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Abstract—In this paper we consider the convolution model Z = X + Y with X of unknown density
f , independent of Y , when both random variables are nonnegative. Our goal is to estimate the
unknown density f of X from n independent identically distributed observations of Z, when the
law of the additive process Y is unknown. When the density of Y is known, a solution to the problem
has been proposed in [17]. To make the problem identifiable for unknown density of Y , we assume
that we have access to a preliminary sample of the nuisance process Y . The question is to propose
a solution to an inverse problem with unknown operator. To that aim, we build a family of projection
estimators of f on the Laguerre basis, well-suited for nonnegative random variables. The dimension
of the projection space is chosen thanks to a model selection procedure by penalization. At last we
prove that the final estimator satisfies an oracle inequality. It can be noted that the study of the mean
integrated square risk is based on Bernstein’s type concentration inequalities developed for random
matrices in [23].
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1. INTRODUCTION

We consider in this work the following convolution model: Zi = Xi + Yi, for i = 1, . . . , n, where the
observation is the sequence (Zi)1≤i≤n while the Xi’s are independent and identically distributed (i.i.d.)
variables of interest with common density denoted by f . The random variables Yi, i = 1, . . . , n, represent
a nuisance process, they are also i.i.d. with common density g. The sequences (Xi)1≤i≤n and (Yi)i≤i≤n

are assumed to be independent.
Our aim is to perform nonparametric estimation of f . The specific feature of our framework is that

all random variables are nonnegative. Moreover, we do not suppose that the density g of the nuisance
variables is known. Nevertheless, to make the problem identifiable, we assume that we have at hand
an auxiliary nuisance sample (Y ′

i )1≤i≤n0 independent of (Xi, Yi)1≤i≤n. To sum up, we have to solve an
inverse problem with unknown operator.

The literature studies the convolution model for real-valued random variables and for centered Yi’s,
which are then understood as a noise or a measurement error. Most solutions are based on Fourier
methods, relying on the fact that the characteristic function of the observations is the product of the
Fourier transforms of f and g: then, cautious Fourier inversion of a quotient should allow one to
recover f .

In the first works, g is assumed to be known, see [21] and references therein. However this assumption
is not realistic in most fields of application. To make the problem feasible, some information on the error
distribution is always required. For instance, in a physical context, a preliminary sample of the noise
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can be obtained. Neumann [20] first proposed an estimation strategy still based on Fourier inversion;
for the study of convergence rates, see [20], [13] or [19]. The rigorous study of adaptive procedures in a
deconvolution model with unknown errors has only recently been addressed. We are aware of the work by
Comte and Lacour [8] and Kappus and Mabon [15] who extended it to the adaptive strategy, by Johannes
and Schwarz [14] who consider a model of circular deconvolution and by Dattner et al. [9] who deal with
adaptive quantile estimation via Lespki’s method.

In this paper, all random variables are nonnegative. Such modelization is encountered in survival
analysis or reliability models. For instance, X can be the time of infection of a disease and Y the
incubation time, a model used in so-called back calculation problems in AIDS research. In reliability,
the lifetime of interest for a component can be hidden by another one, systematically added to it. More
broadly the problem of nonnegative variables appears in actuarial or insurance models.

Groeneboom and Wellner [11] have first introduced the problem of one-sided error in the convolution
model under monotonicity of the cumulative distribution function (c.d.f.). They derive nonparametric
maximum likelihood estimators (NPMLE) of the c.d.f. Some particular cases have been tackled as Uni-
form or Exponential deconvolution by Groeneboom and Jongbloed [10]. In the Uniform deconvolution
problem, van Es [24] proposes a density estimator and an estimator of the c.d.f. using kernel estimators
and inversion formula. The work of Mabon [17] subsumes the existing ones and in this way unifies the
approach to tackle the problem of density estimation for nonnegative variables in the convolution model
with any known error density.

The method relies on a a projection strategy in a specific R
+-supported orthonormal functional basis,

namely the Laguerre basis. This basis has been used for nonnegative variables in other settings: e.g. in
[5] and [25] in a regression setting, or in [2] for a multiplicative censoring model.

Here, we extend the procedure proposed in [17] for known g to the case where g is no longer known:
instead, all quantities related to g are estimated thanks to the independent (Y ′

i )-n0-sample. This means
that we estimate all coefficients of the linear system which was solved in a deterministic way when g
was known. Therefore the main difficulty is to measure the distance between the inverse of a random
matrix and the inverse of its expectation. This is what makes the problem challenging and the solution
interesting. The strategy is inspired by the one initiated in [20] and developed in [15] in the Fourier
context, with the help of tools related to matrix perturbation theory (see [21]) and random matrices taken
in [23]. A result of matrix perturbation theory (see Th. 8.1) is the key result to enable us to prove a
lemma similar to Lemma 2.1 in [20]. Besides, Bernstein’s inequality for random matrices provides useful
moment inequalities. We discuss the influence of the two sample sizes n and n0 and compare our results
with the Fourier strategy outcomes, which still can be applied to nonnegative random variables.

Let us now explain the plan of the paper. In Section 2, we give notation, we define the model, the
Laguerre basis and the density estimator computed on an m-dimensional projection space. We develop
in Section 3 a study of the mean integrated squared error (MISE) of the estimators based on Bernstein’s
type concentration inequalities developed for random matrices (see [23]). Then we discuss the resulting
rates of convergence on specific subspaces of L

2(R+) called Laguerre–Sobolev spaces with index s > 0,
defined in [3]. Our strategy is especially well fitted for estimating functions belonging to a collection of
mixed Gamma densities. In Section 4, we define a data-driven choice of the projection space by using
a contrast penalization criterion and we prove an oracle inequality for the final data-driven estimator.
In Section 5, we study the adaptive estimators through simulation experiments. Numerical results are
presented and compared to the performance in the direct case (direct observation of the Xi’s) and to
the case of known g. The results show that our procedure works well and that the cutoff introduced
for the estimation of g plays an interesting role. In the concluding Section 6 we give further possible
developments or extensions of the method. All the proofs are postponed to Section 7.

2. ESTIMATION PROCEDURE

2.1. Model, Assumptions and Notation

We consider the model

Zi = Xi + Yi, i = 1, . . . , n, (2.1)

where the Xi’s are i.i.d. nonnegative variables with unknown density f . The Yi’s are also i.i.d. nonnega-
tive variables with unknown density g. We denote by h the density of the Zi’s. The Xi’s and the Yi’s are
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assumed to be independent. Moreover, we assume in all the following that we have at hand an auxiliary
sample of the noise distribution

(Y ′
1 , . . . , Y ′

n0
) and (Y ′

i )1≤i≤n0 independent of (Xi, Yi)1≤i≤n, (2.2)

where the Y ′
i ’s are also i.i.d. nonnegative variables with unknown density g. Our target is the estimation

of the density f when the Zi’s and Y ′
i ’s are observed.

Now we fix some notation. For two real numbers a and b, we denote a ∨ b = max(a, b) and a ∧ b =
min(a, b). For two functions ϕ, ψ : R

+ → R belonging to L
2(R+), we denote ‖ϕ‖ the L

2 norm of
ϕ defined by ‖ϕ‖2 =

∫
R+ |ϕ(x)|2 dx, 〈ϕ,ψ〉 the scalar product between ϕ and ψ defined by 〈ϕ,ψ〉 =∫

R
ϕ(x)ψ(x) dx.

Let d be an integer, for two vectors �u and �v belonging to R
d we denote ‖�u‖2,d the Euclidean

norm defined by ‖�u‖2
2,d = t�u�u where t�u is the transpose of �u. The scalar product between �u and �v is

〈�u,�v〉2,d = t�u�v = t�v�u.
We introduce the operator norm of a matrix A defined by

‖A‖op = max
‖�u‖2=1

‖A�u‖2 =
√

λmax( tAA),

where λmax( tAA) is the largest eigenvalue of tAA in absolute value, along with the Frobenius norm

defined by ‖A‖F =
√∑

i,j a2
ij .

2.2. Laguerre Basis and Spaces

We define the Laguerre basis as

∀k ∈ N,∀x ≥ 0, ϕk(x) =
√

2Lk(2x)e−x with Lk(x) =
k∑

j=0

(−1)j
(

k

j

)
xj

j!
. (2.3)

The Laguerre polynomials Lk defined by Eq. (2.3) are orthonormal with respect to the weight function
x �→ e−x on R

+. In other words,
∫

R+ Lk(x)Lk′(x)e−x dx = δk,k′ , where δk,k′ is the Kronecker symbol.
Thus (ϕk)k≥0 is an orthonormal basis of L

2(R+). We can also notice that the Laguerre basis satisfies
the following inequality for any integer k

sup
x∈R+

|ϕk(x)| = ‖ϕk‖∞ ≤
√

2. (2.4)

Lemma 2.1. Let D1 be a random variable with density τ . Assume that τ ∈ L
2(R+) and E(D−1/2

1 ) <
+∞. For m ≥ 1,

m−1∑

k=0

∫ +∞

0
[ϕk(x)]2τ(x) dx ≤ c�√m,

where c� is a constant depending on E(D−1/2
1 ) and ‖τ‖.

This result is a particular case of a Lemma proved in a work in progress by Comte and Genon-Catalot;

for the sake of completeness, the proof is recalled in Section 7. The condition E(D−1/2
1 ) < +∞ is rather

weak and is satisfied by all classical densities. In particular, it holds if τ takes a finite value in 0. Note
that if one uses (2.4), one bounds

∑m−1
k=0 E(ϕ2

j (D1)) by 2m while with Lemma 2.1 the bound becomes

c�√m, which is an improvement provided that E(D−1/2
1 ) < +∞ and c� is not too large.

We also introduce the space Sm = Span{ϕ0, . . . , ϕm−1}. For a function p in L
2(R+), we note

p(x) =
∑

k≥0

ak(p)ϕk(x), where ak(p) =
∫

R+

p(u)ϕk(u) du.
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According to formula 22.13.14 in [1], what makes the Laguerre basis relevant in our deconvolution
setting is the relation

ϕk � ϕj(x) =
∫ x

0
ϕk(u)ϕj(x − u) du = 2−1/2

(
ϕk+j(x) − ϕk+j+1(x)

)
, (2.5)

where � stands for the convolution product.
Classically, to derive the rates of convergence of estimators, we need to evaluate the order of the

bias term, which depends on the smoothness of the signal. To that aim, we consider Laguerre–Sobolev
regularity spaces associated with the basis and defined by

W s(R+, L) =
{

p : R
+ → R, p ∈ L

2(R+),
∑

k≥0

ksa2
k(p) ≤ L < +∞

}
with s ≥ 0, (2.6)

where ak(p) = 〈p, ϕk〉. Bongioanni and Torrea [3] have introduced Laguerre–Sobolev space but the link
with the coefficients of a function on a Laguerre basis was done in [6]. Indeed, let s be an integer, for
p : R

+ → R and f ∈ L
2(R+) we have that

∑
k≥0 ksa2

k(p) < +∞ is equivalent to the fact that p admits

derivatives up to order s − 1 with p(s−1) absolutely continuous and for 0 ≤ k ≤ s, xk/2(p(x)ex)(k)e−x ∈
L

2(R+). For more details we refer to Section 7 of [6]. Thus, for f ∈ W s(R+, L) defined by (2.6) and fm

its orthogonal projection

‖f − fm‖2 =
∞∑

k=m

a2
k(f) =

∞∑

k=m

a2
k(f)ksk−s ≤ Lm−s. (2.7)

2.3. Projection Estimator of the Density When g is Known

Here we briefly recall the projection estimator of f when g is known established in [17]. The principle
of a projection method for estimation is to reduce the question of estimating f to the one of estimating fm

the projection of f on Sm. We write

fm(x) =
m−1∑

k=0

ak(f)ϕk(x).

Model (2.1) implies that h = f � g. If all the functions f, g, h belong to L
2(R+), then we have

∑

j≥0

aj(h)ϕj =
∑

k≥0

∑

�≥0

ak(f)a�(g)ϕk � ϕ�.

Thus, applying Eq. (2.5) with convention a−1(g) = 0 implies that

∑

j≥0

aj(h)ϕj =
∑

k≥0

k∑

�=0

2−1/2
(
ak−�(g) − ak−�−1(g)

)
a�(f)ϕk.

This yields the following infinite linear triangular system �h∞ = G∞ �f∞ with

�hm = t(a0(h), . . . , am−1(h)), �fm = t(a0(f), . . . , am−1(f))

and

[Gm]i,j =

⎧
⎪⎨

⎪⎩

2−1/2a0(g) if i = j,

2−1/2
(
ai−j(g) − ai−j−1(g)

)
if j < i,

0 otherwise.

(2.8)

We can notice that Gm is a lower triangular Toeplitz matrix.

Thus for any m we can write �hm = Gm
�fm. Moreover

a0(g) = 〈g, ϕ0〉 =
√

2
∫

R+

g(u)e−u du =
√

2E[e−Y ] > 0.
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So Gm is invertible and G−1
m

�hm = �fm. Finally for any k ≥ 0, ak(h) = E[ϕk(Z1)] can be estimated from
the observations and we obtain that the projection of f on Sm can be estimated by

f̂m(x) =
m−1∑

k=0

âkϕk(x) with �̂fm = G−1
m

�̂hm and âk(Z) =
1
n

n∑

i=1

ϕk(Zi) (2.9)

with �̂hm = t(â0(Z), . . . , âm−1(Z)) and �̂fm = t(â0, . . . , âm−1).

2.4. Projection Estimator of the Density When g is Unknown
Thanks to (2.2) we can easily derive an estimate of Gm by replacing its coefficients by their empirical

versions,

[Ĝm]i,j =

⎧
⎪⎨

⎪⎩

2−1/2â0(Y ′) if i = j,

2−1/2 (âi−j(Y ′) − âi−j−1(Y ′)) if j < i,

0 otherwise,

(2.10)

where âk(Y ′) = (1/n0)
∑n0

�=1 ϕk(Y ′
� ). It is clear that E[Ĝm] = Gm. It is worth noting that Ĝm is still

a lower triangular Toeplitz matrix and that, as â0(Y ′) = n−1
0

∑n0
i=0 exp(−Y ′

i ) > 0, it is also invertible.
However, in order to bound the distance between the inverse of Ĝm and G−1

m , we have to introduce a
cutoff. Thus we define an inverse of Ĝm as follows

G̃−1
m =

⎧
⎨

⎩

Ĝ−1
m if ‖Ĝ−1

m ‖op ≤
√

n0

m log m
,

0 otherwise.
(2.11)

Under this definition of G̃−1
m , if we denote by spr(A) the spectral radius (largest eigenvalue in absolute

value) of A, we have
√

2/|â0(Y ′)| = spr(Ĝ−1
m ) ≤ ‖Ĝ−1

m ‖op (2.12)

(see Theorem 5.6.9 in [12]). Note that, for any threshold t > 0, ‖G−1
m ‖op ≤ t implies 2−1/2a0(g) ≥ t−1

and ‖Ĝ−1
m ‖op ≤ t implies 2−1/2|â0(Y ′)| ≥ t.

Finally, we estimate the projection fm of f on the space Sm as

f̃m(x) =
m−1∑

k=0

ãkϕk(x) with �̃fm = G̃−1
m

�̂hm (2.13)

with �̂hm defined by (2.9), G̃−1
m by (2.11) and �̃fm = t(ã0, . . . , ãm−1).

3. STUDY OF THE L
2 RISK

In this section, we want to derive upper bounds on the MISE of f̃m defined by Eq. (2.13). Using the
isomorphism between the Euclidean norm and the L

2-norm, we show that

E‖fm − f̃m‖2 = ‖f − fm‖2 + E‖fm − f̃m‖2 = ‖f − fm‖2 + E‖�fm − �̃fm‖2
2,m (3.1)

= ‖f − fm‖2 + E‖G−1
m

�hm − G−1
m

�̂hm + G−1
m

�̂hm − G̃−1
m

�̂hm‖2
2,m (3.2)

≤ ‖f − fm‖2 + 2E‖G−1
m (�hm − �̂hm)‖2

2,m + 2E‖(G−1
m − G̃−1

m )�̂hm‖2
2,m. (3.3)

The first two terms correspond to the squared bias term and the variance term appearing in [17] when
the density g is assumed to be known. The difficulty in this problem lies in bounding the second variance
term. We need to study how large the average squared error is when we estimate G−1

m by G̃−1
m . For that

we use some tools of random matrix theory and particularly matrix concentration inequalities (see [23])
and Paulsen dilatation trick (see the proof of Corollary 7.3).
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3.1. Upper Bounds on the MISE

First we state a lemma useful to bound the L
2 risk of f̃m along with an important corollary.

Lemma 3.1. For G̃−1
m defined by Eq. (2.11), ‖g‖∞ < ∞ and m log m ≤ n0, then for any integer p

there exists a positive constant Cop,p such that

E

[
‖G−1

m − G̃−1
m ‖2p

op

]
≤ Cop,p

(
‖G−1

m ‖2
op ∧ log m‖G−1

m ‖4
op

m

n0

)p
. (3.4)

Corollary 3.2. Under the Assumptions of Lemma 3.1 there exists a positive constant CE such that

E

[
‖(G−1

m − G̃−1
m )�hm‖2

2,m

]
≤ CE

(
1 ∧ log m

m

n0
‖G−1

m ‖2
op

)
. (3.5)

Clearly, the first bound is very general and used at several steps of the proof. It is also worth
noting that Corollary 3.2 provides a better result than a rough application of Lemma 3.1 relying on
‖(G−1

m − G̃−1
m )�hm‖2

2,m ≤ ‖G−1
m − G̃−1

m ‖2
op‖h‖2. Relying on these key results, we can prove the main

result of this subsection:

Proposition 3.3. If f and g belong to L
2(R+), ‖g‖∞ < ∞, for f̃m defined by (2.13) the following

result holds:

E‖f − f̃m‖2 ≤ ‖f − fm‖2 +
C

n

(
τm‖G−1

m ‖2
op ∧ ‖h‖∞‖G−1

m ‖2
F

)
+ 4CE log m

m

n0
‖G−1

m ‖2
op (3.6)

with C = 4 + Cop,1. Moreover, here and in all the sequel, τm = 2m in the general case and τm =
c�√m if E(1/

√
Z1) < +∞ and c� is a constant depending on E(1/

√
Z1).

Let us comment on the terms in the right-hand side of Eq. (3.6).

• The first two terms correspond to the upper bound on the mean integrated risk when the matrix
G−1

m is known (see Proposition 3.1 in [17], where τm = 2m).

– The first term, ‖f − fm‖2, is the squared bias term which gets smaller when m increases.

– The second term n−1
(
τm‖G−1

m ‖2
op ∧ ‖h‖∞‖G−1

m ‖2
F

)
has the order of the variance term when

g is known, see [17], where τm = 2m. Thanks to Lemma 3.4 in [17], we know that the
spectral norm of G−1

m grows with the dimension m, and thus that this term is increasing
with m.

• The third term, of order m log(m)‖G−1
m ‖2

op/n0 is due to the estimation of the matrix G−1
m . This

last term seems to deteriorate the rate compared to known noise case in particular if n = n0.
However the factor m, which cannot be reduced to

√
m, corresponds to the fact that the number

of estimated terms in Gm is of order m2 (while there are only m in �̂hm). This term is also increasing
in m.

We illustrate hereafter that the bound in Proposition 3.3 implies upper rates of estimation.
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3.2. Rates of Convergence and Examples

We have stated the bias order under regularity assumptions in (2.7). Now we have to evaluate the
variance terms of Eq. (3.6) which means to assess the order of ‖G−1

m ‖2
op and ‖G−1

m ‖2
F. First we define an

integer r ≥ 1 such that r = 1 if g(0) = B1 �= 0 and for r ≥ 2,

dj

dxj
g(x) |x=0= 0 if j = 0, 1, . . . , r − 2 and

dr−1

dxr−1
g(x) |x=0= Br �= 0.

Comte et al. [5] give conditions on the density g giving the exact order of the Frobenius and spectral
norms of G−1

m .

Lemma 3.4 (Comte at al. [5]). Let r be defined as above. If Assumptions

(C1) g ∈ L
1(R+) is r times differentiable and g(r) ∈ L

1(R+),

(C2) the Laplace transform of g, G(s) = E(e−sY1), has no zero with nonnegative real parts except
for the zeros of the form s = ∞ + ib

are satisfied, then

c1m
2r ≤ ‖G−1

m ‖2
op ≤ ‖G−1

m ‖2
F ≤ c2m

2r,

where c1 ≤ c2 are constants independent of m.

We can check that, if g is a Γ(q, μ) density, then g satisfies (C1) and (C2) with r = q and thus the
variance term

(
τm‖G−1

m ‖2
op ∧ ‖h‖∞‖G−1

m ‖2
F

)
/n has order m2q/n.

Optimizing the squared bias and the variance terms in the upper bounds stated in Propositions 3.3
implies the following result.

Proposition 3.5. If f belongs to W s(R+, L) and g satisfies (C1)–(C2) for r ≥ 1, then f̃mopt defined
by (2.13) with mopt ∝ n1/s+2r ∧ (n0/ log n0)1/s+2r+1 satisfies

sup
f∈W s(R+,L)

E‖f − f̃mopt‖2 ≤ C1(s, L)n−s/s+2r ∨
(

n0

log n0

)−s/s+2r+1

, (3.7)

where C1(s, L) is a positive constant.

In n and n0 have the same order, the rate is given by the term (n0/ log n0)−s/s+2r+1. If n0 is
much larger than n, we can recover the rate corresponding to the known noise case: more precisely,
if n0 ≥ n3/2, then choosing mopt ∝ n1/s+2r yields supf∈W s(R+,L) E‖f − f̃mopt‖2 ≤ C2(s, L)n−s/s+2r,
where C2(s, L) is a positive constant.

Remark. Note that if there is no noise, then the second variance term disappears and we should have Gm

equal to Im, the m× m identity matrix, in the first variance term, so that τm‖G−1
m ‖2

op ∧ ‖G−1
m ‖2

F = τm ∧
m = O(

√
m) if E(1/

√
X1) < +∞. This order allows us to recover a classical rate of order O(n−2s/(2s+1))

on Sobolev balls W s(R+, L).
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3.3. Comparison with Fourier Rates on Some Examples

In this section we denote by ψ∗(x) =
∫

e−iuxψ(u) du the Fourier transform of an integrable func-
tion ψ. The Fourier estimator of f in the model defined by (2.1)–(2.2) is in fact an estimator of
fm,Fo(x) = (2π)−1

∫ πm
−πm eiuxf∗(u) du, the orthogonal projection of f on the space Sm = {ψ ∈ L

1(R)∩
L

2(R), support(ψ∗) ⊂ [−πm, πm]}. It is given by

f̂m,Fo(x) =
1
2π

∫ πm

−πm
eiux ĥ∗(u)

g̃∗(u)
du

with

ĥ∗(u) =
1
n

n∑

j=1

e−iuZj , ĝ∗(u) =
1
n0

n0∑

j=1

e−iuY ′
j ,

1
g̃∗(u)

=
1
{
|ĝ∗(u)| ≥ n

−1/2
0

}

ĝ∗(u)
.

The risk bound obtained in [20] can be written as follows,

E‖f − f̂m,Fo‖2 ≤ ‖f − fm,Fo‖2 + C1
Δ(m)

n
+ (4C1 + 2)

Δf (m)
n0

(3.8)

with C1 a constant and

Δ(m) =
1
2π

∫ πm

−πm

1
|g∗(u)|2 du, Δf (m) =

1
2π

∫ πm

−πm

|f∗(u)|2
|g∗(u)|2 du.

The Fourier and Laguerre estimators have a similar structure, with here a cutoff required for safe
inversion of the noise characteristic function. The structure of the upper bound (3.8) is also similar to
(3.6) and involves a squared bias term ‖f − fm,Fo‖2, a variance term corresponding to known g, Δ(m)/n,
and the price for estimating g, Δf (m)/n0.

There are also several differences. The bias term does not refer to the same regularity. It is known
(see [17]) that, if f is a Gamma density γ(p, θ), then the bias is of order ‖f − fm,Fo‖2 = O(m−2p+1)
in the Fourier setting while it is exponentially decreasing in the Laguerre setting, namely of order
‖f − fm‖2 = O(m2(p−1) exp(−ρm)), with ρ = ρ(θ) > 0. Thus, most reasonably, our method, dedicated
to R

+-supported function estimation, performs at best for Gamma and all types of mixed Gamma
densities (see Section 2.3.3 in [17]).

The first variance term is simpler in the Fourier setting than in the Laguerre setting in the sense that
there is no choice between two quantities, and the characteristic function of the noise is better known
than the trace and operator norms of G−1

m . However, for g following a Gamma or a beta distribution, it
is checked in [17] that both variance terms Δ(m)/n and ‖G−1

m ‖2
F /n have the same order with respect to

m in Laguerre and Fourier settings: if g follows a γ(q, μ) density, both upper bounds have order less than
m2q/n; if g follows a β(a, b) density with b > a ≥ 1, both variance upper bounds have order less than
m2a/n.

For the variance term due to unknown noise density, it is straightforward, in the Fourier setting, that
Δf (m) ≤ Δ(m) and thus the estimation of g does not change the Fourier risk as soon as n0 ≥ n. This
is simpler than in the Laguerre setting.

As a consequence, the Laguerre estimator has smaller upper bounds on the rates than the Fourier
methods when the function f under estimation belongs to a class of mixed Gamma densities: the
exponential decrease of the Laguerre bias implies that the choice of small m’s (namely m = c log(n)
for large enough constant c) is possible and makes also the variance small. In this case, the rates are of
order (log n)α/n with α > 0. However, the Fourier method remains more general and can be used for
both R- or R

+-supported functions.
Now, as we are about to deal with model selection, we can mention that in the Laguerre method, the

quantity m to be selected is a dimension and is therefore searched among the set of integers, while in
the Fourier method, fractional m’s are often considered and it is a real difficulty to determine which set
of values is wise to be visited in the selection procedure.
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4. MODEL SELECTION AND ADAPTATION

The aim of this section is to select an integer m that enables us to compute an estimator of the
unknown density f with the L

2 risk as close as possible to the oracle risk infm E‖f − f̂m‖2. We follow the
model selection paradigm (see [18]) and choose the dimension of projection spaces m as the minimizer
of a penalized criterion.

First, we consider the following sets of integers:

M̂ =
{
1 ≤ m ≤ C �n/ log n� ∧ �n0/ log n0�, m log m‖G̃−1

m ‖2
op ≤ n ∧ n0

}
,

M =
{
1 ≤ m ≤ C �n/ log n� ∧ �n0/ log n0�, 4m log m‖G−1

m ‖2
op ≤ n ∧ n0

}

with C a positive constant. Next, we define the two parts of the random penalty

p̂en1(m) := 2κ1C(‖h‖∞ ∨ 1)
log n

n

(
τm‖G̃−1

m ‖2
op ∧ ‖G̃−1

m ‖2
F

)
,

p̂en2(m) := 8κ2(‖g‖∞ ∨ 1) log n0
m

n0
‖G̃−1

m ‖2
op,

where we recall that τm = 2m or c�√m if E(Z−1/2
1 ) < +∞. Then we set the random penalty as

p̂en(m) := p̂en1(m) + p̂en2(m). (4.1)

We also define the deterministic counterparts

pen1(m) := 2κ1C(‖h‖∞ ∨ 1)
log n

n

(
2m‖G−1

m ‖2
op ∧ ‖G−1

m ‖2
F

)
,

pen2(m) := 8κ2(‖g‖∞ ∨ 1) log n0
m

n0
‖G−1

m ‖2
op

and set the deterministic penalty as

pen(m) := pen1(m) + pen2(m), (4.2)

where κ1 and κ2 are numerical constants, see our comment in Illustration Section of Supplementary
Material. Then we can prove the following result.

Theorem 4.1. Assume that f and g ∈ L
2(R+) with ‖g‖∞ < ∞. Let f̂m̂ be defined by (2.13) and

m̂ = argmin
m∈M̂

{
− ‖f̃m‖2 + p̂en(m)

}

with p̂en defined by (4.1), then there exists a positive numerical constant κ1 such that

E‖f − f̃m̂‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + pen(m)

}
+

C

n ∧ n0
,

where Cad is a numerical constant and C depends on ‖f‖ and ‖g‖, pen is defined by (4.2).

This theorem gives an oracle inequality which establishes a nonasymptotic oracle bound. It shows
that the squared bias-variance trade-off is automatically made up to a loss of logarithmic factor and a
multiplicative constant. Theorem 4.1 is derived under mild assumptions.

Some comments for practical use are in order. Indeed in the penalty terms p̂en1 and p̂en2, there are
four quantities which deserve some explanations: κ1, κ2, ‖g‖∞ and ‖h‖∞. It follows from the proof that
κ1 = 196 and κ2 = 5/2 would suit. But in practice, values obtained from the theory are generally too
large and constants are calibrated by simulations. Once chosen, they remain fixed for all simulation
experiments. There are still two unknown terms in the penalty, ‖g‖∞ and ‖h‖∞, that must be estimated.
We have to check that we can derive an oracle inequality when those terms are estimated, which is done
in the following Corollary.
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Beforehand let us define projection estimators of h and g

ĥD1(x) =
D1−1∑

k=0

âk(Z)ϕk(x) with âk(Z) = (1/n)
n∑

i=1

ϕk(Zi), (4.3)

ĝD2(x) =
D2−1∑

k=0

âk(Y ′)ϕk(x) with âk(Y ′) = (1/n0)
n0∑

i=1

ϕk(Y ′
i ). (4.4)

We can see that ĥD1 and ĝD2 are respectively unbiased estimators of hD1(x) =
∑D1−1

k=0 ak(h)ϕk(x) and
gD2(x) =

∑D2−1
k=0 ak(g)ϕk(x).

Corollary 4.2. Assume that f and g ∈ L
2(R+) with ‖g‖∞ < ∞. Let f̃m̃ be defined by (2.13) and

m̃ = argmin
m∈M̂

{
− ‖f̃m‖2 + p̃en(m)

}

with p̃en defined by p̃en(m) := p̃en1(m) + p̃en2(m) with

p̃en1(m) := 4κ1 log nC(‖ĥD1‖∞ ∨ 1)
(
τm‖G̃−1

m ‖2
op ∧ ‖G̃−1

m ‖2
F

)
/n,

p̃en2(m) := 16κ2(‖ĝD2‖∞ ∨ 1) log n0m‖G̃−1
m ‖2

op/n0,

where ĥD1 and ĝD2 are given by (4.3) and (4.4), D1 and D2 satisfy

log n ≤ D1 ≤ ‖h‖∞n/(128
√

2 log3 n), log n0 ≤ D2 ≤ ‖g‖∞n0/(128
√

2 log3 n0).

Then there exist positive numerical constants κ1 and κ2 such that

E‖f − f̃m̃‖2 ≤ Cad inf
m∈M

{
‖f − fm‖2 + pen(m)

}
+

C

n ∧ n0
,

where Cad is a positive constant.

Note that the constraints on D1 and D2 are fulfilled respectively for n and n0 large enough as soon as
D1 �

√
n and D2 � √

n0 for instance. In this sense Corollary 4.2 has rather an asymptotic flavor.

5. NUMERICAL ILLUSTRATION

The whole implementation is conducted using Matlab software. The integrated squared error ‖f −
f̃m̃‖2 is computed via standard approximation and discretization (over 100 points) of the integral on an
interval of R

+ denoted by If . Then the mean integrated squared error (MISE) E‖f − f̃m̃‖2 is computed
as the empirical mean of the approximated ISE over 200 simulation samples.

5.1. Simulation Setting

We consider the following six densities with unit variance.

� An exponential density E(1) with parameter 1, on If = [0, 5].

� A Gamma density X = 2γ(4, 1/4), on If = [0, 10].

� A mixed Gamma X/c with X ∼ 0.4γ(2, 1/2) + 0.6γ(16, 1/4) and c =
√

2.96 on If = [0, 5].

� A Weibull density, X/c with f(x) = kxk−1e−xk
1R+(x) with c =

√
Γ(7/3) − Γ(5/3)2 on If =

[0, 5].

� A Rayleigh density X ∼ f with f(x) = (x/σ2) exp(−x2/(2σ2)) with σ2 = 2/(4 − π) on If =
[0, 5].
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� A beta density X/c with X ∼ β(4, 5), c =
√

2/9 on If = [0, 1/c].

We also consider two types of noise Y with the same variance, namely an exponential density E(λ) with
λ = 2 and a gamma density γ(2, 1/λ′) with λ′ = 2

√
2. In both cases, the variance is equal to 1/4.

In the case where the noise density is assumed to be known, we can compute analytically the matrix
Gm and use the exact formulae:

� For Y ∼ E(λ)

[Gm]i,j = λ/(1 + λ)1i=j − 2λ
(λ − 1)i−j−1

(λ + 1)(i−j+1)
1j<i. (5.1)

� For Y ∼ γ(2, μ)

[Gm]i,j = (μ/(1 + μ))21i−1=j − 4μ2/(1 + μ))31i=j

+ 4(i − j − μ)μ2 (μ − 1)i−j−2

(μ + 1)(i−j+2)
1j+1<i. (5.2)

5.2. Practical Estimation Procedure

As in [17], to illustrate the loss implied by the noise, we apply the density estimation method on the
true Xi’s, for comparison, with a specific κ̃0 = 0.25 in the penalty; more precisely, the case called "direct"

hereafter relies on the estimator f̂
(0)
m̂ with f̂

(0)
m =

∑m−1
j=0 â

(0)
j ϕj , â

(0)
k = n−1

∑n
i=1 ϕk(Xi) and

m̂0 = argmin
m∈{0,1,...,n}

{
−

m−1∑

k=0

(â(0)
k )2 +

2κ̃0m

n

}
.

We choose the general τm = 2m instead of its improvement to allow comparison with the results
obtained in [17].

To study if the estimation of Gm implies a loss, we implement the “known noise" case. We compute
Gm as given by (5.1) and (5.2) and we apply the procedure described in [17]. We compute the estimator
as given by (2.6) and select

m̂1 = argmin
m‖G−1

m ‖2
op≤n/ log(n)

{
− ‖f̂m‖2 +

κ̃1

n

(
2m‖G−1

m ‖2
op ∧ log(n)(‖g‖∞ ∨ 1)‖G−1

m ‖2
F

)}
.

We set κ̃1 = 0.03 in the penalty for known noise density, this is the value calibrated in [17], and ‖g‖∞ is
known in this setting.

For the case of estimated Gm which is specifically studied in the present work, we compute f̃m̃ with
f̃m given by (2.9) and m̃ given by m̃ = argmin

m∈M̂
{
− ‖f̃m‖2 + p̃en(m)

}
, with p̃en(m) defined as in

Corollary 4.2 with τm = 2m. The constant calibrations were done with intensive preliminary simulations,
including other densities than the ones mentioned above (to avoid overfitting): the selected values are
κ1 = 0.01 and κ2 = 0.01/4. It can be noted that the values of κ1 and κ2 are much smaller than what
comes in theory. The infinite norms ‖h‖∞ and ‖g‖∞ are estimated by taking the maximum of a projection
estimator in the Laguerre basis of the density of Z (resp. of Y ′) with dimension taken as the integral part
of

√
n/3.

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 4 2017



248 COMTE, MABON

Table 1. Results after 200 iterations of simulation of the six considered densities for sample sizes n = 200 and
n0 = 50, n0 = 200. For each density: first two lines, MISE× 100 with (std × 100) in parentheses; third and
fourth lines, mean with std in parentheses of oracles. First column, direct observations of the Xi’s. Columns 2, 3
and 4, noise is E(λ) with λ = 2 (mean 1/2). Columns 5, 6 and 7, noise is γ(2, λ′) with λ′ = 2

√
2 (mean 1/(2

√
2)).

Y Exponential Y Gamma

direct Known Noise Noise Known Noise Noise

noise sample sample noise sample sample

f n0 = 50 n0 = 200 n0 = 50 n0 = 200

Exp(1) MISE 0.5 8.2 2.1 3.3 4.2 1.9 2.2

(std) (0.9) (33) (3.1) (6.4) (23) (3.3) (4.1)

Oracles 0.10 0.13 0.25 0.15 0.13 0.29 0.16

(std) (0.1) (0.2) (0.3) (0.2) (0.2) (0.5) (0.2)

Gamma MISE 0.37 1.0 1.6 0.8 2.2 1.2 1.7

(std) (0.4) (0.7) (0.7) (0.6) (0.3) (0.3) (0.7)

Oracles 0.2 0.3 0.5 0.4 0.4 1.5 0.4

(std) (0.2) (0.3) (0.4) (0.4) (0.4) (0.7) (0.3)

Mixed MISE 1.0 4.0 6.7 2.7 7.3 7.5 7.2

Gamma (std) (0.4) (2.6) (1.9) (2.1) (0.8) (1.1) (0.8)

Oracles 0.7 1.6 5.1 2.0 2.4 7.0 6.1

(std) (0.4) (1.1) (1.8) (1.3) (1.5) (1.0) (1.0)

Weibull MISE 0.4 0.8 1.1 0.9 1.0 1.1 0.9

(std) (0.4) (0.8) (1.1) (1.1) (0.9) (0.7) (0.8)

Oracles 0.3 0.4 0.6 0.5 0.5 0.8 0.5

(std) (0.2) (0.4) (0.6) (0.5) (0.5) (0.9) (0.5)

Rayleigh MISE 0.4 0.8 1.0 0.6 1.1 1.1 1.0

(std) (0.4) (0.4) (0.3) (0.5) (0.2) (0.2) (0.3)

Oracles 0.2 0.3 0.4 0.4 0.3 0.4 0.3

(std) (1.2) (1.5) (1.6) (0.3) (0.3) (0.3) (0.3)

Beta MISE 0.3 1.4 1.7 0.8 1.7 1.8 1.7

(std) (0.2) (0.6) (0.3) (0.6) (0.1) (0.2) (0.1)

Oracles 0.2 0.3 0.5 0.3 0.4 1.7 0.6

(std) (0.2) (0.2) (0.3) (0.2) (0.3) (0.2) (0.3)

5.3. Simulation Results
As in [17], we consider two sample sizes n = 200 and n = 2000. For each distribution, we present

in Tables 1 and 2 the MISE computed over 200 repetitions, together with the standard deviation, both
being multiplied by 100 for small sample size 200 (Table 1) and by 1000 for larger sample size (Table 2).
For simplicity, the dimension is selected in all cases among 30 values. We also provide "oracles", with
mean values and standard deviations also multiplied by the same factor as the MISE: we compute over
200 repetitions the MISE which would be obtained if we were choosing the best proposal in our family
of thirty estimators. These oracles use the knowledge of the true, which we do not have in practice, and
they are computed on other samples than the MISE of model selection.
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Table 2. Results after 200 iterations of simulation of the six considered densities for sample sizes n = 2000 and
n0 = 400, n0 = 2000. For each density: first two lines, MISE × 1000 with (std × 1000) in parentheses; third and
fourth lines, mean with std in parentheses of oracles. First column, direct observations of the Xi’s. Columns 2, 3
and 4, noise is E(λ) with λ = 2 (mean 1/2). Columns 5, 6 and 7, noise is γ(2, λ′) with λ′ = 2

√
2 (mean 1/(2

√
2)).

Y Exponential Y Gamma

direct Known Noise Noise Known Noise Noise

noise sample sample noise sample sample

f n0 = 400 n0 = 2000 n0 = 400 n0 = 2000

Exp(1) MISE 0.6 3.8 2.3 3.4 1.2 1.8 2.1

(std) (1.2) (14.2) (8.1) (8.8) (3.8) (3.8) (5.2)

Oracles 0.10 0.14 0.36 0.17 0.15 0.30 0.17

(std) (0.1) (0.2) (0.6) (0.2) (0.2) (0.4) (0.2)

Gamma MISE 0.6 0.8 1.6 0.8 3.4 4.6 2.3

(std) (0.3) (0.3) (1.6) (0.4) (1.4) (2.1) (1.7)

Oracles 0.3 0.6 0.7 0.6 0.7 1.1 0.8

(std) (0.3) (0.4) (0.4) (0.4) (0.5) (0.9) (0.6)

Mixed MISE 1.6 7.2 8.4 7.0 9.0 38.2 9.1

Gamma (std) (0.8) (1.6) (1.7) (1.6) (3.7) (20.8) (3.8)

Oracles 1.0 2.9 4.8 3.5 4.8 24.5 7.6

(std) (0.6) (1.9) (2.0) (1.9) (2.4) (8.0) (2.6)

Weibull MISE 0.9 1.2 1.2 1.3 1.1 1.5 1.1

(std) (0.4) (0.9) (0.8) (0.6) (5.0) (1.3) (0.6)

Oracles 0.7 1.0 1.2 1.0 1.1 1.3 1.5

(std) (0.3) (0.5) (0.8) (0.5) (0.6) (0.8) (1.1)

Rayleigh MISE 0.5 0.9 0.9 0.3 1.1 1.5 1.1

(std) (0.3) (0.4) (0.8) (0.4) (0.6) (1.3) (0.6)

Oracles 0.3 0.5 0.6 0.5 0.6 0.8 0.6

(std) (0.2) (0.3) (0.4) (0.3) (0.4) (0.5) (0.4)

Beta MISE 0.5 1.9 3.0 1.9 3.0 10.0 3.0

(std) (0.2) (0.2) (0.5) (0.3) (0.4) (6.6) (0.4)

Oracles 0.3 0.5 0.5 0.5 0.5 2.1 0.6

(std) (0.2) (0.3) (0.3) (0.3) (0.3) (0.4) (0.3)

We can see by comparing Tables 1 and 2 (recall that the multiplying factor is 100 for the first table
and 1000 for the second) that the results are improved when n increases. Estimating the matrix Gm

does not seem to really increase the error when we compare with the case where it is known; it even
sometimes happens that the estimation of Gm improves the MISE. In deconvolution setting, the same
remark had been made in [8], it seems that the cutoff in the estimation procedure is often safe. For
fixed n and estimated Gm, increasing n0 systematically improves the results, except in the case where
f is exponential with parameter 1. But this case corresponds to the best estimation proportional to ϕ0,
a simplicity which seems to be difficult for the estimation algorithm. We can also see that the mixed
Gamma distribution has the highest errors and is clearly more difficult to estimate: n = 200 seems too
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small to get a good account of the bimodality. We can also see that increasing the degree of the inverse
problem when going from Exponential to Gamma distribution for Y always increases the errors, even if
the signal-to-noise ratio is unchanged.

6. CONCLUDING REMARKS

In this work, we have defined a projection estimator of the density f of unobserved i.i.d. random
variables Xi, i = 1, . . . , n, when data (Zi)1≤i≤n from model (2.1) are available, together with an
independent sample (Y ′

i )1≤i≤n0 of the nuisance process Y . All quantities related to the common density
g of the (Yi)1≤i≤n0 and the (Y ′

i )1≤i≤n0 are estimated thanks to the independent (Y ′
i )-n0-sample. This

means that we estimate a matrix whose inverse is involved in the definition of the coefficients of the
estimator. Therefore the main difficulty is to measure the distance between the inverse of a random matrix
and the inverse of its expectation. Our strategy is inspired by the one initiated in [20] and developed in [15]
in the Fourier context, with the help of tools related to random matrices taken in [23]; it relies on the use
of a relevant cutoff for the inversion of the estimated matrix. We obtain risk bounds generalizing the case
where g is known and showing that if both sample sizes n and n0 have the same order, it is possible that
no loss in the order of the upper bound occurs. We also provide a model selection procedure for which a
risk bound states that the bias-variance compromise is adequately performed in a nonasymptotic setting.

There remain additional questions that may be worth answering. First, in [17] the problem of survival
function estimation for known g is also studied: the question is left open here to determine if the strategy
developed in the present work could be extended to that context. Moreover, our framework is mainly
nonasymptotic, but if we are interested in asymptotics, the question of lower bounds may be studied.

7. PROOFS

7.1. Preliminary Results

7.1.1. Proof of Lemma 2.1. The proof is a particular case of a Lemma proved in Comte and Genon-
Catalot (2017). From Askey and Wainger (1965), we have for ν = 4k + 2, and k large enough

|ϕk(x/2)| ≤ C

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) 1 if 0 ≤ x ≤ 1/ν,

(b) (xν)−1/4 if 1/ν ≤ x ≤ ν/2,

(c) ν−1/4(ν − x)−1/4 if ν/2 ≤ x ≤ ν − ν1/3,

(d) ν−1/3 if ν − ν1/3 ≤ x ≤ ν + ν1/3,

(e) ν−1/4(x − ν)−1/4e−γ1ν−1/2(x−ν)3/2
if ν + ν1/3 ≤ x ≤ 3ν/2,

(f) e−γ2x if x ≥ 3ν/2,

where γ1 and γ2 are positive and fixed constants. From these estimates, we can prove

Lemma 7.1. Assume that a random variable R has density fR square-integrable on R
+ and that

E(R−1/2) < +∞. For k large enough,
∫ +∞

0
[ϕk(x)]2fR(x) dx ≤ c√

k
,

where c > 0 is a constant depending on E(R−1/2).

The result of Lemma 2.1 follows from Lemma 7.1.

Proof of Lemma 7.1. Hereafter, we write x � y when there exists a constant C such that x ≤ Cy and
recall that ν = 4k + 2. We have six terms to compute to find the order of

∫ +∞

0
[ϕk(x)]2fR(x) dx = (1/2)

∫ +∞

0
[ϕk(u/2)]2fR(u/2) du :=

6∑

�=1

I� :
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(a) I1 � 1
2

∫ 1/ν

0
fR(u/2) du � ‖fR‖ν−1/2 � ‖fR‖k−1/2,

(b) I2 � ν−1/2

∫ ν/2

1/ν
fR(u/2)u−1/2 du � k−1/2

E(R−1/2),

(c) I3 � ν−1/2ν−1/6

∫ ν−ν1/3

ν/2
fR(u/2) du = o(1/

√
k) as ν − u ≥ ν1/3,

(d) I4 � ν−2/3

∫ ν+ν1/3

ν−ν1/3

fR(u/2)du = o(1/
√

k),

(e) I5 � ν−1/2

∫ 3ν/2

ν+ν1/3

(u − ν)−1/2fR(u/2) du � ν−1/2ν−1/6 = o(1/
√

k)

(exp is bounded by 1, u − ν ≥ ν1/3),

(f) I6 � e−γ2(3ν/2) = o(1/
√

k).

The result of Lemma 7.1 follows from these orders.

7.1.2. Bounds on the spectral norm.

Proposition 7.2. Let Ĝm be defined by Eq. (2.10) and ‖g‖∞ < ∞, n0 ∈ N \ {0}, then for all t > 0

P
[
‖Gm − Ĝm‖op ≥ t

]
≤ 2m exp

(

− n0t
2/4

‖g‖∞m + (
√

2/3)mt

)

.

Corollary 7.3. Under the Assumptions of Proposition 7.2, for all q ≥ 2, it holds that

E
[
‖Gm − Ĝm‖q

op

]
≤ Cq(log m)q/2 mq/2

n
q/2
0

∨ (log m)q
mq

nq
0

with Cq = 2q−1eq/2‖g‖q/2
∞ (q + 2)q/2 + 22q−1+q/2(q + 2)q/2.

Proof of Proposition 7.2. To get the announced result, we apply a Bernstein matrix inequality (see
Theorem 8.2). Thus we write Ĝm as a sum of a sequence of independent matrices

Ĝm =
1
n0

n0∑

i=1

Km(Y ′
i ), Km(Y ′

i ) =

⎧
⎪⎨

⎪⎩

2−1/2ϕ0(Y ′
i ) if i = j,

2−1/2 (ϕi−j(Y ′
i ) − ϕi−j−1(Y ′

i )) if j < i,

0 otherwise.

We put

Sm =
1
n0

n0∑

i=1

Km(Y ′
i ) − E[Km(Y ′

i )].

• Bound on L(Km) = ‖Km(Y ′
1) − E[Km(Y ′

1)]‖op/n0.

First using the equivalence between the spectral and trace norms

A ∈ R
m×m,

1√
m
‖A‖F ≤ ‖A‖op ≤ ‖A‖F (7.1)

we have by Eq. (7.1) that L(Km) ≤ (1/n0)‖Km(Y ′
1) − E[Km(Y ′

1)]‖F, and using Eq. (2.4)

‖Km(Y ′
1) − E[Km(Y ′

1)]‖2
F =

∑

1≤i,j≤m

|[Km(Y ′
1)]i,j − E[Km(Y ′

1)]i,j |2
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≤ 1
2

∑

1≤i≤m

|ϕ0(Y ′
1) − E[ϕ0(Y ′

1)]|2

+
1
2

∑

1≤j<i≤m

|ϕi−j(Y ′
1) − ϕi−j−1(Y ′

1) − E[ϕi−j(Y ′
1) − ϕi−j−1(Y ′

1)]|2

≤ 1
2
m|e−Y ′

1 − E[e−Y ′
1 ]|2 +

1
2

∑

1≤j<i≤m

(4
√

2)2

≤ m

2
+ 42 m(m − 1)

2
=

16m2 − 16m + m

2
≤ 8m2.

So we get that L(Km) ≤ 2
√

2m

n0
.

• Bound on ν(Sm) =
∥
∥∑n0

i=1 E
[

t(Km(Y ′
i ) − E[Km(Y ′

i )])(Km(Y ′
i ) − E[Km(Y ′

i )])
]∥
∥

op
/n2

0.

By definition of the operator norm we have

ν(Sm) =
1
n2

0

sup
‖�x‖2,m=1

t�x

n0∑

i=1

E

[
t(Km(Y ′

i ) − E[Km(Y ′
i )])(Km(Y ′

i ) − E[Km(Y ′
i )])

]
�x

=
1
n0

sup
‖�x‖2,m=1

t�x E

[
t(Km(Y ′

1) − E[Km(Y ′
1)])(Km(Y ′

1) − E[Km(Y ′
1)])

]
�x

=
1
n0

sup
‖�x‖2,m=1

E
∥
∥
(
Km(Y ′

1) − E[Km(Y ′
1)]

)
�x
∥
∥2

2,m
.

This implies that, for t�x = (x0, . . . , xm−1) and by convention ϕ−1 ≡ 0,

E1 := E
∥
∥
(
Km(Y ′

1) − E[Km(Y ′
1)]

)
�x
∥
∥2

2,m

=
1
2

m−1∑

i=0

E

( i∑

j=0

(
ϕi−j(Y ′

1) − ϕi−j−1(Y ′
1) − E[ϕi−j(Y ′

1) − ϕi−j−1(Y ′
1)]

)
xj

)2

=
1
2

m−1∑

i=0

Var
[ i∑

j=0

(
ϕi−j(Y ′

1) − ϕi−j−1(Y ′
1)
)
xj

]

≤ 1
2

m−1∑

i=0

E

∣
∣
∣

i∑

j=0

(
ϕi−j(Y ′

1) − ϕi−j−1(Y ′
1)
)
xj

∣
∣
∣
2

=
1
2

m−1∑

i=0

∫ ∣
∣
∣

i∑

j=0

(
ϕi−j(u) − ϕi−j−1(u)

)
xj

∣
∣
∣
2
g(u) du.

Therefore

E1 ≤ ‖g‖∞
2

m−1∑

i=0

∫ ∣
∣
∣

i∑

j=0

(
ϕi−j(u) − ϕi−j−1(u)

)
xj

∣
∣
∣
2
du

=
‖g‖∞

2

m−1∑

i=0

(
2

∑

1≤j,j′≤i

δj,j′xjxj′ −
∑

1≤j,j′≤i

δj,j′+1xjxj′+1 −
∑

1≤j,j′≤i

δj,j′−1xjxj′−1

)

≤ 2‖g‖∞m‖x‖2
2,m.
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Then we get that ν(Sm) ≤ 2‖g‖∞m

n0
. In the end applying Theorem 8.2 implies that for all t > 0

P
[
‖Gm − Ĝm‖op ≥ t

]
≤ 2m exp

(

− t2/2
2‖g‖∞m/n0 + (2

√
2/3)mt/n0

)

from which we get the result of Proposition 7.2.

Proof of Corollary 7.3. Before proving the announced result, let us explain how Theorem 8.3 for
Hermitian matrices can be extended to non-Hermitian matrices. This is due to the so-called Paulsen
dilation which corresponds to the following isomorphism trick for a rectangular matrix A,

A �→ H(A) =

⎛

⎝ 0 A

A† 0

⎞

⎠ ,

where A† denotes the conjugate transpose of A. Obviously H(A) is an Hermitian matrix. We can also
notice that

H(A)2 =

⎛

⎝AA† 0

0 A†A

⎞

⎠ .

So we get λmax(H(A)2) = ‖A‖2
op and λmax(H(A)) = ‖A‖op.

Under the Assumptions of Proposition 7.2, we can apply Theorem A.1 in [4] (see Theorem 8.3) stated
for Hermitian matrices, using the above Paulsen dilation as follows. Let Yi be rectangular matrices and
set A =

∑
i Yi, then, for q ≥ 2 and r ≥ max(q, 2 log m),

H(A) =

⎛

⎝ 0
∑

i Yi
∑

i Y
†
i 0

⎞

⎠ =
∑

i

⎛

⎝ 0 Yi

Y†
i 0

⎞

⎠ =
∑

i

H(Yi).

Thus we get that
[
E‖A‖q

op

]1/q =
[
Eλmax

(
H
(∑

i

Yi

))q]1/q

≤
√

erλ1/2
max

(∑

i

EH(Yi)2
)

+ 2er
[
E max

i
λmax(H(Yi))q

]1/q

≤
√

er max
(
λmax(EAA†), λmax(EA†A)

)
+ 2er

[
E max

i
‖Yi‖q

op

]1/q
.

Now we apply this result to

A = Gm − Ĝm = Sm =
1
n0

n0∑

i=1

Km(Y ′
i ) − E[Km(Y ′

i )].

Using the notation of the proof of Proposition 7.2, we get for q ≥ 2, m ≥ 2 and r = 2 log m

E
[
‖Gm − Ĝm‖q

op

]
≤ 2q−1

(
erν(Sm)

)q/2 + 2q−1
(
erL(Km)

)q

≤ 2q−1
(
er

‖g‖∞m

n0

)q/2
+ 2q−1

(
er

2
√

2m
n0

)q

≤ 2q−1eq/2‖g‖q/2
∞

(
2 log m

m

n0

)q/2
+ 22q−1+q/2

(
2 log m

m

n0

)q

≤ Cq

(
log m

m

n0

)q/2
∨
(

log m
m

n0

)q

with Cq = 2q−1eq/2‖g‖q/2
∞ (q + 2)q/2 + 22q−1+q/2(q + 2)q/2.
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7.2. Proofs of Results of Section 3
Proof of Lemma 3.1. First let us define the set

Δm =
{

‖Ĝ−1
m ‖op ≤

√
n0

m log m

}

(7.2)

and notice that

G−1
m − G̃−1

m = 1Δc
m
G−1

m + 1Δm(G−1
m − Ĝ−1

m ) = 1Δc
m
G−1

m − 1ΔmĜ−1
m (Gm − Ĝm)G−1

m .

Then we can write that
E
[
‖G−1

m − G̃−1
m ‖2p

op

]
= E

[
‖G−1

m ‖2p
op1Δc

m
+ ‖Ĝ−1

m (Gm − Ĝm)G−1
m ‖2p

op1Δm

]

= ‖G−1
m ‖2p

opP[Δc
m] + E

[
‖Ĝ−1

m (Gm − Ĝm)G−1
m ‖2p

op1Δm

]
. (7.3)

This proof is inspired by the proof of Lemma 2.1 in [20] in the sense that we divide the proof in two
cases according to the comparison of ‖G−1

m ‖op with the threshold.

• First case: ‖G−1
m ‖op > 1

2

√
n0

m log m .

Let us prove that E
[
‖G−1

m − G̃−1
m ‖2p

op

]
� ‖G−1

m ‖2p
op. Starting from Eq. (7.3) and using the set Δm, we

have that
E
[
‖G−1

m − G̃−1
m ‖2p

op

]
≤ ‖G−1

m ‖2p
op + ‖G−1

m ‖2p
opE

[
‖Ĝ−1

m ‖2p
op‖Gm − Ĝm‖2p

op1Δm

]

≤ ‖G−1
m ‖2p

op + ‖G−1
m ‖2p

op

( n0

m log m

)p
E
[
‖Gm − Ĝm‖2p

op

]
.

Moreover, applying Corollary 7.3 for q = 2p yields

E
[
‖G−1

m − G̃−1
m ‖2p

op

]
≤ ‖G−1

m ‖2p
op + ‖G−1

m ‖2p
op

( n0

m log m

)p
C2p

(m log m

n0

)p

≤ (1 + C2p)‖G−1
m ‖2p

op.

• Second case: ‖G−1
m ‖op < 1

2

√
n0

m log m .

We prove E
[
‖G−1

m − G̃−1
m ‖2p

op

]
�
(

log m‖G−1
m ‖4

op

m

n0

)p
. Starting from (7.3) again, we get

E
[
‖G−1

m − G̃−1
m ‖2p

op

]
≤ ‖G−1

m ‖2p
opP[Δc

m] + ‖G−1
m ‖2p

opE
[
‖Gm − Ĝm‖2p

op‖Ĝ−1
m ‖2p

op1Δm

]
. (7.4)

(i) Upper bound on E
[
‖Gm − Ĝm‖2p

op‖Ĝ−1
m ‖2p

op1Δm

]
.

First let us notice that

‖Ĝ−1
m ‖2p

op ≤ 22p−1‖Ĝ−1
m − G−1

m ‖2p
op + 22p−1‖G−1

m ‖2p
op.

Moreover applying Corollary 7.3 for q = 2p and q = 4p with the set Δm, we get

E
[
‖Gm − Ĝm‖2p

op‖Ĝ−1
m ‖2p

op1Δm

]

≤ 22p−1‖G−1
m ‖2p

opE
[
‖Gm − Ĝm‖2p

op1Δm

]
+ 22p−1

E
[
‖Gm − Ĝm‖2p

op‖Ĝ−1
m −G−1

m ‖2p
op1Δm

]

≤ 22p−1‖G−1
m ‖2p

opE
[
‖Gm − Ĝm‖2p

op1Δm

]
+ 22p−1‖G−1

m ‖2p
opE

[
‖Gm − Ĝm‖4p

op‖Ĝ−1
m ‖2p

op1Δm

]

≤ 22p−1C2p‖G−1
m ‖2p

op

(m log m

n0

)p
+ 22p−1‖G−1

m ‖2p
op

( n0

m log m

)p
C4p

(m log m

n0

)2p

≤ 22p−1(C2p + C4p)‖G−1
m ‖2p

op

(m log m

n0

)p
. (7.5)

(ii) Upper bound on P[Δc
m] = P

[
‖Ĝ−1

m ‖op >

√
n0

m log m

]
.

The upper bound is given by the following Lemma proved afterwards.
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Lemma 7.4. For Δm defined by Eq. (7.2) and ‖G−1
m ‖op < 1

2

√
n0

m log m , it holds that

P[Δc
m] = P

[

‖Ĝ−1
m ‖op >

√
n0

m log m

]

≤ 22p+1
C2p

(m log m

n0

)p
‖G−1

m ‖2p
op. (7.6)

Finally starting from Eq. (7.4) and gathering Eqs. (7.5) and (7.6), we get that

E
[
‖G−1

m − G̃−1
m ‖2p

op

]
≤ 22p+1C2p

(m log m

n0

)p
‖G−1

m ‖4p
op + 22p−1(C2p + C4p)‖G−1

m ‖4p
op

(m log m

n0

)p

≤ (22p+1
C2p + 22p

C4p)
(

log m‖G−1
m ‖4

op

m

n0

)p
.

In conclusion, Lemma 3.1 is proved with Cop,p = 22p+1C2p + 22pC4p + 1.

Proof of Lemma 7.4. First invoke the triangular inequality

‖Ĝ−1
m ‖op ≤ ‖Ĝ−1

m − G−1
m ‖op + ‖G−1

m ‖op,

which implies that

P

[

‖Ĝ−1
m ‖op >

√
n0

m log m

]

≤ P

[

‖Ĝ−1
m − G−1

m ‖op >

√
n0

m log m
− ‖G−1

m ‖op

]

.

Moreover we assume that ‖G−1
m ‖op < 1

2

√
n0

m log m , so

P

[

‖Ĝ−1
m ‖op >

√
n0

m log m

]

≤ P
[
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

]
.

Now let us rewrite this probability as

P
[
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

]

= P

[{
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm − Gm)‖op <
1
2

}]

+ P

[{
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm − Gm)‖op ≥ 1
2

}]

≤ P

[{
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm − Gm)‖op <
1
2

}]

+ P

[
‖G−1

m (Ĝm − Gm)‖op ≥ 1
2

]
. (7.7)

To control the second term on the right-hand side of Eq. (7.7), we apply Markov’s inequality and
Corollary 7.3 for q = 2p

P

[
‖G−1

m (Ĝm − Gm)‖op ≥ 1
2

]
≤ P

[
‖G−1

m ‖op‖Ĝm − Gm‖op ≥ 1
2

]

≤ 22p
C2p

(m log m

n0

)p
‖G−1

m ‖2p
op. (7.8)

Next to control the first term on the right-hand side of Eq. (7.7), we apply Theorem 8.1 (with A = Gm

and B = Ĝm − Gm), which yields

P

[{
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm − Gm)‖op <
1
2

}]

≤ P

[{ ‖Ĝm − Gm‖op‖G−1
m ‖2

op

1 − ‖G−1
m (Ĝm − Gm)‖op

> ‖G−1
m ‖op

}

∩
{
‖G−1

m (Ĝm − Gm)‖op <
1
2

}]

≤ P

[
‖Ĝm − Gm‖op >

1
2
‖G−1

m ‖−1
op

]
. (7.9)
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Applying again Markov’s inequality along with Corollary 7.3 we get

P

[{
‖Ĝ−1

m − G−1
m ‖op > ‖G−1

m ‖op

}
∩
{
‖G−1

m (Ĝm − Gm)‖op <
1
2

}]
≤ 22p

C2p

(m log m

n0

)p
‖G−1

m ‖2p
op.

So starting from Eq. (7.7) and gathering Eqs. (7.8) and (7.9) gives

P

[

‖Ĝ−1
m ‖op >

√
n0

m log m

]

≤ 22p+1
C2p

(m log m

n0

)p
‖G−1

m ‖2p
op.

7.2.1. Useful corollary for the Frobenius norm.

Corollary 7.5. Under the Assumptions of Lemma 3.1, we have

E
[
‖G−1

m − G̃−1
m ‖2

F

]
≤ 2‖G−1

m ‖2
F.

Proof. The proof mainly follows the lines of the proof of Lemma 3.1. With Δm defined by Eq. (7.2), we
write

E
[
‖G−1

m − G̃−1
m ‖2

F

]
= E

[
‖G−1

m ‖2
F1Δc

m
+ ‖Ĝ−1

m (Gm − Ĝm)G−1
m ‖2

F1Δm

]

= ‖G−1
m ‖2

FP[Δc
m] + E

[
‖Ĝ−1

m (Gm − Ĝm)G−1
m ‖2

F1Δm

]
. (7.10)

Let us recall that for two matrices A and B
‖AB‖F ≤ ‖A‖F‖B‖op and ‖AB‖F ≤ ‖A‖op‖B‖F. (7.11)

Then Eqs. (7.10), (7.11), the definition of Δm and Lemma 3.1 for q = 2 give

E
[
‖G−1

m − G̃−1
m ‖2

F

]
≤ ‖G−1

m ‖2
F + ‖G−1

m ‖2
FE

[
‖Ĝ−1

m ‖2
op‖Gm − Ĝm‖2

op1Δm

]

≤ ‖G−1
m ‖2

F + ‖G−1
m ‖2

F

n0

m log m
E
[
‖Gm − Ĝm‖2

op

]

≤ ‖G−1
m ‖2

F + ‖G−1
m ‖2

F

m log m

n0

n0

m log m
= 2‖G−1

m ‖2
F.

Proof of Corollary 3.2. The proof follows the lines of the proof of Lemma 3.1. The only difference lies
in the following equation

E‖(G−1
m − G̃−1

m )�hm‖2
2,m = ‖G−1

m
�hm‖2

2,mP[Δc
m] + E

[
‖Ĝ−1

m (Gm − Ĝm)G−1
m

�hm‖2
2,m1Δm

]

= ‖�fm‖2
2,mP[Δc

m] + E
[
‖Ĝ−1

m (Gm − Ĝm)G−1
m

�hm‖2
2,m1Δm

]

with Δm defined by Eq. (7.2). It yields the following upper bound

E
[
‖(G−1

m − G̃−1
m )�hm‖2

2,m

]
≤ ‖�fm‖2

2,mP[Δc
m] + ‖�fm‖2

2,mE
[
‖Ĝ−1

m ‖2
op‖Gm − Ĝm‖2

op1Δm

]
.

And following the proof of Lemma 3.1, we get

E
[
‖(G−1

m − G̃−1
m )�hm‖2

2,m

]
≤ ‖f‖2Cop

(
1 ∧ log m

m

n0
‖G−1

m ‖2
op

)
.

Proof of Proposition 3.3. By Pythagoras’ theorem, we have

‖f − f̃m‖2 = ‖f − fm‖2 + ‖fm − f̃m‖2.

Let us rewrite the second term of the above equality:

‖fm − f̃m‖2 = ‖�fm − �̃fm‖2
2,m = ‖G−1

m
�hm − G̃−1

m
�̂hm‖2

2,m

≤ 2‖G−1
m

�hm − G−1
m

�̂hm‖2
2,m + 2‖G−1

m
�̂hm − G̃−1

m
�̂hm‖2

2,m. (7.12)
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(i) Then according to Proposition 3.1 in [17] (τm = 2m) and Lemma 2.1 (τm = c�√m under
E(1/

√
Z1) < +∞), we get

E‖G−1
m (�hm − �̂hm)‖2

2,m ≤ τm

n
‖G−1

m ‖2
op ∧ ‖h‖∞

n
‖G−1

m ‖2
F, (7.13)

where τm is defined in Proposition 3.3.

(ii) Now we turn to the second term on the right-hand side of Eq. (7.12). Let us notice that

‖G−1
m

�̂hm − G̃−1
m

�̂hm‖2
2,m = ‖(G−1

m − G̃−1
m )(�̂hm − �hm) + (G−1

m − G̃−1
m )�hm‖2

2,m

≤ 2‖(G−1
m − G̃−1

m )(�̂hm − �hm)‖2
2,m + 2‖(G−1

m − G̃−1
m )�hm‖2

2,m. (7.14)

(a) The first term of (7.14) can be bounded in two ways: since (Y ′
1 , . . . , Y ′

n0
) are independent of

(Z1, . . . , Zn), we get that

E‖(G−1
m − G̃−1

m )(�̂hm − �hm)‖2
2,m ≤ E‖G−1

m − G̃−1
m ‖2

opE‖�̂hm − �hm‖2
2,m. (7.15)

Again according to Proposition 3.1 in [17] and Lemma 2.1,

E‖�̂hm − �hm‖2
2,m ≤ 1

n

m∑

j=1

E[ϕ2
j (Z1)] ≤

τm

n
.

Applying Lemma 3.1 gives that

E‖(G−1
m − G̃−1

m )(�̂hm − �hm)‖2
2,m ≤ τm

n
Cop,1‖G−1

m ‖2
op. (7.16)

(b) Under the assumption that (Y ′
1 , . . . , Y

′
n0

) are independent of (Z1, . . . , Zn) and Proposition 3.1
in [17], we obtain

E
[
‖(G−1

m − G̃−1
m )(�̂hm − �hm)‖2

2,m

]
≤ E

[
‖G−1

m − G̃−1
m ‖2

F

]‖h‖∞
n

.

And applying Corollary 7.5

E
[
‖(G−1

m − G̃−1
m )(�̂hm − �hm)‖2

2,m

]
≤ 2‖G−1

m ‖2
F

‖h‖∞
n

. (7.17)

For the second term of (7.14), we have according to Corollary 3.2

E‖(G−1
m − G̃−1

m )�hm‖2
2,m ≤ CE log m‖G−1

m ‖2
op

m

n0
. (7.18)

Finally starting from Eq. (7.12) and gathering Eqs. (7.13), (7.15), (7.16), (7.17) and (7.18) yields

E‖fm − f̃m‖2 ≤ (4 + Cop,1)
(τm

n
‖G−1

m ‖2
op ∧ ‖h‖∞

n
‖G−1

m ‖2
F

)
+ 4CE log m‖G−1

m ‖2
op

m

n0
.

To conclude,

E‖fm − f̃m‖2 ≤ ‖f − fm‖2 + C

(τm

n
‖G−1

m ‖2
op ∧ ‖h‖∞

n
‖G−1

m ‖2
F

)
+ 4CE log m‖G−1

m ‖2
op

m

n0
.

Proof of Proposition 3.5. For f ∈ W s(R+, L) defined by (2.6), we have

‖f − fm‖2 =
∞∑

k=m

a2
k(f) =

∞∑

k=m

a2
k(f)ksk−s ≤ Lm−s,
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and according to Lemma 3.4 we have ‖G−1
m ‖2

F � ‖G−1
m ‖2

op � m2r. This implies that the MISE is upper
bounded as follows

E‖f − f̃m‖2 ≤ Lm−s + 2C
(τm

n
m2r ∧ ‖h‖∞

n
m2r

)
+ 2CC log(m)

m2r+1

n0
. (7.19)

Now we have to counterbalance the bias and the variance terms as follows:

Lm−s + 2C(2 + ‖h‖∞)
m2r

n
⇒ mopt1 ∝ n1/s+2r,

Lm−s + 2CC log(m)
m2r+1

n0
⇒ mopt2 ∝ (n0/ log(n0))1/s+2r+1.

For mopt ∝ n1/s+2r ∧ (n0/ log(n0))1/s+2r+1 we get

E‖f − f̃mopt‖2 � n−s/s+2r ∨
(

n0

log n0

)−s/s+2r+1

.

which completes the proof of Proposition 3.5.

7.3. Proof of Theorem 4.1

First for m ∈ M, let us define the associated subspaces Sm
d1

⊆ R
d1 :

Sm
d1

=
{
�tm ∈ R

d1, �tm = t
(
a0(t), a1(t), . . . , am−1(t), 0, . . . , 0

)}
.

These subspaces are defined to give nested models. When we increase the dimension from m to m + 1
we only compute one more coefficient. Then for any �t ∈ R

d1 , we define the following contrast for the
density estimation

γn(�t) = ‖�t‖2
2,d1

− 2〈�t, G̃−1
d1

�̂hd1〉2,d1 .

Let us notice that for �tm ∈ Sm
d1

, thanks to the null coordinates of �tm and the lower triangular form of G̃d1

and G̃m, we have

〈�tm, G̃−1
d1

�̂hd1〉2,d1 = 〈�tm, G̃−1
m

�̂hm〉2,m = 〈�tm, �̃fm〉2,m.

So we clearly have that

�̃fm = argmin
�tm∈Sm

d1

γn(�tm).

Now let m,m′ ∈ M, �tm ∈ Sm
d1

and �sm′ ∈ Sm′
d1

. Notice that

γn(�tm) − γn(�sm′) = ‖�tm − �f‖2
2,d1

− ‖�sm′ − �f‖2
2,d1

− 2〈�tm − �sm′ , G̃−1
d1

(�̂hd1 − �hd1)〉2,d1

and due to orthonormality of the Laguerre basis, for any m we have the following relations between the
L

2 norm and the Euclidean norms,

‖f̃m − f‖2 = ‖ �̃fm − �f‖2
2,d1

+
∞∑

j=d1

(aj(f))2 and ‖fm − f‖2 = ‖�fm − �f‖2
2,d1

+
∞∑

j=d1

(aj(f))2. (7.20)

We set νn(�t) = 〈�t, G̃−1
d1

(�̂hd1 − �hd1)〉2,d1 for �t ∈ R
d1 .

According to the definition of m̂ ∈ M̂, for any m in the model collection M, we have the following
inequality

γn( �̃fm̂) + p̂en(m̂) ≤ γn(�fm) + p̂en(m).
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Hence

‖ �̃fm̂ − �f‖2
2,d1

− ‖�fm − �f‖2
2,d1

− 2νn( �̃fm̂ − �fm) ≤ p̂en(m) − p̂en(m̂),

which implies

‖ �̃fm̂ − �f‖2
2,d1

≤ ‖�fm − �f‖2
2,d1

+ 2νn( �̃fm̂ − �fm) + p̂en(m) − p̂en(m̂).

Let us notice that

νn( �̃fm̂ − �fm) = ‖ �̃fm̂ − �fm‖2,d1νn

( �̃fm̂ − �fm

‖ �̃fm̂ − �fm‖2,d1

)

and due to the relation 2ab ≤ a2/4 + 4b2, we have the following inequalities

‖ �̃fm̂ − �f‖2
2,d1

≤ ‖�fm − �f‖2
2,d1

+ 2‖ �̃fm̂ − �fm‖2,d1 sup
�t∈B(m,m̂)

νn(�t) + p̂en(m) − p̂en(m̂)

≤ ‖�fm − �f‖2
2,d1

+
1
4
‖ �̃fm̂ − �fm‖2

2,d1
+ 4 sup

�t∈B(m,m̂)

ν2
n(�t) + p̂en(m) − p̂en(m̂),

where B(m, m̂) =
{
�tm∨m̂ ∈ Sm∨m̂

d1
, ‖�tm∨m̂‖2,d1 = 1

}
. Now notice that

‖ �̃fm̂ − �fm‖2
2,d1

≤ 2‖ �̃fm̂ − �f‖2
2,d1

+ 2‖�fm − �f‖2
2,d1

.

We then have

‖ �̃fm̂ − �f‖2
2,d1

≤ ‖�fm − �f‖2
2,d1

+
1
2
‖ �̃fm̂ − �f‖2

2,d1
+

1
2
‖�f − �fm‖2

2,d1
+ 4 sup

�t∈B(m,m̂)

ν2
n(�t)+ p̂en(m)− p̂en(m̂),

which implies

‖ �̃fm̂ − �f‖2
2,d1

≤ 3‖�f − �fm‖2
2,d1

+ 2p̂en(m) + 8 sup
�t∈B(m,m̂)

ν2
n(�t) − 2p̂en(m̂).

Using Eq. (7.20) we have

‖f̂m̂ − f‖2 −
∞∑

j=d1

(aj(f))2 ≤ 3
(
‖f − fm‖2 −

∞∑

j=d1

(aj(f))2
)

+ 2p̂en(m)

+ 8 sup
�t∈B(m,m̂)

ν2
n(�t) − 2p̂en(m̂). (7.21)

Now let p̂ be a function such that 4p̂(m,m′) ≤ p̂en(m) + p̂en(m′) for any m, m′. Then.

‖f̃m̂ − f‖2 ≤ 3‖f − fm‖2 + 4p̂en(m) + 8
[

sup
�t∈B(m,m̂)

ν2
n(�t) − p̂(m, m̂)

]

+
.

Let us define m∗ = m ∨ m̂ and

ξ2
1,n(�t) = |〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1 |2, p̂1(m,m′) = 2p̂en1(m ∨ m′), (7.22)

ξ2
2,n(�t) = |〈�tm∗ , (G̃−1

d1
− G−1

d1
)�hd1〉2,d1 |2, p̂2(m,m′) = 2p̂en2(m ∨ m′). (7.23)

Let us notice that
[

sup
�t∈B(m,m̂)

ν2
n(�t) − p(m, m̂)

]

+

≤
[

sup
�t∈B(m,m̂)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1) + (G̃−1

d1
− G−1

d1
)�hd1〉2,d1

∣
∣2 − p̂1(m, m̂) − p̂2(m, m̂)

]

+
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≤ 2
[

sup
�t∈B(m,m̂)

ξ2
1,n(�t) − 1

2
p̂1(m, m̂)

]

+
+ 2

[
sup

�t∈B(m,m̂)

ξ2
2,n(�t) − 1

2
p̂2(m, m̂)

]

+
,

which implies that

‖f̃m̂ − f‖2 ≤ 3‖f − fm‖2 + 4p̂en(m) + 16
∑

m′∈M̂

[
sup

�t∈B(m,m′)

ξ2
1,n(�t) − 1

2
p̂1(m,m′)

]

+

+ 16
[

sup
�t∈B(m,m̂)

ξ2
2,n(�t) − 1

2
p̂2(m, m̂)

]

+
.

We now use the three following results which ensure the validity of Theorem 4.1.

Proposition 7.6. For m ∈ M, it holds that

E[p̂en(m)] ≤ Cpen(m) with C = (2 + 2(Cop ∨ 2)).

Proposition 7.7. Under the assumptions of Theorem 4.1, there exists a constant C1 > 0 depending
on ‖h‖∞ such that for p̂1(m,m′) = 2p̂en1(m ∨ m′)

E

[ ∑

m′∈M̂

{
sup

�t∈B(m,m′)

ξ2
1,n(�t) − 1

2
p̂1(m,m′)

}

+

]

≤ C1

n
.

Proposition 7.8. Under the assumptions of Theorem 4.1, there exists a constant C2 > 0 depending
on ‖h‖∞ such that for p̂2(m,m′) = 2p̂en2(m ∨ m′)

E

[
sup

�t∈B(m,m̂)

ξ2
2,n(�t) − 1

2
p̂2(m, m̂)

]

+
≤ C2

( 1
n0

+ pen2(m)
)
.

In the end,

E‖f − f̂m̃‖2 ≤ 4C inf
m∈Mn

{
‖f − fm‖2 + pen(m)

}
+

C1

n
+

C2

n0
,

as soon as κ1 ≥ 196 and κ2 ≥ 5/2.

Proof of Proposition 7.6. Let m be in the model collection M. By definition we have

E[p̂en(m)] = E
[
p̂en1(m) + p̂en2(m)

]

= 2Cκ1 log nE

[τm‖h‖∞
n

‖G̃−1
m ‖2

op ∧ (‖h‖∞ ∨ 1)
n

‖G̃−1
m ‖2

F

]

+ 8κ2CE(‖g‖∞ ∨ 1)
m

n0
log n0E

[
‖G̃−1

m ‖2
op

]
.

Applying Lemma 3.1 for p = 1, we get that

E
[
‖G̃−1

m ‖2
op

]
≤ 2‖G−1

m ‖2
op + 2E

[
‖G−1

m − G̃−1
m ‖2

op

]
≤ 2‖G−1

m ‖2
op + 2Cop,1‖G−1

m ‖2
op.

Similarly, applying now Corollary 7.5, we get that E
[
‖G̃−1

m ‖2
F

]
≤ 2‖G−1

m ‖2
F + 4‖G−1

m ‖2
F. Finally

E[p̂en(m)] ≤ (2 + 2(Cop,1 ∨ 2))pen(m).

Proof of Proposition 7.7. First let us notice
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
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=
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
1m′>m

+
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
1m′≤m1Δm

+
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
1m′≤m1Δc

m

=
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
1m′>m

+
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
1m′≤m1Δm .

Since Δm′ ⊂ M̂ and Δm ⊂ M̂ for m,m′ ∈ M̂, we have
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+

=
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , Ĝ−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+
1Δm∗ .

Since Δm∗ ⊂ M̂ for m′ ∈ M̂, it follows that
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , G̃−1

d1
(�̂hd1 − �hd1)〉2,d1

∣
∣2 − 1

2
p̂1(m,m′)

}

+

=
{

sup
�t∈B(m,m′)

∣
∣〈�tm∗ , Ĝ−1

m∗(�̂hm∗ − �hm∗)〉2,m∗
∣
∣2 − 1

2
p̂1(m,m′)

}

+
.

Now, if we define E1

E1 = E

[{
sup

�t∈B(m,m′)

∣
∣〈�tm∗ , Ĝ−1

m∗(�̂hm∗ − �hm∗)〉2,m∗
∣
∣2 − 1

2
p̂1(m,m′)

}

+

∣
∣
∣Y ′

]
, (7.24)

then, conditionally on Y ′, the bound follows from the proof of Proposition 7.1 in [17] with Gm∗ replaced
by Ĝm∗ , M by M̂ and ξ2 = 1/2 in the first case (i) increased as ξ2 = a‖h‖∞/K1 log n with K1 = 1/6
(to avoid Assumption (A2)). Note also that the proof remains valid for 2m replaced by τm. Then, as all
bounds are independent of the random terms, the conditional expectation can be integrated with respect
to the law of the sample (Y ′

i )1≤i≤n0 without change.

Proof of Proposition 7.8. Let us define

E2 :=
[

sup
�t∈B(m,m̂)

ξ2
2,n(�t) − 1

2
p̂2(m, m̂)

]

+

with
1
2
p̂2(m, m̂) = p̂en2(m ∨ m̂).

• First case: m̂ ≥ m. Since m̂ ∈ M̂, G̃−1
m̂ = Ĝ−1

m̂ , it follows that

E21m̂≥m =
[

sup
�t∈B(m,m̂)

∣
∣〈�tm̂, (G̃−1

m̂ − G−1
m̂ )�hm̂〉

∣
∣2 − 1

2
p̂en2(m̂)

]

+
1m̂≥m

≤
[
‖(Ĝ−1

m̂ − G−1
m̂ )�hm̂‖2

2,m̂ − 1
2
p̂en2(m̂)

]

+

≤
[
‖Ĝ−1

m̂ (Gm̂ − Ĝm̂)G−1
m̂

�hm̂‖2
2,m̂ − 1

2
p̂en2(m̂)

]

+
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≤
[
‖f‖2‖Ĝ−1

m̂ ‖2
op‖Gm̂ − Ĝm̂‖2

op − 1
2
p̂en2(m̂)

]

+
.

Let us define the set Mmax such that

Mmax =
{
m ∈ [[1, n]],m ≤ C �n/ log n� ∧ �n0/ log n0�

}
. (7.25)

We now introduce the favorable set

Em =
{
‖Gm − Ĝm‖op ≤

√
κ24(‖g‖∞ ∨ 1) log n0

m

n0

}
, κ2 > 0, (7.26)

and set

E =
⋂

m∈Mmax

Em. (7.27)

Thus we can notice that for m̂ ∈ M̂ ⊂ Mmax we have

E21E1m̂≥m ≤
[
‖f‖2‖Ĝ−1

m̂ ‖2
opκ24(‖g‖∞ ∨ 1) log n0

m̂

n0
− 1

2
p̂en2(m̂)

]

+
1E

=
[
‖Ĝ−1

m̂ ‖2
opκ24(‖g‖∞ ∨ 1) log n0

m̂

n0
− 1

2
p̂en2(m̂)

]

+
1E = 0.

On the complementary set we have that

E
[
E21m̂≥m1Ec

]
≤ E

[
‖(G̃−1

m̂ −G−1
m̂ )�hm̂‖2

2,m̂1Ec

]
≤ E

[
sup

m∈Mmax

‖(G̃−1
m − G−1

m )�hm‖2
2,m1Ec

]

≤
∑

m∈Mmax

2E
[
(‖G̃−1

m
�hm‖2

2,m + ‖G−1
m

�hm‖2
2,m)1Ec

]

≤
∑

m∈Mmax

2E
[
(‖G̃−1

m ‖2
op‖�hm‖2

2,m + ‖�fm‖2
2,m)1Ec

]

≤
∑

m∈Mmax

2E
[
(‖�hm‖2

2,m + ‖�fm‖2
2,m)n01Ec

]
≤ Cn0|Mmax|P[Ec]

and apply the following Lemma for p = 3.

Lemma 7.9. For any p ≥ 1 there exist κ2 ≥ (p + 2)/2 and Cp ≥ 1 such that P [Ec] ≤ Cp

np
0

.

We obtain E[E21m̂≥m1Ec ] ≤ C3

n0
.

• Second case: m̂ ≤ m. We have that

E21m̂≤m =
[

sup
�t∈B(m,m)

∣
∣〈�tm(G̃−1

m − G−1
m )�hm〉

∣
∣2 − p̂en2(m)

]

+
(1Δm + 1Δc

m
)

=
[

sup
�t∈B(m,m)

∣
∣〈�tm(Ĝ−1

m − G−1
m )�hm〉

∣
∣2 − p̂en2(m)

]

+
1Δm + sup

�t∈B(m,m)

|〈�tm, �fm〉|21Δc
m

.

It implies that for Em defined by (7.26)

E[E21m̂≤m] ≤ E

[[
sup

�t∈B(m,m)

∣
∣〈�tm(Ĝ−1

m − G−1
m )�hm〉

∣
∣2 − p̂en2(m)

]

+
1Δm1Em

]
+ ‖f‖2

P[Δc
m].

According to Lemma 6.3,

‖f‖2
P[Δc

m] ≤ ‖f‖28C2 log m‖G−1
m ‖2

op

m

n0
≤ ‖f‖28C2 log n0‖G−1

m ‖2
op

m

n0
� pen2(m)

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 4 2017



LAGUERRE DECONVOLUTION 263

and

E

[[
sup

�t∈B(m,m)

∣
∣〈�tm(Ĝ−1

m −G−1
m )�hm〉

∣
∣2 − p̂en2(m)

]

+
1Em

]
≤ C3

n0
.

On Ec
m, we have

E[E21m̂≤m1Ec
m

] ≤ E
[
‖(G̃−1

m − G−1
m )�hm‖2

2,m1Ec
m

]
≤ 2E

[
(‖G̃−1

m
�hm‖2

2,m + ‖G−1
m

�hm‖2
2,m)1Ec

m

]

≤ 2E
[
(‖G̃−1

m ‖2
op‖�hm‖2

2,m + ‖�fm‖2
2,m)1Ec

m

]
≤ 2E

[
(‖�hm‖2

2,m + ‖�fm‖2
2,m)n01Ec

m

]

≤ Cn0P[Ec
m].

Moreover E ⊂ Em, which implies that P[Ec
m] ≤ P[Ec]. Then applying Lemma 7.9, we get that

E
[
E21m̂≤m1Ec

]
≤ C2

n0
.

Proof of Lemma 7.9. We apply Proposition 6.1 for t =
√

4κ2(‖g‖∞ ∨ 1) log n0
m

n0
to obtain

P[Ec] = P

[

∃m ∈ Mmax, ‖Gm − Ĝm‖op >

√
4κ2(‖g‖∞ ∨ 1) log n0

m

n0

]

≤
∑

m≤n0

P

[

‖Gm − Ĝm‖op >

√

4κ2(‖g‖∞ ∨ 1) log n0
m

n0

]

≤ 2
∑

m≤n0

m exp
(

− 1
2

4κ2(‖g‖∞ ∨ 1) log n0m

‖g‖∞m + (2
√

2/3)m
√

4κ2(‖g‖∞ ∨ 1) log n0

√
m
n0

)

≤ 2
∑

m≤n0

m exp
(

− 4κ2(‖g‖∞ ∨ 1) log n0

2

(
1

‖g‖∞
∧ 3

2
√

2
√

4κ2(‖g‖∞ ∨ 1) log n0

√
n0

m

))

≤ C
∑

m≤n0

m exp
(

− 4κ2(‖g‖∞ ∨ 1) log n0

2‖g‖∞

)

≤ C
∑

m≤n0

me−2κ2 log n0 ≤ Cn2
0e

−2κ2 log n0 .

Finally we get P[Ec] ≤ Cn2
0 exp(−κ22 log n0) = C/n2κ2−2

0 = C/np
0 with p ≥ 1 if κ2 ≥ (p + 2)/2.

Proof of Corollary 4.2. The beginning of the proof follows exactly the same lines as in Theorem 4.1
except that p̂en and m̂ are respectively replaced by p̃en and m̃.

Starting from Eq. (7.21), we get

‖f̂m̃ − f‖2 ≤ 3‖f − fm‖2 + 2p̃en(m) + 8 sup
�t∈B(m,m̃)

ν2
n(�t) − 2p̃en(m̂)

≤ 3‖f − fm‖2 + 2(p̃en(m) − p̂en(m)) + 2p̂en(m) + 8 sup
�t∈B(m,m̃)

ν2
n(�t) − 2p̂en(m̃)

+ 2(p̂en(m̃) − p̃en(m̃)).

We now apply Proposition 7.10 hereafter and we get the final result.

Proposition 7.10. (i) E|p̂en(m) − p̃en(m)| � pen(m) + 1/n0 + 1/n.

(ii) E
(
p̂en(m̃) − p̃en(m̃)

)
� 1/n0 + 1/n.
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Proof of Proposition 7.10. The proof relies on introducing the set such that the estimators of the sup-
norms of h and g are under control around their true values. As it works exactly the same for both
functions, we only detail the proof for g.

Let us define the set Λ(g) =
{
|‖ĝD‖∞ − ‖g‖∞| ≤ ‖g‖∞

2

}
.

(i) It yields

E|p̂en2(m) − p̃en2(m)|1Λ(g) = 8κ2E

[∣
∣(2‖ĝD‖∞ ∨ 1) − (‖g‖∞ ∨ 1)

∣
∣ log n0

m

n0
‖G̃−1

m ‖2
op1Λ(g)

]

≤ 8κ2E

[
4(‖g‖∞ ∨ 1) log n0

m

n0
‖G̃−1

m ‖2
op1Λ(g)

]
.

Moreover applying Proposition 7.6, we get that

E|p̂en2(m) − p̃en2(m)|1Λ(g) ≤ Cpen2(m).

On the set Λc(g) with the definition of M, we have

E
∣
∣p̂en2(m) − p̃en2(m)

∣
∣1Λc(g) = 8κ2E

[∣
∣(2‖ĝD‖∞ ∨ 1) − (‖g‖∞ ∨ 1)

∣
∣ log n0

m

n0
‖G̃−1

m ‖2
op

]

≤ 8κ2E
[∣
∣(2‖ĝD‖∞ ∨ 1) − (‖g‖∞ ∨ 1)

∣
∣
]

≤ 8κ2E
[
(2‖ĝD‖∞ ∨ 1)1Λc(g)

]
+ E

[
(‖g‖∞ ∨ 1)1Λc(g)

]
.

Yet ‖ĝD‖∞ ≤ ‖
∑

k ϕk‖∞ ≤ 2D ≤ 2n0, then

E

∣
∣p̂en2(m) − p̃en2(m)

∣
∣1Λc(g) ≤ CP[Λc(g)].

Now applying Lemma 5.2 in [16], it holds that for all p > 0 and

log n0 ≤ D ≤ ‖g‖∞/(128
√

2)n0/(log n0)p,

we get P[Λc(g)] ≤ 2D/np
0.

The proof follows exactly the same lines for controlling E|p̂en1(m) − p̃en1(m)| by defining Λ(h) and
replacing n0 by n.

(ii) On Λ(g), we have ‖g‖∞ − 2‖ĝD‖∞ ≤ 0 which implies that (‖g‖∞ ∨ 1) − 2(‖ĝD‖∞ ∨ 1) ≤ 0, thus
(p̂en2(m̃) − p̃en2(m̃))1Λ(g) ≤ 0. Moreover

E
[(

p̂en2(m̃) − p̃en2(m̃)
)
1Λc(g)

]
≤ E

[ ∣
∣p̂en2(m̃) − p̃en2(m̃)

∣
∣1Λc(g)

]
≤ CP[Λc(g)], (7.28)

as above since m̃ ∈ M̂. This gives the result for p̂en2. The same reasoning holds for p̂en1(m̃)− p̃en1(m̃).

8. USEFUL RESULTS
A proof of the following theorem can be found in [21].

Theorem 8.1. Let A, B be (m × m) matrices. If A is invertible and ‖A−1B‖op < 1, then Ã :=
A + B is invertible and it holds

‖Ã−1 − A−1‖op ≤
‖B‖op‖A−1‖2

op

1 − ‖A−1B‖op
.

Theorem 8.2 (Bernstein matrix inequality). Consider a finite sequence {Sk} of independent random
matrices with common dimension d1 × d2. Assume that

ESk = 0 and ‖Sk‖op ≤ L for each k.

Introduce the random matrix Z =
∑

k Sk. Let ν(Z) be the variance statistic of the sum: ν(Z) =
max

{
λmax(E[Z tZ]), λmax(E[ tZZ])

}
. Then

E‖Z‖op ≤
√

2ν(Z) log(d1 + d2) +
1
3
L log(d1 + d2).
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Furthermore, for all t ≥ 0

P[‖Z‖op ≥ t] ≤ (d1 + d2) exp
(
− t2/2

ν(Z) + Lt/3

)
.

A proof can be found in [22] or [23].

Theorem 8.3 (Matrix moment inequality, Theorem A.1 in [4]). Suppose that q ≥ 2 and fix r ≥
max(q, 2 log p). Consider a finite sequence {Yi} of independent, symmetric, random, self-adjoint
matrices with dimension p × p. Then

[
Eλmax

(∑

i

Yi

)q]1/q
≤
√

erλmax

(∑

i

EY2
i

)
+ 2er

[
E max

i
λq

max(Yi)
]1/q

.

A proof can be found in [4].
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