f̂ , f

)
=

√ ∑

z1∈Z
· · ·

∑

zp∈Z

∑

x1∈X
· · ·

∑

xq∈X

{
f̂(z,x) − f(z,x)

}2
.

Figure 1 shows the estimators’ performance for various values of p, q and m. Each estimator is
represented by two boxes, where the left box corresponds to n = 50 and the right box to n = 200. The
choice of noise density seems to be of minor importance: jkde and jkde2 give almost identical results.
Compared to liracine, the two estimators show only subtle differences. The two jittering estimators
are more accurate in all scenarios with m = 15, and less accurate when m = 1. This is related to our
observation from Section 4.1 that the efficiency is worse when f(z) is large. The relative performance of
the three estimators is consistent across the two sample sizes under consideration. Overall, the jittering
estimators are competitive with the benchmark estimator liracine. We found no evidence that adding
artificial noise negatively affects the accuracy of the estimates. This confirms what was suggested by the
estimator’s asymptotic properties.

A. PROOFS

A.1. Proof of Theorem 1

We first calculate the bias term. Using a change of variables, we get

E
{
f̃(z,x)

}
=

1
hp

nbq
n
E

{

K

(
Z + E − z

hn

)

K

(
X− x

bn

)}

=
1

hp
nbq

n

∫

Rp+q

K

(
s− z
hn

)

K

(
t − x

bn

)

fη(s, t) ds dt
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=
∫

Rp+q

K(u)K(v)fη(z + hnu,x + bnv) du dv.

Since η ∈ Eγ1,γ2 , it holds for all (z,x) ∈ Z
q × R

q and 0 ≤ ε ≤ min{γ1, 1 − γ2} that fη(z + ε,x) =
f(z,x). Furthermore, K is zero outside [−1, 1]. Hence, for hn ≤ min{γ1, 1 − γ2},

E
{
f̃(z,x)

}
=

∫

Rp+q

K(u)K(v)f(z,x + bnv)dudv

=
∫

[−1,1]q
K(v)f(z,x + bnv) dv. (8)

Recall the derivative notation in (7). An �th order Taylor expansion of f yields that

E
{
f̃(z,x)

}
− f(z,x) =

∑

1≤|a|≤�

b
|a|
n

|a|!

∫

[−1,1]q
K(v)vaD

|a|
x f(z,x) dv

+
∑

|a|=�+1

b�+1
n

(� + 1)!

∫

[−1,1]q
K(v)vaD

|a|
x f(z,x + τav) dv

=
b�
n

�!

q∑

j=1

∫

[−1,1]
K(vj)v�

j

∂�f(z,x)
∂x�

j

dvj ,

+
∑

|a|=�+1

b�+1
n

(� + 1)!

∫

[−1,1]q
K(v)vaD

|a|
x f(z,x + τav) dv

for some τa ∈ [0, 1], where the second equality is due to K2. The second sum is o(b�
n) because all terms

are bounded by A1 and K1. In summary,

E
{
f̃(z,x)

}
− f(z,x) =

b�
nσ�

�!

q∑

j=1

∂�f(z,x)
∂x�

j

+ o(b�
n),

as claimed.
For the variance, we get

Var
{
f̃(z,x)

}
=

1
nh2p

n b2q
n

Var
{

K

(
Z + E − z

hn

)

K

(
X− x

bn

)}

=
1
n

[
1

h2p
n b2q

n

E
{

K

(
Z + E − z

hn

)2

K

(
X− x

bn

)2}

− 1

h2p
n b2q

n

E
{

K

(
Z + E − z

hn

)

K

(
X− x

bn

)}2]

.

The second term in square brackets has already been calculated for the bias. Using similar arguments,
we can show

1
nhp

nbq
n

∫

Rp+q

K2

(
s − z
hn

)

K2

(
t − x

bn

)

fη(s, t) dsdt

= κp

∫

[−1,1]q
K2(v)f(z,x + bnv) dv = κp+qf(z,x) + o(1).

Together,

Var
{
f̃(z,x)

}
=

κp+q

nhp
nbq

n
f(z,x) +

f2(z,x)
n

+ o

(
1

nhq
nbq

n

)

=
f(z,x)

nbq
n

{
h−p

n κp+q − bq
nf(z,x)

}
+ o

(
1

nhp
nbq

n

)

.

MATHEMATICAL METHODS OF STATISTICS Vol. 27 No. 1 2018



ASYMPTOTIC ANALYSIS 43

To show that the estimator is asymptotically normal, define

Yi,n =
1

nbq
n
K

(
Zi + Ei − z

hn

)

K

(
Xi − x

bn

)

.

Then f̃(z,x) =
∑n

i=1 Yi,n, which is asymptotically normal if the Lyapunov condition,
{ n∑

i=1

E
(
|Yi,n|3

)
}1/3{ n∑

i=1

Var(Yi,n)
}−1/2

→ 0,

is fulfilled. With arguments similar to the derivation of Var{f̃(z,x)}, we get

E(|Yi,n|3) = O(n−1h−2p
n b−2q

n ) and Var(Yi,n) = O(h−p
n b−q

n ).

Thus,
{ n∑

i=1

E
(
|Yi,n|3

)
}1/3{ n∑

i=1

Var(Yi,n)
}−1/2

= O
{
(nhp

nbq
n)−1/6

}
,

which is o(1) due to Assumption A4.

A.2. Proof of Theorem 2

From the triangle inequality, we get the bound
∣
∣f̃(z,x) − f(z,x)

∣
∣ ≤

∣
∣E{f̃(z,x)} − f(z,x)

∣
∣ +

∣
∣f̃(z,x) − E{f̃(z,x)}

∣
∣. (9)

We start as in the proof of Theorem 1, but expand (8) as a Taylor polynomial of order � − 2. We can
then show that for some τ ∈ [0, 1],

E
{
f̃(z,x)

}
− f(z,x) =

b�−1
n

(� − 1)!

q∑

j=1

∫

[−1,1]
K(vj)v�−1

j

∂�−1f(z,x + τbnv)
∂x�−1

j

dvj

=
b�−1
n

(� − 1)!

q∑

j=1

∫

[−1,1]
K(vj)v�−1

j

{
∂�−1f(z,x + τbnv)

∂x�−1
j

− ∂�−1f(z,x)
∂x�−1

j

}

dvj ,

where the second equality holds because of K2. Using A1′, we get

sup
(z,x)∈S

∣
∣E

{
f̃(z,x)

}
− f(z,x)

∣
∣ ≤ b�

nLτ

(� − 1)!

q∑

j=1

∫

[−1,1]
|K(vj)| |vj |� dvj = O(b�

n) (10)

for a positive constant L < ∞. Furthermore,

E
{∣
∣f̃(z,x) − E{f̃(z,x)}

∣
∣2

}
= Var

{
f̃(z,x)

}
= O

{
(nhp

nbq
n)−1

}
,

as in Theorem 1. And since convergence in L2 implies convergence in probability,
∣
∣f̃(z,x) − E{f̃(z,x)}

∣
∣ = Op

{
(nhp

nbq
n)−1/2

}
,

which, together with (10), proves (4).

Moreover, there is a positive constant c1 < ∞ such that almost surely

lim
n→∞

√
nhp

nbq
n

max{log log n, log h−1
n , log b−1

n }
sup
S

∣
∣f̃(z,x) − E{f̃(z,x)}

∣
∣ ≤ c1, (11)

see Theorem 1 of [3]. Combining (10) and (11) proves (5).
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A.3. Proof of Theorem 3
Note that we can write

E
{
d2(f̃ , f)

}
= E

{
sup
S′

∣
∣f̃(z,x) − f(z,x)

∣
∣2

}
,

where S ′ = {(z,x)} for d(z,x) and S ′ = S for d∞,S . It holds

1
2
E

{
d2(f̃ , f)

}
≤ sup

S′

∣
∣E{f̃(z,x)} − f(z,x)

∣
∣2 + E

[
sup
S′

∣
∣f̃(z,x) − E{f̃(z,x)}

∣
∣2

]
= a1 + a2. (12)

Using arguments almost identical to (10), we obtain

sup
(z,x)∈S

∣
∣E

{
f̃(z,x)

}
− f(z,x)

∣
∣ ≤ bβ

nλτβ−r

r!

q∑

j=1

∫

[−1,1]
|K(vj)| |vj |βdvj = bβ

nc2.

For bounding a2, we need to consider the characteristics of scenarios (i)–(iv).

(i) We proceed as in the proof of Theorem 1 to get

a2 = Var
{
f̃(z,x)

}
=

κp+q

nhp
nbq

n
f(z,x) +

f2(z,x)
n

+ o

(
1

nbq
n

)

.

For q ≥ 1, choosing bn ∼ n−1/(2β+q) yields

lim sup
n→∞

n2β/(2β+q)a2 ≤ κp+q

hp
0

f(z,x) = c3 < ∞.

If q = 0, it holds f ≤ 1, and we get

lim sup
n→∞

na2 ≤ κp+q

hp
0

f(z) + f2(z) ≤ κp+q

hp
0

+ 1 = c4 < ∞. (13)

(ii) With hn ∼ 1 and bn ∼ (n/ log n)−1/(2β+q) in (11), we get

lim sup
n→∞

(n/ log n)2β/(2β+q)a2 ≤ c1.

(iii) Using (13) yields

lim sup
n→∞

na2 ≤
∑

z∈S′

lim sup
n→∞

E
[∣
∣f̃Z(z) − E{f̃Z(z)}

∣
∣2

]
≤ |S ′|c4 = c5 < ∞.

(iv) With hn ∼ 1 and bn = 1 in (11), we get

lim sup
n→∞

(n/ log log n)a2 ≤ c1.

Setting c = 2(c1 + c2 + c3 + c4 + c5) concludes the proof.

A.4. Proof of Theorem 4
We start with lower bounds for (i) and (iii). Fix z ∈ Z

p and define

G1(β, λ) =
{
f ∈ H(β, λ) : f(z′,x) = 0 for z′ 	= z

}
.

This set contains all probability densities in H(β, λ) that correspond to a random vector (Z,X) with
Z = z almost surely. This is equivalent to the case where all variables are continuous. By definition,
G1(β, λ) ⊂ H(β, λ) and, thus, R∗

n{G1(β, λ), d} ≤ R∗
n{H(β, λ), d}. The two rates in Theorem 4 (i)

and (iii) then follow from Theorem 9 in [9].
For (ii) and (iv), we can simply consider a parametric family of densities G2. This yields the classical

lower bound n−1/2 for estimating a finite-dimensional parameter (see, e.g., Chapter 2 in [22]).
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7. CONCLUSION

This article gives an in-depth analysis of the behavior of the jittering estimator. It was shown to have
appealing large-sample properties and perform well on small samples.

Although our focus was on a particular instance of the class of jittering estimators, we also learned
something about the class as a whole. Adding noise to discrete variables does not have a negative impact
on estimation accuracy. This is true for both large samples (as confirmed by our asymptotic analysis) and
small samples (as illustrated by simulations). More specifically, it allows for estimators that are optimal in
terms of convergence rates and efficiency. It is likely that these findings generalize to more sophisticated
density estimators or estimators of functionals of the density, such as regression functions.

SUPPLEMENTARY MATERIAL

• https://github.com/tnagler/cctools: an R package implementing the jittering kernel den-
sity estimator and likelihood cross-validation for the bandwidths.

• https://gist.github.com/tnagler/786465cee2c774a844ff1846e7cdacd8: code for the
simulation study in Section 6.
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