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Abstract—We consider parametric exponential families of dimension K on the real line. We study
a variant of boundary crossing probabilities coming from the multi-armed bandit literature, in
the case when the real-valued distributions form an exponential family of dimension K. Formally,
our result is a concentration inequality that bounds the probability that Bψ(θ̂n, θ�) ≥ f(t/n)/n,
where θ� is the parameter of an unknown target distribution, θ̂n is the empirical parameter estimate
built from n observations, ψ is the log-partition function of the exponential family and Bψ is the
corresponding Bregman divergence. From the perspective of stochastic multi-armed bandits, we
pay special attention to the case when the boundary function f is logarithmic, as it is enables to
analyze the regret of the state-of-the-art KL-ucb and KL-ucb+ strategies, whose analysis was left
open in such generality. Indeed, previous results only hold for the case when K = 1, while we provide
results for arbitrary finite dimension K, thus considerably extending the existing results. Perhaps
surprisingly, we highlight that the proof techniques to achieve these strong results already existed
three decades ago in the work of T. L. Lai, and were apparently forgotten in the bandit community.
We provide a modern rewriting of these beautiful techniques that we believe are useful beyond the
application to stochastic multi-armed bandits.
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1. MULTI-ARMED BANDIT SETUP AND NOTATION

Let us consider a stochastic multi-armed bandit problem (A, ν), where A is a finite set of cardinality
A ∈ N and ν = (νa)a∈A is a set of probability distributions over R indexed by A. The game is sequential
and goes as follows:

At each round t ∈ N, the player picks an arm at (based on past observations) and receives a stochastic
payoff Yt drawn independently at random according to the distribution νat . The player only observes the
payoff Yt, and the goal is to maximize the expected cumulated payoff,

∑
t=1 Yat , over a possibly unknown

number of steps.
Although the term multi-armed bandit problem was probably coined during the 60’s with reference to

the casino slot machines of the 19th century, the formulation of this problem is due to Herbert Robbins –
one of the most brilliant minds of his time, see [18], and takes its origin in earlier questions about optimal
stopping policies for clinical trials, see [20, 21, 22]. We refer the interested reader to [12] regarding
the legacy of the immense work of H. Robbins in mathematical statistics for the sequential design of
experiments, compiling his most outstanding research for his 70’s birthday. Since then, the field of multi-
armed bandits has grown large and bold, and we humbly refer to the introduction of [13] for key historical
aspects about the development of the field. Most notably, they include first the introduction of dynamic
allocation indices (or Gittins indices, [12]) suggesting that an optimal strategy can be found in the form
of an index strategy (that at each round selects an arm with highest “index”); second, the seminal work
of Lai and Robbins [14] that showed that indexes can be chosen as “upper confidence bounds” on the
mean reward of each arm and provided the first asymptotic lower bound on the achievable performance
for specific distributions; third, the generalization of this lower bound in the 90’s to generic distributions
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2 MAILLARD

by Burnetas and Katehakis [7] (see also the recent work [11]) as well as the asymptotic analysis [11]
of generic classes of upper-confidence-bound based index policies and finally [4] that popularized a
simple sub-optimal index strategy termed UCB and most importantly opened the quest for finite-time,
as opposed to asymptotic, performance guarantees. For the purpose of this paper, we now remind the
formal definitions and notation for the stochastic multi-armed bandit problem following [8].

Quality of a strategy. For each arm a ∈ A, let μa be the expectation of the distribution νa, and let a� be
any optimal arm in the sense that

a� ∈ Argmax
a∈A

μa.

We write μ� as a short-hand notation for the largest expectation μa� and denote the gap of the expected
payoff μa of an arm a to μ� as Δa = μ� − μa. In addition, we denote the number of times each arm a is
pulled between the rounds 1 and T by Na(T ),

Na(T ) def=
T∑

t=1

1{at=a}.

Definition 1 (Expected regret). The quality of a strategy is evaluated using the notion of expected regret
(or simply, regret) at round T ≥ 1, defined as

RT
def= E

[

Tμ� −
T∑

t=1

Yt

]

= E

[

Tμ� −
T∑

t=1

μat

]

=
∑

a∈A
Δa E

[
Na(T )

]
, (1)

where we used the tower rule for the first equality. The expectation is with respect to the random draws
of the Yt according to the νat and to the possible auxiliary randomization introduced by the decision-
making strategy.

Empirical distributions. We denote empirical distributions in two related ways, depending on whether
random averages indexed by the global time t or averages of given numbers t of pulls of a given arm are
considered. The first series of averages will be referred to by using a functional notation for the indexation
in the global time: ν̂a(t), while the second series will be indexed with the local times t in subscripts: ν̂a,t.
These two related indexations, functional for global times and random averages versus subscript indexes
for local times, will be consistent throughout the paper for all quantities at hand, not only empirical
averages.

Definition 2 (Empirical distributions). For each m ≥ 1, we denote by τa,m the round at which arm a
was pulled for the mth time, that is,

τa,m = min
{
t ∈ N : Na(t) = m

}
.

For each round t such that Na(t) ≥ 1, we then define the following two empirical distributions

ν̂a(t) =
1

Na(t)

t∑

s=1

δYs 1{as=a} and ν̂a,n =
1
n

n∑

m=1

δXa,m, where Xa,m
def= Yτa,m .

where δx denotes the Dirac distribution on x ∈ R.

Lemma 1. The random variables Xa,m = Yτa,m , m = 1, 2, . . ., are independent and identically
distributed according to νa. Moreover, we have ν̂a(t) = ν̂a,Na(t).

Proof. For means based on local times we consider the filtration (Ft), where for all t ≥ 1, the σ-algebra
Ft is generated by a1, Y1, . . . , at, Yt. In particular, at+1 and all Na(t + 1) are Ft-measurable. Likewise,{
τa,m = t

}
is Ft−1-measurable. That is, each random variable τa,m is a (predictable) stopping time.

Hence the result follows by a standard result in probability theory (see, e.g., Section 5.3 in [9]).
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BOUNDARY CROSSING PROBABILITIES 3

2. BOUNDARY CROSSING PROBABILITIES
FOR THE GENERIC KL-ucb STRATEGY

The first appearance of the KL-ucb strategy can be traced at least to [15] although it was not given an
explicit name at that time. It seems the strategy was forgotten after the work [4] that opened a decade of
intensive research on finite-time analysis of bandit strategies and extensions to variants of the problem
([2, 3], see also [6] for a survey of relevant variants of bandit problems), until the work of Honda and
Takemura [13] shed a novel light on the asymptotically optimal strategies. Thanks to their illuminating
work, the first finite-time regret analysis of KL-ucb was obtained in [17] for discrete distributions, soon
extended to handle exponential families of dimension 1 as well, in the unifying work [8]. However, as
we will see in this paper, we should all be much in debt to the outstanding work of T.L. Lai regarding
the analysis of this index strategy, both asymptotically and in finite-time, as a second look at his papers
shows how to bypass the limitations of the state-of-the-art regret bounds for the control of boundary
crossing probabilities in this context (see Theorem 3 below). Actually, the first focus of the present
paper is not stochastic bandits but boundary crossing probabilities, and the bandit setting that we
provide here should be considered only as giving a solid motivation for the contribution of this paper.

Let us now introduce formally the KL-ucb strategy. We assume that the learner is given a family
D ⊂ M1(R) of probability distributions that satisfies νa ∈ D for each arm a ∈ A, where M1(X ) denotes
the set of all probability distributions over the set X . For two distributions ν, ν ′ ∈ M1(R), we denote by
KL(ν, ν ′) their Kullback–Leibler divergence and by E(ν) and E(ν ′) their expectations. (This operator is
denoted by E while expectations of a function f with respect to underlying randomizations are referred
to as E[f ] or EX∼ν [f(X)] to make explicit the law of the random variable X).

The generic form of the algorithm of interest in this paper is described as Algorithm 1. It relies on
two parameters: an operator ΠD (in spirit, a projection operator) that associates with each empirical
distribution ν̂a(t) an element of the model D; and a nondecreasing function f , which is typically such
that f(t) ≈ log(t).

At each round t ≥ A + 1 (recall that A = |A|), an upper confidence bound Ua(t) is associated with
the expectation μa of the distribution νa of each arm; an arm at+1 with highest upper confidence bound
is then played.

Algorithm 1. The KL-ucb algorithm (generic form).

Parameters: An operator ΠD : M1(R) → D; a nondecreasing function f : N → R

Initialization: Pull each arm of {1, . . . , A} once

for each round t + 1, where t ≥ A, do
for each arm a compute the quantity

Ua(t) = sup
{

E(ν) : ν ∈ D and KL
(
ΠD
(
ν̂a(t)

)
, ν
)
≤ f(t)

Na(t)

}

;

pick an arm at+1 ∈ argmax
a∈A

Ua(t).

In the literature, another variant of KL-ucb is introduced where the term f(t) is replaced with
f(t/Na(t)). We refer to this algorithm as KL-ucb+. While KL-ucb has been analyzed and shown to be
provably near-optimal, the variant KL-ucb+ has not been analyzed yet.

Alternative formulation of KL-ucb. We wrote the KL-ucb algorithm so that the optimization problem
resulting from the computation of Ua(t) is easy to handle. Now, under some assumption, one can rewrite
this term in an equivalent form more suited for the analysis. We refer to [8]:

Assumption 1. There is a known interval I ⊂ R with boundary μ− ≤ μ+, for which each model
D = Da of probability measures is contained in M1(I) and such that ∀ν ∈ Da ∀μ ∈ I \ {μ+},

inf
{
KL(ν, ν ′) : ν ′ ∈ Da s.t. E(ν ′) > μ

}
= min

{
KL(ν, ν ′) : ν ′ ∈ Da s.t. E(ν ′) ≥ μ

}
.
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Lemma 2 (Rewriting). Under Assumption 1, the upper bound used by the KL-ucb algorithm
satisfies the following equality

Ua(t) = max
{

μ ∈ I \ {μ+} : Ka

(
Πa(ν̂a(t)), μ

)
≤ f(t)

Na(t)

}

where Ka(νa, μ
�) def= inf

ν∈Da : E(ν)>μ�
KL(νa, ν) and Πa

def= ΠDa .

Likewise, a similar result holds for KL-ucb+ whith f(t) replaced by f(t/Na(t)).

Remark 1. Assumption 1 is valid, for instance, when Da = M1([0, 1]) and I = [0, 1]. Indeed, we
can replace the strict inequality with an inequality provided that μ < 1 by [13], and the infimum is
attained by lower semi-continuity of the KL divergence and convexity and closure of the set {ν ′ ∈
M1([0, 1]) s.t. E(ν ′) ≥ μ}.

Using boundary-crossing probabilities for regret analysis. We continue by restating a convenient
way to decompose the regret and make appear the boundary crossing probabilities that are at the
heart of this paper. The following lemma is a direct adaptation from [8].

Lemma 3 (From Regret to Boundary Crossing Probabilities). Let ε ∈ R
+ be a small constant such

that ε ∈ (0,min{μ� − μa, a ∈ A}). For μ, γ ∈ R, introduce the set

Cμ,γ =
{
ν ′ ∈ M1(R) : Ka(Πa(ν ′), μ) < γ

}
.

Then the number of pulls of a sub-optimal arm a ∈ A by Algorithm KL-ucb satisfies

E[NT (a)] ≤ 2 + inf
n0≤T

{

n0 +
T∑

n≥n0+1

P
{
ν̂a,n ∈ Cμ�−ε,f(T )/n

}
}

+
T−1∑

t=|A|
P
{
Na�(t) Ka�

(
Πa�(ν̂a�,Na�(t)), μ� − ε

)
> f(t)

}

︸ ︷︷ ︸
Boundary Crossing Probability

.

Likewise, the number of pulls of a sub-optimal arm a ∈ A by Algorithm KL-ucb+ satisfies

E[NT (a)] ≤ 2 + inf
n0≤T

{

n0 +
T∑

n≥n0+1

P
{
ν̂a,n ∈ Cμ�−ε,f(T/n)/n

}
}

+
T−1∑

t=|A|
P
{
Na�(t) Ka�

(
Πa�(ν̂a�,Na�(t)), μ� − ε

)
> f(t/Na�(t))

}

︸ ︷︷ ︸
Boundary Crossing Probability

.

Proof. The first part of this lemma for KL-ucb is proved in [8]. The second part that is about KL-ucb+
can be proved straightforwardly following the very same lines. We thus only provide the main steps here
for clarity. For ε > 0 satisfying ε < min{μ� − μa, a ∈ A}, consider the following inclusion of events:

{
at+1 = a

}
⊆
{
μ� − ε < Ua(t) and at+1 = a

}
∪
{
μ� − ε ≥ Ua�(t)

}
.

Indeed, on the event
{
at+1 = a

}
∩
{
μ� − ε < Ua�(t)

}
, we have μ� − ε < Ua�(t) ≤ Ua(t) (where the

last inequality is by definition of the strategy). Moreover, note that
{
μ� − ε < Ua(t)

}
⊆
{
∃ν ′ ∈ D : E(ν ′) > μ� − ε and Na(t) Ka

(
Πa(ν̂a,Na(t)), μ� − ε

)
≤ f(t/Na(t))

}
,

and
{
μ� − ε ≥ Ua�(t)

}
⊆
{
∃ν ′ ∈ D : Na�(t) Ka�

(
Πa�(ν̂a�,Na�(t)), μ� − ε

)
> f(t/Na�(t))

}
,
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BOUNDARY CROSSING PROBABILITIES 5

since Ka is a nondecreasing function in its second argument and Ka

(
ν,E(ν)

)
= 0 for all distributions ν.

Therefore we have the following decomposition:

E[NT (a)] ≤ 1 +
T−1∑

t=|A|
P
{
Na�(t) Ka�

(
Πa�(ν̂a�,Na�(t)), μ� − ε

)
> f(t/Na�(t))

}

+
T−1∑

t=|A|
P
{
Na(t) Ka

(
Πa(ν̂a,Na(t)), μ� − ε

)
≤ f(t/Na(t)) and at+1 = a

}
.

Using the remaining steps of the proof of the result from [8], equation (10) can now be straightforwardly
modified to work with f(t/Na(t)) instead of f(t), thus concluding this proof.

Lemma 3 shows that two terms need to be controlled in order to derive regret bounds for the
considered strategy. The boundary crossing probability term is arguably the most difficult to handle
and is the focus of the next sections. The other term involves the probability that an empirical distribution
belongs to a convex set, which can be handled either directly as in [8] or by resorting to finite-time Sanov-
type results such as Theorem 2.1 and comments on p. 372 in [10] or its version in Lemma 1 in [17]. For
completeness, we state the exact result from [10].

Lemma 4 (Non-asymptotic Sanov’s lemma). Let C be an open convex subset of M1(X ) such that
Λν(C) = infκ∈C KL(κ, ν) is finite. Then, for all t ≥ 1, Pν{ν̂t ∈ C} ≤ exp

(
− tΛν(C)

)
, where C is the

closure of C.

Scope and focus of this work. We focus on the setting of stochastic multi-armed bandits because
this gives a strong and natural motivation for studying boundary crossing probabilities. However, one
should understand that the primary goal of this paper is to give credit to the work of T.L. Lai regarding
the neat understanding of boundary crossing probabilities and not necessarily to provide a regret bound
for such bandit algorithms as KL-ucb or KL-ucb+. Also, we believe that results on boundary crossing
probabilities are useful beyond the bandit problem in hypothesis testing. Thus, and in order to avoid
obscuring the main result regarding boundary crossing probabilities, we choose not to provide regret
bounds here and to leave them has an exercise for the interested reader; controlling the remaining term
appearing in the decomposition of Lemma 3 is indeed mostly technical and does not seem to require
especially illuminating or fancy idea. We refer to [8] for an example of bound in the case of exponential
families of dimension 1.

High-level overview of the contribution. We are now ready to explain the main results of this paper.
For the purpose of clarity, we provide them as an informal statement before proceeding with the technical
material.

Our contribution is about the behavior of the boundary crossing probability term for exponential
families of dimension K when choosing the threshold function f(x) = log(x) + ξ log log(x). Our result
reads as follows.

Theorem (Informal statement). Assuming that the observations are generated from a distribution
that belongs to an exponential family of dimension K that satisfies some mild conditions, for
any nonnegative ε and some class-dependent but fully explicit constants c, C (also depending
on ε) it holds

P
{
Na�(t) Ka�

(
Πa�(ν̂a�,Na�(t)), μ� − ε

)
> f(t)

}
≤ C

t
log(t)K/2−ξe−c

√
f(t),

P
{
Na�(t) Ka�

(
Πa�(ν̂a�,Na�(t)), μ� − ε

)
> f(t/Na�(t))

}
≤ C

t
log(tc)K/2−ξ−1,

where the first inequality holds for all t and the second one for large enough t ≥ tc, where tc is
class dependent but explicit and “reasonably” small.

We provide the rigorous statement in Theorem 3 and Corollaries 1 and 2 below. The main interest
of this result is that it shows how to tune ξ with respect to the dimension K of the family. Indeed, in
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6 MAILLARD

order to ensure that the probability term is summable in t, the bound suggests that ξ should be at least
larger than K/2 − 1. The case of exponential families of dimension 1 (K = 1) is especially interesting,
as it supports the fact that both KL-ucb and KL-ucb+ can be tuned using ξ = 0 (and even negative ξ for
KL-ucb). This was observed in numerical experiments in [8] although not theoretically supported until
now.

The rest of the paper is organized as follows. Section 3 provides the required background and
notation about exponential families, Section 4 provides the precise statements as well as previous
results, Section 5 details the proof of Theorem 3, and Section 6 details the proofs of Corollaries 1 and 2.

3. GENERAL EXPONENTIAL FAMILIES, PROPERTIES AND EXAMPLES

Before focusing on the boundary crossing probabilities, we require a few tools and definitions related
to exponential families. The purpose of this section is thus to present them and prepare for the main
result of this paper. In this section, for a set X ⊂ R, we consider a multivariate function F : X → R

K

and denote Y = F (X ) ⊂ R
K .

Definition 3 (Exponential families). The exponential family generated by the function F and the
reference measure ν0 on the set X is

E(F ; ν0) =
{
νθ ∈ M1(X ); ∀x ∈ X νθ(dx) = exp

(
〈θ, F (x)〉 − ψ(θ)

)
ν0(dx), θ ∈ R

K
}
,

where ψ(θ) def= log
∫
X exp

(
〈θ, F (x)〉

)
ν0(dx) is the normalization function (or log-partition function) of

the exponential family. The vector θ is called the vector of canonical parameters. The parameter set of the

family is the domain ΘD
def=
{
θ ∈ R

K ; ψ(θ) < ∞
}

, and the invertible parameter set of the family is ΘI
def=

{
θ ∈ R

K ; 0 < λMIN(∇2ψ(θ)) ≤ λMAX(∇2ψ(θ)) < ∞
}
⊂ ΘD, where λMIN(M) and λMAX(M) denote the

minimum and maximum eigenvalues of a positive semi-definite matrix M .

Remark 2. When X is compact, which is the usual assumption in multi-armed bandits (X = [0, 1]) and
F is continuous, then we automatically get ΘD = R

K .

In the sequel, we always assume that the family is regular, that is ΘD has a nonempty interior. Another
key assumption is that the parameter θ� of the optimal arm belongs to the interior of ΘI and is away from
its boundary, which essentially avoids degenerate distributions, as we illustrate below.

Examples. Bernoulli distributions form an exponential family with K = 1, X = {0, 1}, F (x) = x,
ψ(θ) = log(1 + eθ). The Bernoulli distribution with mean μ has parameter θ = log(μ/(1 − μ)). Note
that ΘD = R and that degenerate distributions with mean 0 or 1 correspond to parameters ±∞.

Gaussian distributions on X = R form an exponential family with K = 2, F (x) = (x, x2), and for

each θ = (θ1, θ2), ψ(θ) = − θ2
1

4θ2
+ 1

2 log
(
− π

θ2

)
. The Gaussian distribution N (μ, σ2) has parameter

θ =
( μ

σ2 ,− 1
2σ2

)
. It is immediate to check that ΘD = R × R

−
� . Degenerate distributions with variance 0

correspond to a parameter θ with both infinite components, while as θ approaches the boundary R×{0},
the variance tends to infinity. It is natural to consider only parameters that correspond to a not too large
variance.

3.1. Bregman Divergence Induced by the Exponential Family

An interesting property of exponential families is the following straightforward rewriting of the
Kullback–Leibler divergence:

∀θ, θ′ ∈ ΘD, KL(νθ, νθ′) = 〈θ − θ′, EX∼νθ
(F (X))〉 − ψ(θ) + ψ(θ′).

In particular, the vector EX∼νθ
(F (X)) is called the vector of dual (or expectation) parameters. It

is equal to the vector ∇ψ(θ). Note that KL(νθ, νθ′) = Bψ(θ, θ′), where Bψ is known as the Bregman
divergence with potential function ψ and is defined (see [5] for further details) by

Bψ(θ, θ′) def= ψ(θ′) − ψ(θ) − 〈θ′ − θ,∇ψ(θ)〉.
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BOUNDARY CROSSING PROBABILITIES 7

Thus, if Πa is chosen to be the projection on the exponential family E(F ; ν0) and ν is a distribution
with projection given by νθ = Πa(ν), then we can rewrite the definition of Ka in the simpler form

Ka

(
Πa(ν), μ

)
= inf

{
Bψ(θ, θ′); Eνθ′ (X) > μ

}
. (2)

We continue by providing a powerful rewriting of the Bregman divergence.

Lemma 5 (Bregman duality). For all θ� ∈ ΘD and η ∈ R
K such that θ� + η ∈ ΘD, let Φ(η) =

ψ(θ� + η) − ψ(θ�). Further, let us introduce the Fenchel–Legendre dual of Φ defined by

Φ�(y) = sup
η∈RK

〈η, y〉 − Φ(η).

Then log EX∼νθ� exp
(
〈η, F (X)〉

)
= Φ(η). Further, for all F such that F = ∇ψ(θ) for some θ ∈ ΘD,

one has Φ�(F ) = Bψ(θ, θ�).

Lemma 6 (Bregman and Smoothness). The following inequalities hold true

Bψ(θ, θ′) ≤ ‖θ − θ′‖2

2
sup{λMAX(∇2ψ(θ̃)); θ̃ ∈ [θ, θ′]},

‖∇ψ(θ) −∇ψ(θ′)‖ ≤ sup{λMAX(∇2ψ(θ̃)); θ̃ ∈ [θ, θ′]} ‖θ − θ′‖,

Bψ(θ, θ′) ≥ ‖θ − θ′‖2

2
inf{λMIN(∇2ψ(θ̃)); θ̃ ∈ [θ, θ′]},

‖∇ψ(θ) −∇ψ(θ′)‖ ≥ inf{λMIN(∇2ψ(θ̃)); θ̃ ∈ [θ, θ′]} ‖θ − θ′‖,

where λMAX(∇2ψ(θ̃)) and λMIN(∇2ψ(θ̃)) are the largest and smallest eigenvalues of ∇2ψ(θ̃).

Proof of Lemma 5. The second equality holds by simple algebra. Now the first equality is immediate,
since

log Eθ� exp(〈η, F (X)〉) = log
∫

exp(〈η, F (x)〉 + 〈θ�, F (x)〉 − ψ(θ�))ν0(dy) = ψ(η + θ�) − ψ(θ�).

Proof of Lemma 6. We have by definition that Bψ(θ, θ′) = ψ(θ) − ψ(θ′) − 〈θ − θ′,∇ψ(θ′)〉. Then, by a
Taylor expansion, there exists θ̃′ ∈ [θ, θ′] such that

ψ(θ) = ψ(θ′) + 〈θ − θ′,∇ψ(θ′)〉 +
1
2
(θ − θ′)T∇2ψ(θ̃)(θ − θ′).

Likewise, there exists θ̃ ∈ [θ, θ′] such that ∇ψ(θ) = ∇ψ(θ′) + ∇2ψ(θ̃)(θ − θ′).

3.2. Dual Formulation of the Optimization Problem
Using Bregman divergence enables us to rewrite the K-dimensional optimization problem (2) in a

slightly more convenient form thanks to a dual formulation. Indeed, introducing a Lagrangian parameter
λ ∈ R

+ and using Karush–Kuhn–Tucker conditions, one gets the following necessary optimality
conditions

∇ψ(θ′) −∇ψ(θ) − λ∂θ′Eνθ′ (X) = 0 with λ(μ − Eνθ′ (X)) = 0, λ ≥ 0, Eνθ′ (X) ≥ μ,

and by definition of the exponential family, we can make use of the fact that

∂θ′Eνθ′ (X) = Eνθ′ (XF (X)) − Eνθ′ (X)∇ψ(θ′) ∈ R
K ,

where X ∈ R and F (X) ∈ R
K . Combining these two equations, we obtain the system

{
∇ψ(θ′)(1 + λEνθ′ (X)) −∇ψ(θ) − λEνθ′ (XF (X)) = 0 ∈ R

K

with λ(μ − Eνθ′ (X)) = 0, λ ≥ 0, Eνθ′ (X) ≥ μ.
(3)

For minimal exponential family, this system admits for each fixed θ, μ a unique solution in θ′, which we
write for clarity θ(λ�; θ, μ) to indicate its dependence on the optimal value λ� of the dual parameter as
well as the constraints.
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Remark 3. For θ ∈ ΘI , when the optimal value of λ is λ� = 0, then ∇ψ(θ′) = ∇ψ(θ) and thus θ′ = θ,
which is only possible if Eνθ

(X) ≥ μ. Thus whenever μ > Eνθ
(X), the dual constraint is active, i.e.,

λ > 0, and we get the vector equation

∇ψ(θ′)(1 + λμ) −∇ψ(θ) − λEνθ′ (XF (X)) = 0 and Eνθ′ (X) = μ.

The example of discrete distributions. In many cases, the above optimization problem reduces
to a simpler one-dimensional optimization problem, where we optimize over the dual parameter λ.
We illustrate this phenomenon by a family of discrete distributions. Let X = {x1, . . . , xK , x�} be a
set of distinct real numbers. Without loss of generality, assume that x� > maxk≤K xk. The family
of distributions p with support in X is a specific K-dimensional family. Indeed, let F be the feature
function with kth component Fk(x) = 1{x = xk}, for all k ∈ {1, . . . ,K}. Then the parameter θ =
(θk)1≤k≤K of the distribution p = pθ has components θk = log(p(xk)

p(x�) ) for all k. Note that p(xk) =

exp(θk − ψ(θ)) for all k, and p(x0) = exp(−ψ(θ)). Then it follows that ψ(θ) = log(
∑K

k=1 eθk + 1),
∇ψ(θ) = (p(x1), . . . , p(xK))� and E(XFk(X)) = xkpθ(xk). Further, ΘD = (R∪ {−∞})K and θ ∈ ΘD
corresponds to the condition pθ(x�) > 0. Now, for a nontrivial value μ such that Epθ

(X) < μ < x�, it can
be readily checked that the system (3) specialized to this family is equivalent (with no surprise) to the
one considered for instance in [13] for discrete distributions. After some tedious but simple steps detailed
in [13], one obtains the following easy-to-solve one-dimensional optimization problem (see also [8]),
although the family is of dimension K:

Ka

(
Πa(ν), μ

)
= Ka

(
νθ, μ

)
= sup

{∑

x∈X

pθ(x) log
(
1 − λ

x − μ

x� − μ

)
; λ ∈ [0, 1]

}
.

3.3. Empirical Parameter and Definition

In this section we discuss the definition of the empirical parameter corresponding to the projection
of the empirical distribution on the exponential family. While this is innocuous for most settings, in full
generality, one needs to take some specific care to ensure that all the objects we deal with are well defined
and that all parameters θ we talk about indeed belong to the set ΘD (or better ΘI).

An important property is that if the family is regular, then ∇ψ(ΘD) is an open set that coincides with
the interior of realizable values of F (x) for x ∼ ν for any ν absolutely continuous with respect to ν0. In
particular, by convexity of the set ∇ψ(ΘD) this means that the empirical average 1

n

∑n
i=1 F (Xi) ∈ R

K

belongs to ∇ψ(ΘD) for all {Xi}i≤n ∼ νθ with θ ∈ ΘD. Thus, for the observed samples X1, . . . ,Xn ∈ X
coming from νa� , the projection Πa�(ν̂a�,n) on the family can be represented by a sequence {θ̂n,m}m∈N ∈
ΘD such that

∇ψ(θ̂n,m) m→ F̂n where F̂n
def=

1
n

n∑

i=1

F (Xi) ∈ R
K .

In the sequel, we want to ensure that whenever νa� = νθ� with θ� ∈ Θ̊I , we have F̂n ∈ ∇ψ(Θ̊I), which
means that there is a unique θ̂n ∈ Θ̊I such that ∇ψ(θ̂n) = F̂n, or equivalently θ̂n = ∇ψ−1(F̂n). To this
end, we assume that θ� is away from the boundary of ΘI . In many cases, it is then sufficient to assume
that n is larger than a small constant (roughly K) to ensure that we can find a unique θ̂n ∈ Θ̊I such that
∇ψ(θ̂n) = F̂n.

Example. Let us consider Gaussian distributions on X = R with K = 2. We consider a parameter
θ� = ( μ

σ2 ,− 1
2σ2 ) corresponding to a Gaussian finite mean μ and positive variance σ2. Now, for any n ≥ 2,

the empirical mean μ̂n is finite and the empirical variance σ̂2
n is positive, and thus θn = ∇ψ−1(F̂n) is well

defined.
The case of Bernoulli distributions is interesting as it shows a slightly different situation. Let us

consider a parameter θ� = log(μ/(1 − μ)) corresponding to the Bernoulli distribution with mean μ.
Before F̂n can be mapped to a point in Θ̊I = R, one needs to wait that the number of observations
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for both 0 and 1 is positive. Whenever μ ∈ (0, 1), the probability that this does not happen is controlled
by P(n0(n) = 0 or n1(n) = 0) = μn + (1−μ)n ≤ 2max(μ, 1−μ)n, where nx(n) denotes the number of
observations of symbol x ∈ {0, 1} after n samples. For μ ≥ 1/2, the latter quantity is less than δ0 ∈ (0, 1)
for n ≥ log(2/δ0)

log(1/μ) , which depends on the probability level δ0 and cannot be considered to be especially

small when μ is close1 to 1. That is, even when the parameter θ̂n does not belong to R, the event
n0(n) = 0 corresponds to having empirical mean equal to 1. This is a favorable situation since any
optimistic algorithm should pull the corresponding arm. Thus we only need to control P(n1(n) = 0) =
(1 − μ)n, which is less than δ0 ∈ (0, 1) for n ≥ log(1/δ0)

log(1/(1−μ)) , which is essentially a constant. As a matter

of illustration, when δ = 10−3 and μ = 0.9, this condition is met for n ≥ 3.

Following this discussion, we assume in the sequel that n is always large enough so that θ̂n =
∇ψ−1(F̂n) ∈ Θ̊I can be uniquely defined. Now, to discuss the separation between the parameter and
the boundary more formally, we introduce the following definition.

Definition 4 (Enlarged parameter set). Let Θ ⊂ ΘD and ρ > 0 be a constant. The enlargement of size
ρ of Θ in Euclidean norm (i.e. the ρ-neighborhood) is defined by

Θρ
def=
{
θ ∈ R

K ; inf
θ′∈ΘD

‖θ − θ′‖ < ρ
}
.

Further, for each ρ such that Θρ ⊂ ΘI we introduce the quantities

vρ = vΘρ

def= inf
θ∈Θρ

λMIN(∇2ψ(θ)), Vρ = VΘρ

def= sup
θ∈Θρ

λMAX(∇2ψ(θ)).

Using the notion of enlarged parameter set, we highlight an especially useful property to prove
concentration inequalities, summarized in the following result.

Lemma 7 (Log-Laplace control). Let Θ ⊂ ΘD be a convex set and ρ > 0 be such that θ� ∈ Θρ ⊂ ΘI .
Then, for all η ∈ R

K such that θ� + η ∈ Θρ, it holds

log Eθ� exp(η�F (X)) ≤ η�∇ψ(θ�) +
Vρ

2
‖η‖2.

Proof. It holds by simple algebra

log Eθ� exp(η�F (X)) = ψ(θ� + η) − ψ(θ�)

≤ η�∇ψ(θ�) + max
θ∈H(θ�+η,θ�)

1
2
η�∇2ψ(θ)η ≤ η�∇ψ(θ�) +

Vρ

2
‖η‖2,

where H(θ, θ′) = {αθ + (1 − α)θ′, α ∈ [0, 1]}. The equality holds by definition and basic rewriting.
In the inequalities, we used that Θρ is convex as an enlargement of a convex set, and thus that
H(η + θ�, θ�) ⊂ Θρ.

In the sequel, we are interested in sets Θ such that Θρ ⊂ Θ̊I for some specific ρ. This comes
essentially from the fact that we require some room around Θ and ΘI to ensure all quantities re-
main finite and well defined. Before proceeding, it is convenient to introduce the notation d(Θ′,Θ) =
infθ∈Θ,θ′∈Θ′ ‖θ − θ′‖, as well as the Euclidean ball B(y, δ) = {y′ ∈ R

K : ‖y′ − y‖ ≤ δ}. Using this
notation, the following lemma whose proof is immediate provides conditions which are satisfied in all
future technical considerations.

1This also suggests replacing F̂n with a Laplace or Krichevsky–Trofimov estimates that provide initial bonus to each symbol
and, as a result, map any F̂n for n ≥ 0 to a parameter in θ̂n ∈ R.
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Lemma 8 (Well-defined parameters). Let θ� ∈ Θ̊I and ρ� = d({θ�}, RK \ ΘI) > 0. Now for any
convex set Θ ⊂ ΘI such that θ� ∈ Θ and d(Θ, RK \ ΘI) = ρ� and any ρ < ρ�/2, it holds Θ2ρ ⊂ Θ̊I .
Further, for any δ such that F̂n ∈ B(∇ψ(θ�), δ) ⊂ ∇ψ(Θρ) there exists θ̂n ∈ Θρ ⊂ Θ̊I such that
∇ψ(θ̂n) = F̂n.

In the sequel, we will restrict our analysis to the slightly more restrictive case when θ̂n ∈ Θρ with
Θ2ρ ⊂ Θ̊I . This is mostly for convenience and to avoid dealing with rather specific situations.

Remark 4. Again let us remind that when X is compact and F is continuous, then ΘI = ΘD = R
K .

Illustration. We now illustrate the definition of vρ and Vρ. For Bernoulli distributions with parameter
μ ∈ [0, 1], ∇ψ(θ) = 1/(1 + e−θ) and ∇2ψ(θ) = e−θ/(1 + e−θ)2 = μ(1 − μ). Thus, vρ is away from 0
whenever Θρ excludes the means μ close to 0 or 1 and Vρ ≤ 1/4.

Now ψ(θ) = − θ2
1

4θ2
+ 1

2 log
(−π

θ2

)
, where θ = ( μ

σ2 ,− 1
2σ2 ), for a family of Gaussian distributions with

unknown mean and variance. Thus, ∇ψ(θ) = (− θ1
2θ2

,
θ2
1

4θ2
2
− 1

2θ2
), ∇2ψ(θ) = (− 1

2θ2
, θ1

2θ2
2
; θ1

2θ2
2
,− θ2

1

2θ3
2

+
1

2θ2
2
) = 2μσ2( 1

2μ , 1; 1, 2μ + σ2

μ ). The smallest eigenvalue is larger than σ4/(1/2 + σ2 + 2μ2) and the

largest is upper bounded by σ2(1 + 2σ2 + 4μ2), which enables us to control Vρ and vρ.

4. BOUNDARY CROSSING FOR K-DIMENSIONAL EXPONENTIAL FAMILIES

In this section, we study the boundary crossing probability term appearing in Lemma 3 for a K-
dimensional exponential family E(F ; ν0). We overview the existing results before detailing our main
contribution. As explained in the introduction, the key technical tools that enable us to obtain the novel
results were already known three decades ago, and thus even though the novel result is impressive due
to its generality and tightness, it should be regarded as a modernized version of an existing but almost
forgotten result that enables us to solve a few long-lasting open questions as a by-product.

4.1. Previous Work on Boundary-Crossing Probabilities

The existing results used in the bandit literature about boundary-crossing probabilities are restricted
to a few specific cases. For instance in [8], the authors provide the following control.

Theorem 1 (KL-ucb). In the case of canonical (that is F (x) = x) exponential families of dimen-
sion K = 1, it holds for f(x) = log(x) + ξ log log(x) that for all t > A

Pθ�

{ t−A+1⋃

n=1

n Ka�

(
Πa�(ν̂a�,n), μ�

)
> f
(
t
)
∩ μa� > μ̂a�,n

}
≤ e� f(t) log(t)�e−f(t).

Further, in the special case of distributions with finitely many K atoms, it holds for all t > A,
ε > 0

Pθ�

{t−A+1⋃

n=1

nKa�

(
Πa�(ν̂a�,n), μ� − ε

)
> f(t)

}
≤ e−f(t)

(
3e + 2 + 4ε−2 + 8eε−4

)
.

In contrast to [16], the authors of [8] provide an asymptotic control in the more general case of
exponential families of dimension K with some basic regularity condition, as we explained earlier. We
now restate this beautiful result from [16] in a way that is suitable for a more direct comparison with
other results.
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Theorem 2 (Lai [16]). Consider an exponential family of dimension K. Define for γ > 0 the
cone Cγ(θ) = {θ′ ∈ R

K : 〈θ′, θ〉 ≥ γ‖θ‖ · ‖θ′‖}. Then, for f(x) = α log(x) + ξ log log(x) it holds for
all θ† ∈ Θ such that ‖θ† − θ�‖2 ≥ δt, where δt → 0, tδt → ∞ as t → ∞,

Pθ�

{ t⋃

n=1

θ̂n ∈ Θρ ∩ nBψ(θ̂n, θ†) ≥ f
( t

n

)
∩ ∇ψ(θ̂n) −∇ψ(θ†) ∈ Cγ(θ† − θ�)

}

t→∞= O
(
t−α‖θ† − θ�‖−2α log−ξ−α+K/2(t‖θ† − θ�‖2)

)

= O
(
e−f(t‖θ†−θ�‖2) log−α+K/2(t|θ† − θ�|2)

)
.

Discussion. The quantity Bψ(θ̂n, θ†) is the direct analog of Ka�

(
Πa�(ν̂a�,n), μ� − ε) in Theorem 1. Note

however that f(t/n) replaces the larger quantity f(t), which means that Theorem 2 controls a larger
quantity than Theorem 1, and is thus in this sense stronger. It also holds for general exponential families
of dimension K. Another important difference is the order of magnitude of the right-hand side terms of

both theorems. Indeed, since e� f(t) log(t)�e−f(t) = O( log2−ξ(t)+ξ log(t)1−ξ log log(t)
t ), Theorem 1requires

that ξ > 2 in order that this term is o(1/t), and ξ > 0 for the second term of Theorem 1. In contrast,
Theorem 2 shows that it is enough to consider f(x) = log(x) + ξ log log(x) with ξ > K/2 − 1 to ensure
a o(1/t) bound. For K = 1, this means we can even use ξ > −1/2 and in particular ξ = 0, which
corresponds to the value they recommend in the experiments.

Thus Theorem 2 improves over Theorem 1 in three ways: it is an extension to dimension K, it provides
a bound for f(t/n) (and thus for KL-ucb+) and not only f(t), and finally allows for smaller values of ξ.
These improvements are partly due to the fact that Theorem 1 controls a concentration with respect to
θ†, not θ�, which takes advantage of the fact that there is some gap when going from μ� to distributions
with mean μ� − ε. The proof of Theorem 2 directly takes advantage of this, contrary to that of the first
part of Theorem 1.

On the other hand, Theorem 2 is only asymptotic whereas Theorem 1 holds for finite t. Furthermore,
we notice two restrictions on the control event. First, it requires θ̂n ∈ Θρ, but we showed in the previous
section that this is a minor restriction. Second, there is the restriction to a cone Cγ(θ† − θ�) which
simplifies the analysis, but is a more dramatic restriction. This restriction cannot be removed trivially
since, as can be seen from the complete statement of Theorem 2 in [16], the right-hand side blows up
to ∞ when γ → 0. As we will see, it is possible to overcome this restriction by resorting to a smart
covering of the space with cones, and sum the resulting terms via a union bound over the covering. We
explain the precise way of proceeding in the proof of Theorem 3 in Section 5.

Hint about proving the first part of Theorem 1. It may be interesting to give a hint about the
proof of the first part of Theorem 1, as it involves an elegant step, despite relying quite heavily on two
specific properties of the canonical exponential family of dimension 1. Indeed in the special case of the
canonical one-dimensional family (that is K = 1 and F1(x) = x ∈ R), F̂n = 1

n

∑n
i=1 Xi coincides with

the empirical mean and it can be shown that Φ�(F ) is strictly decreasing on (−∞, μ�]. Thus for any
F ≤ μ�, it holds

{
F̂n ≤ μ� ∩ Φ�(F̂n) ≥ Φ�(F )

}
⊂
{
F̂n ≤ F

}
. (4)

Further, using the notation of Section 3.1, it also holds in that case Ka�

(
Πa�(ν̂a�,n), μ�

)
= Bψ(θ̂n, θ�) =

Φ�(F̂n), where θ̂n = ψ̇−1(F̂n) is uniquely defined. A second nontrivial property that is shown in [8] is that
for all F ≤ μ�, we can localize the supremum as

Φ�(F ) = sup
{
xF − Φ(x) : x < 0 and xF − Φ(x) > 0

}
. (5)

Armed with these two properties, the proof reduces almost trivially to the following elegant lemma.
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Lemma 9 (Dimension 1). Consider a canonical one-dimensional family (that is K = 1 and
F1(x) = x ∈ R). Then, for all f such that f(t/n)/n is nonincreasing in n,

Pθ�

{ ⋃

m≤n<M

Bψ(θ̂n, θ�) ≥ f(t/n)/n
}
≤ exp

(
− m

M
f(t/M)

)
.

The proof of this lemma is provided in the Appendix and is directly adapted from the proof of
Theorem 1. The first statement of Theorem 1 is obtained by a peeling argument, using m/M =
(f(t) − 1)/f(t). However this argument does not seem to extend nicely to using f(t/n), which explains
why there is no statement regarding this threshold.

4.2. Main Results and Contributions

In this section, we provide several results on boundary crossing probabilities that we prove in detail
in the next section. We first provide a nonasymptotic bound with explicit terms for the control of the
boundary crossing probability term. We then provide two corollaries that can be used directly for the
analysis of KL-ucb and KL-ucb+ and that better highlight the asymptotic scaling of the bound with t,
which helps seeing the effect of the parameter ξ on the bound.

Theorem 3 (Boundary crossing for exponential families). Let ε > 0 and define ρε =
inf{‖θ′ − θ‖ : μθ′ = μ� − ε, μθ = μ�}. Let ρ� = d({θ�}, RK \ ΘI) and Θ ⊂ ΘD be a set such that
θ� ∈ Θ and d(Θ, RK \ ΘI) = ρ�. Thus θ� ∈ Θ ⊂ Θρ ⊂ Θ̊I for each ρ < ρ�. Assume that n →
f(t/n)/n is nonincreasing and n → nf(t/n) is nondecreasing. Then, for every b > 1, p, q, η ∈ [0, 1],
and ni = bi if i < It = � logb(qt)�, nIt = t + 1, it holds

Pθ�

{ ⋃

1≤n≤t

θ̂n ∈ Θρ ∩ Ka�

(
Πa�(ν̂a�,n), μ� − ε

)
≥ f(t/n)/n

}

≤ C(K, b, ρ, p, η)
It−1∑

i=0

exp
(

− niρ
2
εα

2 − ρεχ
√

nif(t/ni) − f
( t

ni+1 − 1

))

f
( t

ni+1 − 1

)K/2
,

where we introduced the constants α = η
√

vρ/2, χ = pη
√

2v2
ρ/Vρ and

C(K, b, ρ, p, η) = Cp,η,K

(

2
ωp,K−2

ωmax{p, 2√
5
},K−2

max
{ 2bV 4

ρ

pρ2v6
ρ

,
V 3

ρ

v4
ρ

,
b2V 5

ρ

pv6
ρ(

1
2 + 1

K )

}K/2
+ 1
)

.

Here Cp,η,K is the cone-covering number of ∇ψ
(
Θρ \ B2(θ�, ρε)

)
with minimal angular separation

p and not intersecting the set ∇ψ
(
Θρ \ B2(θ�, ηρε)

)
; and ωp,K =

∫ 1
p

√
1 − z2K

dz if K ≥ 0, 1 else.

Remark 5. The same result holds when replacing all occurrences of f(·) by the constant f(t).

Remark 6. In dimension 1, the theorem takes a simpler form. Indeed Cp,η,1 = 2 for all p, η ∈ (0, 1)

and thus, choosing b = 2 for instance, C(1, 2, ρ, p, η) reduces to 2
(
2max

{
2V 2

ρ

ρv3
ρ
,

V
3/2
ρ

v2
ρ

,
2V

5/2
ρ

v3
ρ

}
+ 1
)

. In

the case of Bernoulli distributions, if Θρ = {log(μ/(1 − μ)), μ ∈ [μρ, 1 − μρ]}, then vρ = μρ(1 − μρ),
Vρ = 1/4 and C(1, 2, ρ, p, η) = 2( 1

8μ3
ρ(1−μρ)3 + 1).

Remark 7. We believe it is possible to reduce the max term by a factor V 3
ρ /v4

ρ in the definition of
C(K, b, ρ, p, η).

Let f(x) = log(x) + ξ log log(x). We now state two corollaries of Theorem 3. The first one is stated
for the case when the boundary is f(t)/n and is thus directly relevant to the analysis of KL-ucb. The
second corollary is about the more challenging boundary f(t/n)/n that corresponds to the KL-ucb+
strategy. We note that f is nondecreasing only for x ≥ e−ξ. When x = t, this requires that t ≥ e−ξ.
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Now, when x = t/Na�(t), where Na�(t) = t−O(log(t)), assuming that f is nondecreasing requires that
ξ ≥ log(1 − O(log(t)/t)) for large t, that is ξ ≥ 0. In the sequel we thus restrict to t ≥ e−ξ when using
the boundary f(t) and to ξ ≥ 0 when using the boundary f(t/n). Finally, we remind that the quantity

χ = pη
√

2v2
ρ/Vρ is a function of p, η and ρ, and introduce the notation χε = ρεχ for convenience.

Corollary 1 (Boundary crossing for f(t)). Let f(x) = log(x) + ξ log log(x). Using the same notation
as in Theorem 3, for all p, η ∈ [0, 1], ρ < ρ� and all t ≥ e−ξ such that f(t) ≥ 1 it holds

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩ Ka�

(
Πa�(ν̂a�,n), μ� − ε

)
≥ f(t)/n

}

≤ C(K, 4, ρ, p, η)(1 + χε)
χεt

(

1 + ξ
log log(t)

log(t)

)K/2

log(t)−ξ+K/2e−χε

√
log(t)+ξ log log(t).

Corollary 2 (Boundary crossing for f(t/n)). Let f(x) = log(x) + ξ log log(x). For all p, η ∈ [0, 1],
ρ < ρ� and ξ ≥ max(K/2 − 1, 0), and for t ∈ [85χ−2, tχ], where tχ = χ−2

ε
exp(log(4.5)2/χ2

ε)
4 log(4.5)2

, it holds

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩ Ka�

(
Πa�(ν̂a�,n), μ� − ε

)
≥ f(t/n)/n

}
≤ C(K, 4, ρ, p, η)

[

e−χε
√

tc′

+
(1 + ξ)K/2

ct log(tc)

⎧
⎨

⎩

16
3 log(tc log(tc)/4)K/2−ξ + 80 log(1.25)K/2−ξ if ξ ≥ K/2,

16
3 log(t/3)K/2−ξ + 80 log(t c log(tc)

4−c log(tc))
K/2−ξ if ξ ∈ [K/2 − 1,K/2],

]

where c = χ2
ε/(2 log(5))2, and c′ =

√
f(5)/5 if ξ ≥ K/2 and

√
f(4)/4 else. Further, for larger

values of t, t ≥ tχ, the second term in the brackets becomes

(1 + ξ)K/2

ct log(tc)

⎧
⎨

⎩

144 log(1.25)K/2−ξ if ξ ≥ K/2,

144 log(t/3)K/2−ξ if ξ ∈ [K/2 − 1,K/2] (and ξ ≥ 0).

Remark 8. In Corollary 1, since the asymptotic regime of χε

√
log(t) − (K/2 − ξ) log log(t) may take a

massive amount of time to kick-in when ξ < K/2 − 2χε, we recommend to take ξ > K/2 − 2χε. Note
also that the value ξ = K/2 − 1/2 is interesting in practice, since then log(t)K/2−ξ =

√
log(t) < 5 for

all t ≤ 109.

Remark 9. The restriction to t ≥ 85χ−2
ε is merely for ξ � K/2 − 1. For instance for ξ ≥ K/2, the

restriction becomes t ≥ 76χ−2
ε , and it becomes less restrictive for larger ξ. The term tχ is virtually infinite:

for instance, when χε = 0.3, this is already larger than 1012, while 85χ−2
ε < 945.

Remark 10. According to this result, the value K/2 − 1 (when it is nonnegative) appears to be a critical
value for ξ, since the boundary crossing probabilities are not summable in t for ξ ≤ K/2 − 1, but are
summable for ξ > K/2 − 1. Indeed, the terms behind the curved brackets are conveniently o(log(t))
with respect to t, except when ξ = K/2 − 1. In practice however, since this asymptotic behavior may
take a large time to kick-in, we recommend ξ to be away from K/2 − 1.

Remark 11. Achieving a bound for the threshold f(t/Na(t)) is more challenging than for f(t). Only the
latter case was analyzed in [8] as the former was out of reach of their analysis. Also, the result is valid
with exponential families of dimension K and not only dimension 1, which is a major improvement. It is
interesting to note that when K = 1, max(K/2 − 1, 0) = 0, and to observe experimentally that a sharp
phase transition indeed appears for KL-ucb+ precisely at the value ξ = 0: the algorithm suffers a linear
regret when ξ < 0 and a logarithmic regret when ξ = 0. For KL-ucb, no sharp phase transition appears
at point ξ = 0. Instead, a relatively smooth phase transition appears for a negative ξ dependent on the
problem. Both observations are coherent with the statements of the corollaries.
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Discussion regarding the proof technique. The proof technique that we consider below significantly
differs from the proof from [8] and [13], and combines key ideas disseminated in two works from Tze
Leung Lai [16] and [15] with some nontrivial extension that we describe below. Also, we simplify some
of the original arguments and improve the readability of the initial proof technique, in order to shed more
light on these neat ideas.

Change of measure. At a high level, the first big idea of this proof is to resort to a change of measure
argument, which is classically used only to prove the lower bound on the regret. The work [16] should
be given full credit for this idea. This is in stark contrast with the proof techniques developed later for the
finite-time analysis of stochastic bandits. The change of measure is actually not used once, but twice.
First, to go from θ�, the parameter of the optimal arm to some perturbation of it θ�

c . Then, which is
perhaps more surprising, to go from this perturbed point to a mixture over a well-chosen ball centered
in it. Although we have reasons to believe that this second change of measure may not be required (at
least choosing a ball in dimension K seems slightly sub-optimal), this two-step localization procedure
is definitely the first main component that enables us to handle the boundary crossing probabilities. The
other steps for the proof of the Theorem include a concentration of measure argument and a peeling
argument, which are more standard.

Bregman divergence. The second main idea is the use of Bregman divergence and its relation to the
quadratic norm, which is due to [15]. This enables one to make explicit computations for exponential
families of dimension K without too much effort, at the price of losing some “variance” terms (linked to
the Hessian of the family). We combine this idea with some key properties of Bregman divergence that
enables us to simplify a few steps, notably the concentration step, that we revisited entirely in order to
obtain clean bounds valid in finite time and not only asymptotically.

Concentration of measure and boundary effects. One specific difficulty that appeared in the proof
was to handle the shape of the parameter set Θ and the fact that θ� should be away from its boundary.
The initial asymptotic proof of Lai did not account for this and was not entirely accurate. Going beyond
this proved to be quite challenging due to the boundary effects, although the concentration result
(Section 5.4, Lemma 15) that we obtain is eventually valid without restriction and the final proof looks
deceptively easy. This concentration result is novel.

Cone covering and dimension K. In [16], the author analyzed a boundary crossing problem first in
the case of exponential families of dimension 1, and then sketched the analysis for exponential families
of dimension K and for the intersection with one cone. However the complete result was nowhere stated
explicitly. As a matter of fact, the initial proof in [16] is restricted to a cone, which greatly simplifies
the result. In order to obtain the full-blown results, valid in dimension K for the unrestricted event, we
introduce a cone covering of the space. This seemingly novel (although not very fancy) idea enables us
to get a final result that is only depending on the cone-covering number of the space. It required some
careful considerations and simplifications of the initial steps of [16]. Along the way, we made explicit the
sketch of proof provided in [16] for the dimension K.

Corollaries and ratios. The final key idea that should be credited to T.L. Lai is about the fine tuning
of the final bound resulting from the two changes of measures, the application of concentration and the
peeling argument. Indeed these steps lead to a bound by a sum of terms, say

∑I
i=0 si, that should be

studied and depend on a few free parameters. This corresponds, with our rewriting and modifications,
to the statement of Theorem 3. Here the brilliant idea of T.L. Lai, that we separate from the proof of
Theorem 3 and use in the proof of Corollaries 1 and 2, is to bound the ratios si+1/si for small values of
i and the ratios si/si+1 for large values of i separately (instead of resorting, for instance, to a sum-
integral comparison lemma). A careful study of these terms enables us to improve the scaling and
allow for smaller values of ξ, up to K/2 − 1, while other approaches seem unable to go below K/2 + 1.
Nevertheless, in our quest to obtain explicit bounds valid not only asymptotically but also in finite time,
this step is quite delicate, since a naive approach easily requires huge values for t before the asymptotic
regimes kick-in. By refining the initial proof strategy of [16], we managed to obtain a result valid for
all t for the setting of Corollary 1 and for all “reasonably”2 large t for the more challenging setting of
Corollary 2.

2We require t to be at least about 102 times some problem-dependent constant, against a factor that could be e15 in the
initial analysis.
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5. ANALYSIS OF BOUNDARY CROSSING PROBABILITIES:
PROOF OF THEOREM 3

In this section, we closely follow the proof technique used in [16] for the proof of Theorem 2 in order
to prove the result of Theorem 3. We precise further the constants, remove the cone restriction on the
parameter and modify the original proof to be fully nonasymptotic which, using the technique of [16],
forces us to make some parts of the proof a little more accurate.

Let us recall that we consider Θ and ρ such that θ� ∈ Θρ ⊂ Θ̊I . The proof is divided in four main steps
that we briefly present here for clarity.

In Section 5.1, we take care of the random number of pulls of the arm by a peeling argument.
Simultaneously, we introduce a covering of the space with cones, which allows for using arguments
from the proof of Theorem 2.

In Section 5.2, we proceed with the first change of measure argument: taking advantage of the gap
between μ� and μ� − ε, we move from a concentration argument around θ� to the one around a shifted
point θ� − Δc.

In Section 5.3, we localize the empirical parameter θ̂n and make use of the second change of measure,
this time to a mixture of measures, following [16]. Even though we follow the same high level idea, we
modified the original proof in order to better handle the cone covering, and also to make all quantities
explicit.

In Section 5.4, we apply a concentration of measure argument. This part requires a specific care since
this is the core of the finite-time result. An important complication comes from the “boundary” of the
parameter set, which was not explicitly controlled in the original proof of [16]. A very careful analysis
enables us to obtain the finite-time concentration result without further restriction.

We finally combine all these steps in Section 5.5.

Notation

K ∈ N Dimension of the exponential family

Θ ⊂ R
K Parameter set, see Theorem 3

Θρ ⊂ R
K Enlarged parameter set, see Definition 4

ψ Log-partition function of the exponential family

Bψ Bregman divergence of the exponential family

Vρ, vρ Largest and smallest eigenvalues of the Hessian of Θρ, see Definition 4

θ� Parameter of the distribution generating the observed samples

θ̂n Empirical parameter built from n observations

F̂n ∈ R
K Empirical mean of the F (Xi), i ≤ n, see Section 3.3

f Threshold function parameterizing the boundary crossing

μ� ∈ R Mean of the distribution with parameter θ�

ε > 0 Shift from the mean

n ∈ N Index referring to a number of samples

p ∈ [0, 1] Angle aperture of the cone

η ∈ [0, 1] Repulsive parameter for cone covering.
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5.1. Peeling and Covering

In this section, the intuition we follow is that we want to control the random number of pulls
Na�(t) ∈ [1, t] and to this end use a standard peeling argument, considering maximum concentration
inequalities on time intervals [bi, bi+1] for some b > 1. Likewise, since the term Ka�(Πa�(ν̂a�,n), μ� − ε)
can be viewed as an infimum of some quantity over the parameter set Θ, we use a covering of Θ in order
to reduce the control of the desired quantity to that of each cell of the cover. Formally, we show that

Lemma 10 (Peeling and cone covering decomposition). For all β ∈ (0, 1), b > 1 and η ∈ [0, 1), it holds

Pθ�

{ ⋃

1≤n≤t

θ̂n ∈ Θρ ∩Ka�

(
Πa�(ν̂a�,n), μ� − ε

)
≥ f(t/n)/n

}

≤
� logb(βt+β)
−2∑

i=0

Cp,η,K∑

c=1

Pθ�

{ ⋃

bi≤n<bi+1

Ec,p(n, t)
}

+
Cp,η,K∑

c=1

Pθ�

{ t⋃

n=b� logb(βt+β)�−1

Ec,p(n, t)
}

,

where the event Ec,p(n, t) is defined by

Ec,p(n, t) def=
{

θ̂n ∈ Θρ ∩ F̂n ∈ Cp(θ�
c ) ∩ Bψ(θ̂n, θ�

c ) ≥
f(t/n)

n

}
. (6)

In this definition, (θ�
c )c≤Cp,η,K

, constrained to satisfy θ�
c /∈ B2(θ�, ηρε), parameterize a minimal

covering of ∇ψ(Θρ \ B2(θ�, ρε)) with cones Cp(θ�
c ) := Cp(∇ψ(θ�

c ); θ
� − θ�

c). That is

∇ψ(Θρ \ B2(θ�, ρε)) ⊂
Cp,η,K⋃

c=1

Cp(θ�
c ), where Cp(y;Δ) =

{
y′ ∈ R

K : 〈y′ − y,Δ〉 ≥ p‖y′ − y‖ ‖Δ‖
}
.

For all η < 1, Cp,η,K is of order (1 − p)−K and Cp,η,1 = 2, while Cp,η,K → ∞ when η → 1.

Peeling. Let us introduce an increasing sequence {ni}i∈N such that n0 = 1 < n1 < . . . < nIt = t + 1
for some It ∈ N�. Then by a simple union bound it holds for any event En

Pθ�

{ ⋃

1≤n≤t

En

}
≤

It−1∑

i=0

Pθ�

{ ⋃

ni≤n<ni+1

En

}
.

We apply this simple result to the following sequence defined for some b > 1 and β ∈ (0, 1) by

ni =

⎧
⎨

⎩

bi if i < It
def= � logb(βt + β)�,

t + 1 if i = It,

(this is indeed a valid sequence since nIt−1 ≤ blogb(βt+β) = β(t + 1) < t + 1 = nIt), and to the event

En
def=
{

θ̂n ∈ Θρ ∩Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t/n)/n
}

.

Covering. We now make the Kullback–Leibler projection explicit, and remark that in case of a regular
family, it holds that

Ka�(Πa�(ν̂a�,n), μ� − ε) = inf
{
Bψ(θ̂n, θ� − Δ): θ� − Δ ∈ ΘD, μθ�−Δ ≥ μ� − ε

}
,

where θ̂n ∈ ΘD is any point such that F̂n = ∇ψ(θ̂n). This rewriting makes appear explicitly a shift
from θ� to another point θ� − Δ. For this reason, it is natural to study the link between Bψ(θ̂n, θ�) and
Bψ(θ̂n, θ� − Δ). Immediate computations show that for any Δ such that θ� − Δ ∈ ΘD it holds

Bψ(θ̂n, θ� − Δ) = ψ(θ� − Δ) − ψ(θ̂n) − 〈θ� − Δ − θ̂n,∇ψ(θ̂n)〉
= ψ(θ�) − ψ(θ̂n) − 〈θ� − θ̂n,∇ψ(θ̂n)〉 + ψ(θ� − Δ) − ψ(θ�) + 〈Δ,∇ψ(θ̂n)〉
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= Bψ(θ̂n, θ�) + ψ(θ� − Δ) − ψ(θ�) + 〈Δ,∇ψ(θ̂n)〉
= Bψ(θ̂n, θ�)−Bψ(θ� − Δ, θ�) − 〈Δ,∇ψ(θ� − Δ) − F̂n〉︸ ︷︷ ︸

shift

. (7)

With this equality, the Kullback–Leibler projection can be rewritten to make appear an infimum over
the shift term only. In order to control the second part of the shift term we localize it thanks to a cone
covering of ∇ψ(ΘD). More precisely, on the event En, we know that θ̂n /∈ B2(θ�, ρε). Indeed, for all
θ ∈ B2(θ�, ρε) ∩ ΘD we have μθ ≥ μ� − ε, and thus Ka�(νθ, μ

� − ε) = 0. It is thus natural to build a
covering of ∇ψ(Θρ \ B2(θ�, ρε)). Formally, for a given p ∈ [0, 1] and a base point y ∈ Y , let us introduce
the cone

Cp(y;Δ) =
{
y′ ∈ R

K : 〈Δ, y′ − y〉 ≥ p‖Δ‖ ‖y′ − y‖
}
.

We then associate with each θ ∈ Θρ a cone defined by Cp(θ) = Cp(∇ψ(θ), θ� − θ). Now for a given p, let
(θ�

c )c=1,...,Cp,η,K
be the set of points corresponding to a minimal covering of the set ∇ψ(Θρ \ B2(θ�, ρε)),

in the sense that

∇ψ(Θρ \ B2(θ�, ρε)) ⊂
Cp,η,K⋃

c=1

Cp(θ�
c ) with minimal Cp,η,K ∈ N,

constrained to be outside the ballB2(θ�, ηρε), that is θ�
c /∈ B2(θ�, ηρε) for each c. It can be readily checked

that by minimality of the size of the covering Cp,η,K , it must be that θ�
c ∈ Θρ ∩B2(θ�, ρε). More precisely,

when p < 1, then Δc = θ� − θ�
c is such that ρε − ‖Δc‖ is positive and away from 0. Also, by the property

of B2(θ�, ρε) we have that μθ�
c
≥ μ� − ε, and by the constraint that ‖Δc‖ > ηρε.

The size of the covering Cp,η,K depends on the angle separation p, the ambient dimension K, and
the repulsive parameter η. For instance it can be checked that Cp,η,1 = 2 for all p ∈ (0, 1] and η < 1. In
higher dimension, Cp,η,K typically scales as (1− p)−K and blows up when p → 1. It also blows up when
η → 1. It is now natural to introduce the decomposition

Ec,p(n, t) def=
{

θ̂n ∈ Θρ ∩ F̂n ∈ Cp(θ�
c ) ∩ Bψ(θ̂n, θ�

c ) ≥
f(t/n)

n

}

. (8)

Using this notation, we deduce that for all β ∈ (0, 1), b > 1 (remind that It = � logb(βt + β)�),

Pθ�

{ ⋃

1≤n≤t

θ̂n ∈ Θρ ∩ Ka�

(
Πa�(ν̂a�,n), μ� − ε

)
≥ f(t/n)/n

}
≤

It−1∑

i=0

Cp,η,K∑

c=1

Pθ�

{ ⋃

ni≤n<ni+1

Ec,p(n, t)
}

.

5.2. Change of Measure

In this section, we focus on one event Ec,p(n, t). The idea is to take advantage of the gap between
μ� and μ� − ε, which allows us to shift from θ� to some of the θ�

c from the cover. The key observation is
to control the change of measure from θ� to each θ�

c . Note that θ�
c ∈ (Θρ ∩ B2(θ�

c , ρε)) \ B2(θ�
c , ηρε) and

that μθ�
c
≥ μ� − ε. We show that

Lemma 11 (Change of measure). If n → nf(t/n) is nondecreasing, then for any increasing se-
quence {ni}i≥0 of nonnegative integers it holds

Pθ�

{ni+1−1⋃

n=ni

Ec,p(n, t)
}
≤ exp

(
− niα

2 − χ
√

nif(t/ni)
)
Pθ�

c

{ni+1−1⋃

n=ni

Ec,p(n, t)
}

,

where α = α(p, η, ε) = ηρε

√
vρ/2 and χ = pηρε

√
2v2

ρ/Vρ.

MATHEMATICAL METHODS OF STATISTICS Vol. 27 No. 1 2018



18 MAILLARD

Proof. For any measurable event E, we have by absolute continuity that

Pθ�

{
E
}

=
∫

E

dPθ�

dPθ�
c

dPθ�
c
.

We thus bound the ratio which, in the case of E = {
⋃

ni≤n<ni+1
Ec,p(n, t)}, leads to

∫

E

dPθ�

dPθ�
c

dPθ�
c

=
∫

E

Πn
k=1νθ�(Xk)

Πn
k=1νθ�

c
(Xk)

dPθ�
c

=
∫

E
exp
(
n〈θ� − θ�

c , F̂a�,n〉 − n(ψ(θ�) − ψ(θ�
c ))
)
dPθ�

c

=
∫

E
exp
(
− n〈Δc,∇ψ(θ�

c ) − F̂a�,n〉 − nBψ(θ�
c , θ

�)
)
dPθ�

c
, (9)

where Δc = θ� − θ�
c . Note that this rewriting gives rise to the same term as the shift term appearing

in (7). Now, we remark that since θ�
c ∈ Θρ by construction, under the event Ec,p(n, t) it holds by

convexity of Θρ and elementary Taylor approximation

−〈Δc,∇ψ(θ�
c ) − F̂n〉 ≤ −p‖Δc‖ ‖∇ψ(θ�

c ) − F̂n‖ ≤ −p‖Δc‖vρ‖θ̂�
n − θ�

c‖

≤ −p‖Δc‖cvρ

√
2
Vρ

Bψ(θ̂n, θ�
c ) ≤ −pηρεvρ

√
2f(t/n)

Vρn
, (10)

where we used the fact that ‖Δc‖ ≥ ηρε. On the other hand, it also holds that

−Bψ(θ�
c , θ

�) ≤ −1
2
vρ‖Δc‖2 ≤ −1

2
vρη

2ρ2
ε . (11)

To conclude the proof we plug-in (10) and (11) into (9). Then it remains to use that n ≥ bi and the fact
that n �→ nf(t/n) is nondecreasing.

5.3. Localized Change of Measure

In this section, we decompose further the event of interest in Pθ�
c

{⋃
ni≤n<ni+1

Ec,p(n, t)
}

in order to

apply some concentration of measure argument. In particular, since by construction

F̂n ∈ Cp(θ�
c ) ⇔ 〈Δc,∇ψ(θ�

c ) − F̂n〉 ≥ p‖Δc‖ ‖∇ψ(θ�
c ) − F̂n‖,

it is natural to control ‖∇ψ(θ�
c )− F̂n‖. This is what we call localization. More precisely, for any sequence

{εt,i,c}t,i of positive values we introduce the following decomposition

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t)
}
≤ Pθ�

c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ�
c ) − F̂n‖ < εt,i,c

}

+ Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ�
c ) − F̂n‖ ≥ εt,i,c

}
. (12)

We handle the first term in (12) by another change of measure argument that we detail below, and the
second term thanks to a concentration of measure argument that we detail in Section 5.4.

Lemma 12 (Change of measure). For any sequence of positive values {εt,i,c}i≥0, it holds

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ < εt,i,c

}

≤ αρ,p exp
(
− f
( t

ni+1 − 1

))
min

{
ρ2v2

ρ, ε̃
2
t,i,c,

(K + 2)v2
ρ

K(ni+1 − 1)Vρ

}−K/2
ε̃K
t,i,c,

where ε̃t,i,c = min{εt,i,c,Diam
(
∇ψ(Θρ) ∩ Cp(θ�

c )
)
} and αρ,p = 2 ωp,K−2

ωp′,K−2

(Vρ

v2
ρ

)K/2(Vρ

vρ

)K with p′ >

max{p, 2√
5
} and ωp,K =

∫ 1
p

√
1 − z2K

dz for K ≥ 0 and wp,−1 = 1.
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Let us recall that

Ec,p(n, t) =
{
θ̂n ∈ Θρ ∩ F̂n ∈ Cp(θ�

c ) ∩ nBψ(θ̂n, θ�
c ) ≥ f(t/n)

}
.

The idea is to go from θ�
c to the measure that corresponds to the mixture of all the θ′ in the

shrink ball B = Θρ ∩∇ψ−1
(
Cp(θ�

c ) ∩ B2(∇ψ(θ�
c ), εt,i,c)

)
, where B2(y, r) def=

{
y′ ∈ R

K ; ‖y − y′‖ ≤ t
}

.

This makes sense since, on the one hand, ∇ψ(θ̂n) ∈ Cp(θ�
c ) under Ec,p(n, t), and on the other hand,

‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≤ εt,i,c. For convenience, let us introduce the event of interest

Ω =
{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≤ εt,i,c

}
.

We use the following change of measure

dPθ�
c

=
dPθ�

c

dQB
dQB ,

where QB(Ω) def=
∫
θ′∈B Pθ′{Ω} dθ′ is the mixture of all distributions with parameter in B. The proof

technique consists now in bounding the ratio by some quantity not depending on Ω. We have
∫

Ω

dPθ

dQB
dQB =

∫

Ω

[ ∫

θ′∈B

Πn
k=1νθ′(Xk)

Πn
k=1νθ(Xk)

dθ′
]−1

dQB

=
∫

Ω

[ ∫

θ′∈B
exp
(
n〈θ′ − θ, F̂a�,n〉 − n(ψ(θ′) − ψ(θ))

)
dθ′
]−1

dQB .

We remark that the term in the exponent can be rewritten in terms of Bregman divergence: by elementary
substitution of the definition of the divergence and of ∇ψ(θ̂n) = F̂a�,n, it holds

〈θ′ − θ, F̂a�,n〉 −
(
ψ(θ′) − ψ(θ)) = Bψ(θ̂n, θ) − Bψ(θ̂n, θ′).

Thus the above likelihood ratio simplifies as follows

dPθ

dQB
=
[ ∫

θ′∈B
exp
(
nBψ(θ̂n, θ) − nBψ(θ̂n, θ′)

)
dθ′
]−1

≤
[ ∫

θ′∈B
exp
(
f(t/n) − nBψ(θ̂n, θ′)

)
dθ′
]−1

= exp
(
− f(t/n)

)
[ ∫

θ′∈B
exp
(
− nBψ(θ̂n, θ′)

)
dx

]−1

,

where both θ′ and θ̂n belong to Θρ.

The next step is to consider a set B′ ⊂ B that contains θ̂n. For each such set, and the upper bound
Bψ(θ̂n, θ′) ≤ Vρ

2v2
ρ
‖∇ψ(θ̂n) −∇ψ(θ′)‖2, we now obtain

dPθ

dQB

(a)

≤ exp
(
− f(t/n)

)
[ ∫

θ′∈B′
exp
(

− nVρ

2v2
ρ

‖∇ψ(θ̂n) −∇ψ(θ′)‖2

)

dθ′
]−1

(b)
= exp

(
− f(t/n)

)
[ ∫

y∈∇ψ(B′)
exp
(

− nVρ

2v2
ρ

‖∇ψ(θ̂n) − y‖2

)

|det(∇2ψ−1(y))| dy

]−1

(c)

≤ exp
(
− f(t/n)

)
[ ∫

y∈∇ψ(B′)
exp
(

− nVρ

2v2
ρ

‖∇ψ(θ̂n) − y‖2

)

dy

]−1

V K
ρ .

In this derivation, (a) holds by positivity of exp and the inclusion B′ ⊂ B, (b) follows by a change of
parameter argument, and (c) is obtained by controlling the determinant (in dimension K) of the Hessian,
whose highest eigenvalue is Vρ.
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In order to identify a good candidate for the set B′ let us now study the set B. The first remark is that
θ�
c plays a central role in B: it is not difficult to show that, by construction of B,

∇ψ−1
(
∇ψ(θ�

c ) + B2(0,min{vρρ, εt,i,c}) ∩ Cp(0;Δc)
)
⊂ B.

Indeed, if θ′ belongs to the set on the left-hand side, then it must satisfy, on the one hand, ∇ψ(θ′) ∈
∇ψ(θ�

c ) + B2(0, vρρ). This implies that θ′ ∈ B2(θ�
c , ρ) ⊂ Θρ (this last inclusion is by construction of Θ).

On the other hand, it satisfies ∇ψ(θ′) ∈ ∇ψ(θ�
c ) + B2(0, εt,i,c) ∩ Cp(0,Δc). These two properties show

that such a θ′ belongs to B.

Thus, a natural candidate B′ should satisfy ∇ψ(B′) ⊂ ∇ψ(θ�
c ) + B2(0, r̃) ∩ Cp(0;Δc), with r̃ =

min{vρρ, εt,i,c}. It is then natural to look for B′ in the form ∇ψ−1(∇ψ(θ�
c ) + B2(0, r̃) ∩ D), where

D ⊂ Cp(0;Δc) is a sub-cone of Cp(0;Δc) with base point 0. In this case, the previous derivation simplifies
into

dPθ

dQB
≤ exp

(
− f(t/n)

)
[ ∫

y∈B2(0,r̃)∩D
exp
(
− C‖yn − y‖2

)
dy

]−1

V K
ρ ,

where yn = ∇ψ(θ̂n) −∇ψ(θ�
c ) ∈ B2(0, r̃) ∩ D and C = nVρ

2v2
ρ

. The cases of special interest for the set D
are such that the value of the function g : y �→

∫
y′∈B2(0,r̃)∩D exp

(
−C‖y − y′‖2

)
dy′, for y ∈ B2(0, r̃)∩D

is minimal at the base point 0. Indeed this enables one to derive the following bound

dPθ

dQB
≤ exp

(
− f(t/n)

)
[ ∫

y∈B2(0,min{vρρ,εt,i,c})∩D
exp
(

− nVρ

2v2
ρ

‖y‖2

)

dy

]−1

V K
ρ

(d)
= exp

(
− f(t/n)

)
[ ∫

y∈B2(0,rρ)∩D
exp
(
− n‖y‖2

)
dy

]−1( V 2
ρ

2v2
ρ

)K

,

where (d) follows from another change of parameter argument, with rρ =
√

Vρ

2v2
ρ

min{vρρ, εt,i,c} com-

bined with isotropy of the Euclidean norm (the right-hand side of (d) no longer depends on the random
direction Δn), plus the fact that the sub-cone D is invariant by rescaling. We recognize here a Gaussian
integral on B2(0, rρ) ∩D that can be bounded explicitly (see below).

Following this reasoning, we are now ready to specify the set D. Let D = Cp′(0;Δn) ⊂ Cp(0;Δc) be
a sub-cone where p′ ≥ p (remember that the larger p, the more acute is a cone) and Δn is chosen such
that ∇ψ(θ̂n) ∈ ∇ψ(θ�

c ) + D (there always exists such a cone). It thus remains to specify p′. A study
of the function g (defined above) on the domain B2(0, r̃) ∩ Cp′(0;Δn) reveals that it is minimal at the
point 0 provided that p′ is not too small, more precisely provided that p ≥ 2/

√
5. The intuitive reasons

are that the points that contribute most to the integral belong to the set B2(y, r) ∩ B2(0, r̃) ∩D for small
values of r, that this set has the lowest volume (the map y → |B2(y, r) ∩ B2(0, r̃) ∩D| is minimal) when
y ∈ ∂B2(0, r̃) ∩ ∂D and that y = 0 is a minimizer among these points provided that p′ is not too small.
More formally, the function g rewrites

g(y) =
∫ ∞

r=0
e−Cr2 |S2(y, r) ∩ B2(0, r̃) ∩ D|dr,

from which we see that a minimal y should be such that the spherical section |S2(y, r) ∩ B2(0, r̃) ∩ D|
is minimal for small values of r (note also that C = O(n)). Then, since B = B2(0, r̃) ∩ D is a convex
set, the sections |S2(y, r) ∩ B2(0, r̃) ∩ D| are of minimal size for points y ∈ B that are extremal, in the
sense that y satisfies B ⊂ B2(y,Diam(B)). In order to choose p′ and fully specify D, we finally use the
following lemma.

Lemma 13. Let Cp′ = {y′ : 〈y′,Δ〉 ≥ p′‖y′‖ ‖Δ‖} be a cone with base point 0 and define B =
B2(0, r)∩Cp′ . If p′ > 2/

√
5, the set of extremal points {y ∈ B : B ⊂ B2(y,Diam(B))} reduces to {0}.
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Proof. First, note that the boundary of the convex set B is supported by the union of the base point 0

and the set ∂B2(0, r̃) ∩ ∂D. Since this set is a sphere in dimension K − 1 with radius
√

1−p′2

p r̃, all its

points are at a distance at most 2
√

1−p′2

p′ r̃ from each other. Now they are also at the distance exactly

r̃ from the base point 0. Thus, when 2
√

1−p′2

p′ r̃ < r̃, that is p′ > 2/
√

5, then 0 is the unique point that
satisfies B ⊂ B2(y,Diam(B)).

We now summarize the previous steps. So far, we have proved the following upper bound

Pθ�
c
{Ω} ≤ max

ni≤n<ni+1

exp
(
− f(t/n)

)
[ ∫

y∈B2(0,rρ)∩Cp′ (0;1)

exp
(
− n‖y‖2

)
dy

]−1( V 2
ρ

2v2
ρ

)K ∫

θ′∈B
Pθ′{Ω} dθ′

≤ exp
(
− f(t/(ni+1 − 1))

)
[ ∫

y∈B2(0,rρ)∩Cp′ (0;1)

exp
(
− (ni+1 − 1)‖y‖2

)
dy

]−1( Vρ

2v2
ρ

)K

V K
ρ |B|,

where |B| denotes the volume of B, rρ =
√

Vρ

2v2
ρ

min{vρρ, εt,i,c} and p′ > max{p, 2/
√

5}. We remark that

by definition of B it holds

|B| ≤ sup
θ∈Θρ

det(∇2ψ−1(θ))|B2(0, εt,i,c) ∩ Cp(0;1)|

≤ v−K
ρ |B2(0, εt,i,c) ∩ Cp(0;1)|.

Thus it remains to analyze the volume and the Gaussian integral of B2(0, εt,i,c) ∩ Cp(0;1). To do so,
we use the following result from elementary geometry, whose proof is given in Appendix A.

Lemma 14. For all ε, ε′ > 0, p, p′ ∈ [0, 1] and all K ≥ 1, the following equality and inequality hold

|B2(0, ε) ∩ Cp(0;1)|
∫
B2(0,ε′)∩Cp′ (0;1) e−‖y‖2/2 dy

=
ωp,K−2

ωp′,K−2

∫ ε
0 rK−1 dr

∫ ε′

0 e−r2/2rK−1 dr
≤ 2

ωp,K−2

ωp′,K−2

(
ε

min{ε′,
√

1 + 2/K}

)K

,

where ωp,K−2 =
∫ 1
p

√
1 − z2K−2

dz for K ≥ 2 and using the convention that ωp,−1 = 1.

Applying this Lemma, we get for rρ =
√

Vρ

2v2
ρ

min{vρρ, εt,i,c},

Pθ�
c
{Ω} ≤ e

−f( t
ni+1−1

)

( Vρ

2v2
ρ

)K(Vρ

vρ

)K |B2(0, εt,i,c) ∩ Cp(0;1)|
∫
y∈B2(0,rρ)∩Cp′ (0;1) exp

(
− (ni+1 − 1)‖y‖2

)
dy

= e
−f( t

ni+1−1
)
(

Vρ

v2
ρ

)K(Vρ

vρ

)K

(ni+1 − 1)K/2 |B2(0, εt,i,c) ∩ Cp(0;1)|
∫
y∈B2(0,

√
2(ni+1−1)rρ)∩Cp′ (0;1)

exp
(
− ‖y‖2/2

)
dy

≤ 2
ωp,K−2

ωp′,K−2
e
−f( t

ni+1−1
)
(

Vρ

v2
ρ

)K(Vρ

vρ

)K

(ni+1 − 1)K/2

(
εt,i,c

min{
√

2(ni+1 − 1)rρ,
√

1 + 2/K}

)K

= 2
ωp,K−2

ωp′,K−2
e
−f( t

ni+1−1
)
(

Vρ

v2
ρ

)K(Vρ

vρ

)K( ε2
t,i,c

min{v2
ρρ

2, ε2
t,i,c,

(K+2)v2
ρ

KVρ(ni+1−1)}

)K/2(Vρ

v2
ρ

)−K/2

= 2
ωp,K−2

ωp′,K−2

(
Vρ

v2
ρ

)K/2(Vρ

vρ

)K

e
−f( t

ni+1−1
)
min

{
v2
ρρ

2, ε2
t,i,c,

(K + 2)v2
ρ

KVρ(ni+1 − 1)

}−K/2
εK
t,i,c.

This concludes the proof of Lemma 12.
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5.4. Concentration of Measure

In this section, we focus on the second term in (12), that is we want to control

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ�
c ) − F̂n‖ ≥ εt,i,c

}
.

In this term, εt,i,c should be considered as decreasing fast to 0 with i and slowly increasing with t.
Note that by definition ∇ψ(θ̂n) = F̂a�,n = 1

n

∑n
i=1 F (Xa� ,i) ∈ R

K is an empirical mean with mean
given by ∇ψ(θ�

c ) ∈ R
K and covariance matrix 1

n∇2ψ(θ�
c ). We thus resort to a concentration of measure

argument.

Lemma 15 (Concentration of measure). Let εmax
c = Diam(∇ψ(Θρ ∩ Cc,p)), where we introduced the

projected cone Cc,p = {θ ∈ Θ: 〈 Δc
‖Δc‖ ,

∇ψ(θ�
c )−∇ψ(θ)

‖∇ψ(θ�
c )−∇ψ(θ)‖ 〉 ≥ p}. Then, for all εt,i,c, it holds

Pθ�
c

{ ni+1−1⋃

n=ni

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≥ εt,i,c

}
≤ exp

(
−

n2
i pε2

t,i,c

2Vρ(ni+1 − 1)

)
1{εt,i,c ≤ εc}.

Proof. Note that by definition if εt,i,c > εmax
c , then

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≥ εt,i,c

}
= 0.

We thus restrict to the case when εt,i,c ≤ εmax
c , or equivalently, replace εt,i,c by ε̃t,i,c = min{εt,i,c, ε

max
c }.

Now, by definition of the event Ec,p(n, t), we have

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≥ ε̃t,i,c

}

≤ Pθ�
c

{ ⋃

ni≤n<ni+1

θ̂n ∈ Θρ ∩
〈 Δc

‖Δc‖
,∇ψ(θ�

c ) −∇ψ(θ̂n)
〉
≥ pε̃t,i,c

}

≤ Pθ�
c

{ ni+1−1⋃

n=ni

〈 Δc

‖Δc‖
,

n∑

i=1

(
∇ψ(θ�

c ) − F (Xa� ,i)
)〉

≥ pniε̃t,i,c

}
.

Applying the function x �→ exp(λx) on both sides of the inequality, for a deterministic λ > 0, we obtain

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≥ ε̃t,i,c

}

(a)

≤ Pθ�
c

{ ni+1−1⋃

n=ni

exp
( n∑

i=1

〈 λΔc

‖Δc‖
,∇ψ(θ�

c ) − F (Xa�,i)
〉)

≥ exp
(
λpniε̃t,i,c

)}

= Pθ�
c

{ ni+1−1⋃

n=ni

exp
( n∑

i=1

〈 λΔc

‖Δc‖
,∇ψ(θ�

c ) − F (Xa�,i)
〉
− λ2(ni+1 − 1)

2
Vρ

)

≥ exp
(
λpniε̃t,i,c −

λ2(ni+1 − 1)
2

Vρ

)}

≤ Pθ�
c

{ ni+1−1⋃

n=ni

exp
( n∑

i=1

〈 λΔc

‖Δc‖
,∇ψ(θ�

c ) − F (Xa�,i)
〉
− λ2n

2
Vρ

)

≥ exp
(
λpniε̃t,i,c −

λ2(ni+1 − 1)
2

Vρ

)}
.
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Now we recognize that the sequence {Wn(λ)}n≥0, where Wn(λ) = exp
(∑n

i=1〈 λΔc
‖Δc‖ ,∇ψ(θ�

c ) −

F (Xa�,i)〉 − n
λ2Vρ

2

)
is a nonnegative supermartingale provided that λ is not too large. Indeed, provided

that θ�
c − λΔc

‖Δc‖ ∈ Θρ it holds

Eθ�
c

[

exp
( n∑

i=1

λ
〈 Δc

‖Δc‖
,∇ψ(θ�

c ) − F (Xa�,i)
〉
− λ2nVρ

2
)
)∣
∣
∣Hn−1

]

≤ exp
( n−1∑

i=1

λ
〈 Δc

‖Δc‖
,∇ψ(θ�

c ) − F (Xa�,i)
〉
− (n − 1)

λ2Vρ

2

)

× Eθ�
c

[

exp
(

λ
〈 Δc

‖Δc‖
,∇ψ(θ�

c ) − F (Xa�,n)
〉
− λ2Vρ

2

)∣
∣
∣Hn−1

]

︸ ︷︷ ︸
≤1

,

that is E
[
Wn(e, λ) | Hn−1

]
≤ Wn−1(e, λ). Thus we apply Doob’s maximal inequality for nonnegative

supermartingale and deduce that

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≥ ε̃t,i,c

}

≤ Pθ�
c

{
max

ni≤n<ni+1

Wn(λ) ≥ exp
(
λpniε̃t,i,c − λ2(ni+1 − 1)Vρ/2

)}

≤ Eθ�
c
[Wni(λ)] exp

(
− λpniε̃t,i,c + λ2(ni+1 − 1)Vρ/2

)

≤ exp
(
− λpniε̃t,i,c + λ2(ni+1 − 1)Vρ/2

)
.

Optimizing over λ gives λ = λ� = nipε̃t,i,c

(ni+1−1)Vρ
, thus the condition becomes θ�

c −
nipε̃t,i,c

(ni+1−1)Vρ‖Δc‖Δc ∈ Θρ.

At this point, it is convenient to introduce the quantity

λc = argmax
{
λ : θ�

c − λ
Δc

‖Δc‖
∈ Θρ ∩ Cc,p

}
.

Indeed, it suffices to show that λ� ≤ λc to ensure that the condition is satisfied. It is now not difficult to
relate λc to εmax

c . Indeed, any θλ = θ�
c − λ Δc

‖Δc‖ that maximizes ‖∇ψ(θ�
c ) −∇ψ(θλ)‖ and belongs to Θρ

must satisfy
〈 Δc

‖Δc‖
,∇ψ(θ�

c ) −∇ψ(θλ)
〉
≥ pεc

on the one hand, and on the other hand, since θ�
c , θλ ∈ Θρ,

〈 Δc

‖Δc‖
,∇ψ(θ�

c ) −∇ψ(θλ)
〉
≤ Vρ

∥
∥
∥

Δc

‖Δc‖

∥
∥
∥ ‖θ�

c − θλ‖ = Vρλ.

Combining these two inequalities, we deduce that λc ≥ pεmax
c /Vρ. Thus, using that ni/(ni+1 − 1) ≤ 1

and ε̃t,i,c ≤ εmax
c , we deduce that λ� = nipε̃t,i,c

(ni+1−1)Vρ
≤ pεc

Vρ
≤ λc is indeed satisfied. We then get without

further restriction

Pθ�
c

{ ⋃

ni≤n<ni+1

Ec,p(n, t) ∩ ‖∇ψ(θ̂n) −∇ψ(θ�
c )‖ ≥ εt,i,c

}

≤ exp
(

−
n2

i pε2
t,i,c

2Vρ(ni+1 − 1)

)

1{εt,i,c ≤ εc}. (13)
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5.5. Combining the Different Steps

In this part, we recap what we have shown so far. Combining the peeling, change of measure,
localization and concentration of measure steps of the four previous sections, we have shown that for
all {εt,i,c}t,i

[1] def= Pθ�

{ ⋃

1≤n≤t

θ̂n ∈ Θρ ∩Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t/n)/n
}

≤
Cp,η,K∑

c=1

It−1∑

i=0

exp
(
− niα

2 − χ
√

nif(t/ni)
)

︸ ︷︷ ︸
change of measure

[

exp
(

−
n2

i pε2
t,i,c

2Vρ(ni+1 − 1)

)

1{εt,i,c ≤ εc}
︸ ︷︷ ︸

concentration

+ αp,K exp
(
− f
( t

ni+1 − 1

))
min

{
ρ2v2

ρ, ε
2
t,i,c,

(K + 2)v2
ρ

K(ni+1 − 1)Vρ

}−K/2
εK
t,i,c

︸ ︷︷ ︸
localization + change of measure

]

,

where we recall that α = α(p, η, ε) = ηρε

√
vρ/2 and that the definition of ni is

ni =

{
bi if i < It

def= � logb(βt + β)�,
t + 1 if i = It.

A simple rewriting leads to the form

[1] ≤
Cp,η,K∑

c=1

It−1∑

i=0

exp
(
− niα

2 − χ
√

nif(t/ni)
)
[

αp,K exp
(
− f
( t

ni+1 − 1

))

× max
{

εt,i,c

ρvρ
, 1,

√
(ni+1 − 1)Vρ

1 + 2/K
εt,i,c

vρ

}K

+ exp
(

−
n2

i pε2
t,i,c

2Vρ(ni+1 − 1)

)

1{εt,i,c ≤ εc}
]

,

which suggests that we use εt,i,c =
√

2Vρ(ni+1−1)f(t/(ni+1−1))

pn2
i

. Replacing this term in the above expres-

sion, we obtain

[1] ≤
It−1∑

i=0

exp
(
− niα

2 − χ
√

nif(t/ni) − f(t/(ni+1 − 1))
)
f(t/(ni+1 − 1))K/2

× Cp,η,K

(
αp,K max

{ 2Vρ

pρ2v2
ρb

i−1
, 1,

b2V 2
ρ

pv2
ρ(

1
2 + 1

K )

}K/2
+ 1
)
.

At this point, using the somewhat crude lower bound bi ≥ 1 it is convenient to introduce the constant

C(K, ρ, p, b, η) = Cp,η,K

(
αp,K max

{ 2bVρ

pρ2v2
ρ

, 1,
b2V 2

ρ

pv2
ρ(

1
2 + 1

K )

}K/2
+ 1
)
,

which leads to the final bound

Pθ�

{ ⋃

1≤n≤t

θ̂n ∈ Θρ ∩ Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t/n)/n
}

≤ C(K, ρ, p, b, η)
It−1∑

i=0

exp
(
− niα

2 − χ
√

nif(t/ni) − f(t/(ni+1 − 1))
)
f(t/(ni+1 − 1))K/2.
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6. FINE-TUNED UPPER BOUNDS

In this section, we study the behavior of the bound obtained in Theorem 3 as a function of t for a
specific choice of function f , namely f(x) = log(x) + ξ log log x, and prove Corollaries 1 and 2 using
a fine-tuning of the remaining free quantities. This tuning is not completely trivial, as a naive tuning
yields the condition that ξ > K/2 + 1 to ensure that the final bound is o(1/t), while proceeding with
some more care enables us to show that ξ > K/2 − 1 is enough. Let us remind that f is nondecreasing
only for x ≥ e−ξ. We thus restrict to t ≥ e−ξ in Corollary 1 that uses the threshold f(t), and to ξ ≥ 0 in
Corollary 2 that uses the threshold function f(t/n). In the sequel, we use the short-hand notation C in
order to replace C(K, ρ, p, b, η).

6.1. Proof of Corollary 1

As a warm-up, we start by the boundary crossing probability involving f(t) instead of f(t/n).
Indeed, controlling the boundary crossing probability with term f(t/n) is more challenging. Although
we focused so far on the boundary crossing probability with term f(t/n), the previous proof directly
applies to the case when f(t) is considered. In particular, the result of Theorem 3 holds also when all the
terms f(t/n), f(t/bi), f(t/bi+1) are replaced with f(t).

With the choice f(x) = log(x) + ξ log log x, which is nonincreasing on the set of x such that
ξ > − log(x), Theorem 3 specifies for all b > 1, p, q, η ∈ (0, 1) to

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t)/n
}

≤ C

� logb(qt)
−1∑

i=0

exp
(
− α2bi − χ

√
bif(t)

)
e−f(t)f(t)K/2

=
C

t

[ � logb(qt)
−1∑

i=0

e−α2bi−χ
√

bif(t)
︸ ︷︷ ︸

si

]

log(t)K/2−ξ

(

1 + ξ
log log(t)

log(t)

)K/2

.

In order to study the sum S =
∑� logb(qt)
−1

i=0 si, we provide two strategies. First, a direct upper bound
gives S ≤ � logb(qt)� ≤ logb(qt) + 1. Thus, setting q = 1 and b = 2, we obtain

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩ Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t)/n
}

≤ C

t

(

1 + ξ
log log(t)

log(t)
︸ ︷︷ ︸

o(1)

)K/2

log(t)−ξ+K/2(log2(t) + 1).

This term is thus o(1/t) whenever ξ > K/2 + 1 and O(1/t) when ξ = K/2 + 1. We now show that a
more careful analysis leads to a similar behavior even for smaller values of ξ. Indeed, let us note that for
all i ≥ 0, it holds by definition

si+1

si
= exp

[
− χbi/2(b1/2 − 1)f(t)1/2 − α2bi(b − 1)

]
≤ exp

[
− χ(b1/2 − 1)f(t)1/2

]
.

Since f(t) ≥ 1 if we set b = � (1 + log(1+χ)
χ )2�, which belongs to (1, 4] for all χ ≥ 0, we obtain that

si+1/si ≤ 1
1+χ . Hence we deduce that

S ≤ s0

∞∑

i=0

(1 + χ)−i = s0
1 + χ

χ
=

1 + χ

χ
exp(−α2 − χ

√
f(t)).

Thus S is asymptotically o(1), and we deduce that Pθ�

{⋃
1≤n<t θ̂n ∈ Θρ ∩ Ka�(Πa�(ν̂a�,n),

μ� − ε) ≥ f(t)/n
}

= o(1/t) beyond the condition ξ > K/2 + 1. It is interesting to note that due to
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the term −χ
√

f(t) in the exponent, and owing to the fact that α
√

log(t) − β log log(t) → ∞ for all
positive α and all β, we actually have the stronger property that S log(t)−ξ+K/2 = o(1) for all ξ (using
α = χ and β = K/2 − ξ). However, since this asymptotic regime may take a massive amount of time
to kick-in when α/β < 1/2, we do not advise to take ξ smaller than K/2 − 2χ. All in all, we obtain, for

C = C(K, b, ρ, p, η) with b = � (1 + log(1+χ)
χ )2� ≤ 4,

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩ Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t)/n
}

≤ C(1 + χ)
tχ

(

1 + ξ
log log(t)

log(t)

)K/2

log(t)−ξ+K/2 exp
(
− χ
√

log(t) + ξ log log(t)
)
.

6.2. Proof of Corollary 2

Let us now focus on the proof of Corollary 2 involving the threshold f(t/n). We consider the choice
f(x) = log(x) + ξ log log x, which is nonincreasing on the set of x such that ξ > − log(x). When
x = t/n and n is about t − O(log(t)), ensuring this monotonicity property means that we require ξ to
dominate log(1 − O(log(t)/t)), that is ξ ≥ 0. Now, following the result of Theorem 3, we obtain for all
b > 1, p, q, η ∈ (0, 1),

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t/n)/n
}

≤ C exp
(

− α2q

b
t − χ

√
tqf(b/q)

b

)

+ C

� logb(qt)
−2∑

i=0

exp
(
− α2bi − χ

√
bif(t/bi) − f(t/(bi+1 − 1))

)
f
( t

bi+1 − 1

)K/2

= Ce−
α2qt

b
−
√

χ2tqf(b/q)
b + C

� logb(qt)
−2∑

i=0

e−α2bi−χ
√

bif(t/bi)
(bi+1 − 1

t

)
log
( t

bi+1 − 1

)K/2−ξ

︸ ︷︷ ︸
si

×
(

1 + ξ
log log

(
t

bi+1−1

)

log
(

t
(bi+1−1)

)

︸ ︷︷ ︸
o(1)

)K/2

. (14)

We thus study the sum S =
∑� logb(qt)
−2

i=0 si. To this end, let us first study the term si. Since i �→
log(t/bi+1) is a decreasing function of i, it holds for any index i0 ∈ N that

si ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
bi+1

t

)
log
(

t
b−1

)−ξ+K/2 if ξ ≤ K/2, i ≤ i0,
(

bi+1

t

)
log
(

t
bi0+1−1

)−ξ+K/2 if ξ ≥ K/2, i ≤ i0,

exp(−χ
√

bif(t/bi) )
(

bi+1

t

)
log
(

t
bi0+1−1

)−ξ+K/2 if ξ ≤ K/2, i ≥ i0,

exp(−χ
√

bif(t/bi) )
(

bi+1

t

)
log
(

1
q

)−ξ+K/2 if ξ ≥ K/2, i ≥ i0.

Small values of i. We start by handling the terms corresponding to small values of i ≤ i0 for some i0 to
be chosen. In that case, we note that ri = bi+1

t satisfies ri−1/ri = 1/b < 1 and thus

i0∑

i=0

si ≤ si0

∞∑

i=0

(1/b)i =
bsi0

b − 1
,
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from which we deduce that
i0∑

i=0

si ≤

⎧
⎨

⎩

(
bbi0+1

t(b−1)

)
log
(

t
bi0+1

)K/2−ξ if ξ ≥ K/2,
(

bbi0+1

t(b−1)

)
log
(

t
b−1

)K/2−ξ if ξ ≤ K/2.

Following [16], in order to ensure that this quantity is summable in t, it is convenient to define i0 as

i0 = �logb(t0)�, where t0 =
1

c log(ct)η
,

for η > K/2 − ξ and a positive constant c. Indeed in that case when i0 ≥ 0 we obtain the bounds3

i0∑

i=0

si ≤
b2

(b − 1)ct log(tc)η
×
{

log(tc log(tc)η/b)K/2−ξ if ξ ≥ K/2,

log(t/(b − 1))K/2−ξ if ξ ≤ K/2.

We easily see that this is o(1/t) both when ξ > K/2 and when ξ ≤ K/2 by construction of η. Note that η
can further be chosen to be equal to 0 when ξ > K/2. The value of c is fixed by looking at what happens
for larger values of i ≥ i0. We note that the initial proof in [16] uses the value η = 1.

Large values of i. We now consider the terms of the sum S corresponding to large values i > i0 and
thus focus on the term s′i = exp(−χ

√
bi log(t/bi))bi+1, or, better, on the ratio

s′i+1

s′i
= b exp

[

− χbi/2

(

b1/2 log
( t

bib

)1/2
− log

( t

bi

)1/2
)]

.

Remarking that this ratio is a nonincreasing function of i, we upper bound it by replacing i with either
i0 + 1 or 0. Using that bi0+1 ≤ t0 we thus obtain

s′i+1

s′i
≤

⎧
⎪⎨

⎪⎩

b exp
[
−
√

χ2

c

(√
b log(tc log(tc)η/b)

log(tc)η −
√

log(tc log(tc)η)
log(tc)η

)]
if i0 ≥ 0,

b exp
[
− χ
(√

b log
(
t/b
)
−
√

log(t)
)]

else.

Since we would like this ratio to be less than 1 for all (large enough) t, we readily see from this expression
that this excludes the cases when η > 1: the term in the inner brackets converges to 0 in such cases,
and thus the ratio is asymptotically upper bounded by b > 1. Thus we assume that η ≤ 1, that is
ξ ≥ K/2 − 1.

For the critical value η = 1 it is then natural to study the term
√

b log(x log(x)/b)
log(x) −

√
log(x log(x))

log(x) .

First, when b = 4, this quantity is larger than 1/2 for x ≥ 8.2. Then, it can be checked that

4 exp(−1
2

√
χ2/c) < 1 if c > χ2/(2 log(4))2. These two conditions show that

s′i+1

s′i
< 1 for

t ≥ 8.2(2 log(4))2χ−2 � 63χ−2.

Now, in order to get the ratio
s′i+1

s′i
away from 1, we target the bound

s′i+1

s′i
< b/(b + 1). This can be

achieved by requiring that t ≥ 8.2(2 log(5))2χ−2 � 85χ−2 and setting c = χ2/(2 log(5))2. Eventually,
we obtain for b = 4 and t ≥ 85χ−2 the bound

It−2∑

i=i0+1

s′i ≤ s′i0+1

It−2∑

i=i0+1

(b/(b + 1))i−i0−1 ≤ s′i0+1(b + 1)

≤ (b + 1) exp
[
− χ
√

bt0 log(t/bt0)
]
b2t0 ≤ b2(b + 1)t0.

Remark 12. Another notable value is η = 0. A similar study to the previous one shows that for b = 3.5,

the term
√

b log(x/b) −
√

log(x) is larger than 1/2 for x > 12, which entails that
s′i+1

s′i
< b/(b + 1)

provided that t ≥ 12(2 log(3.5))2χ−2 � 76χ−2.

3This is also valid when i0 < 0 since the sum is equal to 0 in that case.
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Plugging-in the definition of t0 and since bi0+1 ≤ bt0, we obtain for i0 ≥ 0, b = 4, and c =
χ2/(2 log(5))2,

It−2∑

i=i0+1

si ≤

⎧
⎨

⎩

b2(b+1)
tc log(tc) log(1/q)K/2−ξ if ξ ≥ K/2,

b2(b+1)
tc log(tc) log

(
t c log(tc)
b−c log(tc)

)K/2−ξ if ξ ∈ [K/2 − 1,K/2].
(15)

It remains to handle the case when i0 < 0. Note that this case only happens for t large enough so that

t > c−1e
1
bc . This quantity may be huge, since 1/bc = log(5)2χ−2 becomes large when χ is close to 0. In

that case, we directly control
∑It−2

i=0 si. We control the ratio s′i+1/s
′
i by b/(b + 1/2) provided that

√
b log(t/b) −

√
log(t) >

log(b + 1/2)
χ

, where b = 4.

Thus, if we define tχ to be the smallest such t, then when t > c−1e
1
bc and provided that t ≥ tχ, the bound

of (15) remains valid for the sum S, up to replacing b2(b + 1) with 2b2(b + 1/2) and log
(
t c log(tc)
b−c log(tc)

)

with log(t/(b − 1)). The constraint t ≥ tχ is satisfied as soon as 4 log(5)2χ−2eχ−2 log(5)2 ≥ tχ, which is
generally satisfied for χ not too large.

Final control on S. We can now control the term S by combining the two bounds for large and small

i. We get for c = χ2/(2 log(4.5))2 and b = 4, and provided that t ≥ 85χ−2 and t ≤ χ−2 exp
(
χ−2 log(4.5)2

)

4 log(4.5)2 ,

the following bound

S ≤ b

ct log(tc)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b
(b−1) log(tc log(tc)/b)K/2−ξ + b(b + 1) log(1/q)K/2−ξ

if ξ ≥ K/2,
b

(b−1) log(t/(b − 1))K/2−ξ + b(b + 1) log
(
t c log(tc)
b−c log(tc)

)K/2−ξ

if ξ ∈ [K/2 − 1,K/2].

(16)

Further, for larger values of t, t ≥ χ−2 exp
(
χ−2 log(4.5)2

)

4 log(4.5)2
, we have

S ≤ 2b2(b + 1/2)
ct log(tc)

{
log(1/q)K/2−ξ if ξ ≥ K/2,

log(t/(b − 1))K/2−ξ if ξ ∈ [K/2 − 1,K/2].
(17)

Concluding step. In this final step, we combine equation (14) with the bounds (16), (17) on S. We
obtain that for all p, q, η ∈ (0, 1)

Pθ�

{ ⋃

1≤n<t

θ̂n ∈ Θρ ∩ Ka�(Πa�(ν̂a�,n), μ� − ε) ≥ f(t/n)/n
}

≤ C(K, ρ, p, b, η)
(
e−

α2qt
b

−
√

χ2tqf(b/q)
b + S(1 + ξ)K/2

)
,

where we recall the definition of the constants α = ηρε

√
vρ/2, χ = pηρε

√
2v2

ρ/Vρ.

When ξ ∈ [K/2 − 1,K/2], one can choose q = 1. When ξ ≥ K/2, there is a trade-off in q, since the
first term (the exponential) is decreasing with q while the second term is increasing with q. For instance,
choosing q = exp(−κ−1/η), where η = ξ − K/2 and κ > 0, leads to log(1/q)K/2−ξ = κ. When b = 4,
simply choosing q = 0.8 gives the final bound after some cosmetic simplifications.
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APPENDIX: TECHNICAL DETAILS

Lemma 9 (Dimension 1). Consider a canonical one-dimensional family rm(that is K = 1 and
F1(x) = x ∈ R). Then, for all f such that f(t/n)/n is nonincreasing in n,

Pθ�

{ ⋃

m≤n<M

Bψ(θ̂n, θ�) ≥ f(t/n)/n
}
≤ exp

(
− m

M
f(t/M)

)
.

Proof. Observe that

Pθ�

{ ⋃

m≤n<M

Bψ(θ̂n, θ�) ≥ f(t/n)/n
}

= Pθ�

{ ⋃

m≤n<M

Φ�(F̂n) ≥ f(t/n)/n
}

≤ Pθ�

{ ⋃

m≤n<M

Φ�(F̂n) ≥ f(t/M)/M
}

.

At this point note that if Φ�(F ) < f(t/M)/M for all F = ∇ψ(θ) with mean μθ ≤ μ� − ε, then the
probability of interest is 0 and we are done. In the other case, there exists an FM such that Φ�(FM ) =
f(t/M)/M . We thus proceed with this case as follows

Pθ�

{ ⋃

m≤n<M

Bψ(θ̂n, θ�) ≥ f(t/n)/n
}
≤ Pθ�

{ ⋃

m≤n<M

Φ�(F̂n) ≥ Φ�(FM )
}

(a)

≤ Pθ�

{ ⋃

m≤n<M

F̂n ≤ FM

} (b)

≤ Pθ�

{ ⋃

m≤n<M

exp
(
λ

n∑

i=1

F (Xi)
)
≥ exp(nλFM )

}

≤ Pθ�

{ ⋃

m≤n<M

exp
( n∑

i=1

(
λF (Xi) − Φ(λ)

))
≥ exp

(
n[λFM − Φ(λ)]

)}

(c)

≤ Pθ�

{
max

m≤n<M
exp
( n∑

i=1

(
λF (Xi) − Φ(λ)

))
≥ exp

(
m[λFM − Φ(λ)]

)}
,

where (a) holds by (4), (b) holds for all λ < 0, and (c) for all λ < 0 such that λFM − Φ(λ) > 0.
Now, the process defined by Wλ,0 = 1 and Wλ,n = exp

(∑n
i=1(λF (Xi) − Φ(λ))

)
is a nonnegative

supermartingale, since it holds

Eθ�

[
exp
( n∑

i=1

(λF (Xi) − Φ(λ))
)∣
∣
∣Hn−1

]
= Wλ,n−1Eθ�

[
exp
(
λF (Xn) − Φ(λ)

)∣
∣Hn−1

]

≤ Wλ,n−1 exp
(
Φ(λ) − Φ(λ)

)
≤ 1.

Thus we deduce that for all λ < 0 such that λFM − Φ(λ) > 0

Pθ�

{ ⋃

m≤n<M

Bψ(θ̂n, θ�) ≥ f(t/n)/n
}
≤ exp

(
− m[λFM − Φ(λ)]

)
.

Since by (5) this is satisfied by the optimal λ for Φ�(FM ), we obtain

Pθ�

{ ⋃

m≤n<M

Bψ(θ̂n, θ�) ≥ f(t/n)/n
}
≤ exp

(
− mΦ�(FM )

)
= exp

(
− m

M
f(t/M)

)
.

Lemma 14. For all ε, ε′ > 0, p, p′ ∈ [0, 1] and all K ≥ 1 the following equality holds:

|B2(0, ε) ∩ Cp(0;1)|
∫
B2(0,ε′)∩Cp′ (0;1) e−‖y‖2/2 dy

=
ωp,K−2

ωp′,K−2

∫ ε
0 rK−1 dr

∫ ε′

0 e−r2/2rK−1 dr
,
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where ωp,K−2 =
∫ 1
p

√
1 − z2K−2

dz for K ≥ 2 and using the convention that ωp,−1 = 1. Further,

|B2(0, ε) ∩ Cp(0;1)|
∫
B2(0,ε′)∩Cp′ (0;1) e−‖y‖2/2 dy

≤ 2
ωp,K−2

ωp′,K−2

(
ε

min{ε′,
√

1 + 2/K}

)K

.

Proof. First of all, remark that for K ≥ 2 it holds

|B2(0, ε) ∩ Cp(0;1)| =
∫ ε

0
|{y ∈ R

K : 〈y,1〉 ≥ rp, ‖y‖ = r}| dr

=
∫ ε

0

∫ r

rp
|{y ∈ R

K : y1 = z, ‖y‖ = r}| dzdr =
∫ ε

0

∫ r

rp
|{y ∈ R

K−1 : ‖y‖ =
√

r2 − z2}| dzdr

=
∫ ε

0
rK−1

∫ 1

p

√
1 − z2

K−2
|SK−1| dzdr.

where SK−1 ⊂ R
K−1 is the (K − 2)-dimensional unit sphere of R

K−1. Let us recall that when K = 2,

we get |SK−1| = 2. For convenience, let us denote ωp,K−2 =
∫ 1
p

√
1 − z2K−2

dz. Then, for K ≥ 2,

|B2(0, ε) ∩ Cp(0;1)| = |SK−1|
∫ ε

0
rK−1ωp,K−2 dr.

For K = 1, |B2(0, ε) ∩ Cp(0;1)| = ε. Likewise, we obtain, following the same steps that
∫

B2(0,ε)∩Cp(0;1)
e−‖y‖2/2 dy = |SK−1|

∫ ε

0
e−r2/2rK−1ωp,K−2 dr.

We obtain the first part of the lemma by combining the two previous equalities. For the second part,
we use the inequality e−x ≥ 1 − x, which gives

∫ ε

0
e−r2/2rK−1 dr ≥

∫ ε

0
rK−1 − 1

2
rK+1 dr = εK

( 1
K

− ε2

2(K + 2)

)
.

Thus, whenever ε2 < (K + 2)/K, we obtain
∫ ε

0
e−r2/2rK−1 dr ≥ εK

2K
.

On the other hand, if ε2 ≥ (K + 2)/K, then
∫ ε

0
e−r2/2rK−1 dr ≥

∫ (K+2)/K

0
e−r2/2rK−1 dr ≥

√
1 + 2/K

K

2K
.

Thus, in all cases, the integral is larger than
min{ε,

√
1+2/K}K

2K , and we conclude by simple algebra.

CONCLUSION
In this work, that should be considered as a tribute to the contributions of T.L. Lai, we shed light

on a beautiful and seemingly forgotten result from [16], that we modernized into a fully nonasymptotic
statement, with explicit constants that can be directly used, for instance, for the regret analysis of multi-
armed bandit strategies. Interestingly, the final results, whose roots are thirty-years old, show that the
existing analysis of KL-ucb that was only stated for exponential families of dimension 1 and discrete
distributions lead to a sub-optimal constraints on the tuning of the threshold function f , and can be
extended to work with exponential families of arbitrary dimension K and even for the thresholding term
of the KL-ucb+ strategy, whose analysis was left open.

This proof technique is mostly based on a change-of-measure argument, like the lower bounds for
the analysis of sequential decision-making strategies and in stark contrast with other key results in the
literature [13, 17, 8]. We believe and hope that the novel writing of this proof technique that we provided
here will greatly benefit the community working on boundary crossing probabilities, sequential design of
experiments as well as stochastic decision-making strategies.
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