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Abstract—The problem of estimating parameters of a Pareto distribution is investigated under a
general scale invariant loss function when the scale parameter is restricted to the interval (0, 1]. We
consider the estimation of shape parameter when the scale parameter is unknown. Techniques for
improving equivariant estimators developed by Stein, Brewster–Zidek and Kubokawa are applied to
derive improved estimators. In particular improved classes of estimators are obtained for the entropy
loss and a symmetric loss. Risk functions of various estimators are compared numerically using
simulations. It is also shown that the technique of Kubokawa produces improved estimators for
estimating the scale parameter when the shape parameter is known.
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1. INTRODUCTION

The problem of point estimation of restricted parameters has been studied extensively by statisticians.
The problem arises in several practical situations in agriculture, biological, industrial and economic
experiments. Incorporating prior information about restrictions on parameter space leads to more
efficient estimators. Decision-theoretic estimation of restricted parameters was first considered by
Katz [7]. He showed that the generalized Bayes estimator of restricted mean is minimax and admissible
in a normal distribution with known variance. Farrell [4] established the minimaxity and admissibility
of estimators of restricted parameters in one-dimensional general location family. One may refer to [13,
11, 10, 18, 6, 21] for detailed review of work on estimation problems under restrictions on the parameter
space.

In this paper, we consider the estimation of unknown parameters of a Pareto P (α, β) distribution
under a restriction on the scale parameter. The density function of a Pareto distribution is given by

fX(x, α, β) =
βαβ

xβ+1
, α ≤ x < ∞, β > 0. (1.1)

Here α is the scale parameter and β is the shape parameter. Pareto distribution was originally developed
as a model for representing distribution of income. Later it has found applications in modeling the lifetime
of systems. See for example [5, 12]. For a review on the problem of estimating the parameters of a Pareto
distribution one may refer to [1, 8, 14, 15, 16, 3].

Tripathi et al. [19] considered the estimation of the parameters of a Pareto distribution with respect
to a quadratic loss when the scale parameter is constrained. Recently Tripathi et al. [20] considered the
estimation of shape parameter of a Pareto distribution with respect to a quadratic loss function when the
shape parameter is bounded below.

For an estimator δ of θ assume that the loss function is L
(

δ
θ

)
, where L(t) is a twice differentiable

strictly convex function with L(1) = 0, that is, the derivative L′(t) is strictly increasing for t > 0. We also
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assume that integrals involving L(t) are finite and differentiation under the integral sign is permissible.
Here we consider the estimation of parameters of a Pareto distribution under the scale invariant loss
function L(t) when the scale parameter is constrained.

This paper is organized as follows. In Section 2, estimation of β is considered when the scale
parameter α is unknown and 0 < α ≤ 1 under a general scale invariant loss function. Using the
techniques of Stein [17] and Kubokawa [9] we derive classes of scale equivariant estimators which
improve upon the best affine equivariant estimator. These results are applied to entropy loss and a
symmetric loss functions for deriving specific classes of improved estimators. Numerical comparisons
of risk functions are carried out using simulations. It is also shown that when the shape parameter is
known a priori, the improvement results using the integral expression of risk difference (IERD) technique
of Kubokawa [9] can be obtained for estimating the scale parameter.

2. ESTIMATION OF THE SHAPE PARAMETER
WITH UNKNOWN SCALE PARAMETER

In this section, we consider estimation of the shape parameter when the scale parameter is unknown
and restricted to the interval (0, 1]. Let X1,X2, . . . ,Xn be a random sample taken from a Pareto P (α, β)
distribution. We consider the estimation of β when α is unknown and 0 < α ≤ 1. Define T = log X(1)

and S = 1
n

∑n
i=1 log Xi

X(1)
, where X(1) = min{X1,X2, . . . ,Xn}. Then (T, S) is a complete sufficient

statistic with T having exponential Exp(μ, σ) with μ = log α, μ ≤ 0 and S having Gamma(n − 1, σ)
distribution with σ = nβ. The density function of T and S are given by

fT (t, μ, σ) = σe−σ(t−μ), μ ≤ t < ∞, σ > 0,

and

gS(s, σ) =
σn−1

Γ(n − 1)
e−σssn−2, s > 0, σ > 0,

respectively.
Now we consider the equivalent problem of estimation of σ under the scale invariant loss function

L
(

δ
σ

)
when μ is unknown and satisfies the inequality μ ≤ 0. The maximum likelihood estimator (MLE)

of σ for the restricted parameter space μ ≤ 0 is

δML =
n

S + max(0, T )
. (2.1)

Next we prove a complete class result based on restricted MLE δML. Consider a class of estimators
based on the restricted MLE as

δd =
d

S + max(0, T )
, d > 0. (2.2)

Let d0(μ, σ) minimize the risk function R(δd, α) = EL
(

δd
α

)
of δd. Denote

d∗ = inf
μ≤0,σ>0

d0(μ, σ) and d∗ = sup
μ≤0,σ>0

d0(μ, σ).

An application of the Brewster and Zidek technique [2] gives a complete class of estimators.

Lemma 2.1. For estimating σ when μ(≤ 0) is unknown, the class of estimators {δd : d∗ ≤ d ≤ d∗}
forms a complete class among all estimators of the form (2.2) with respect to the scale invariant
loss function L(t).

Consider the affine group of transformations G = {gp,q : gp,q(x) = px + q, p > 0, q ∈ R}. Under this
group the estimation problem is invariant. The best affine equivariant estimator is

δ0 =
a0

S
, (2.3)
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where a0 is the unique solution of
∫ ∞

0
L′

(
a0

z

)
zn−3e−z dz = 0. (2.4)

For improving upon δ0, we consider a scale equivariant estimator of the form

δφ =
φ(V )

S
, (2.5)

where V = T
S . The joint density of S and V is given by

fS,V (s, v) =
σn

Γ(n − 1)
e−σ(sv+s−μ), s > max(0, μ/v), −∞ < v < ∞.

The following theorem proves the inadmissibility of δ0 by deriving a Stein-type estimator [17].

Theorem 2.2. The estimator δ0 is inadmissible and dominated by the estimator

δST (T, S) =

⎧
⎨

⎩

max
{
a0,

b0
(1+V )

}
S−1, V > 0,

a0S
−1, V ≤ 0,

under the scale invariant loss function L(t), where b0 is the unique solution of the equation
∫ ∞

0
L′

(
b0

z

)
zn−2e−z dz = 0. (2.6)

Proof. The risk function of δφ given by (2.5) depends on σ and μ only through μσ. So without loss of
generality we take σ = 1 and the risk function of δφ can be written as

R(δφ, μ) = EμL

(
φ(V )

S

)
= Eμ

[
Eμ

{
L

(
φ(V )

S

)∣
∣∣
∣V = v

}]
.

Denote

R∗(c, μ) = Eμ

{
L

(
c

S

)∣
∣∣
∣V = v

}
.

Since R∗(c, μ) is strictly convex in c, the choice of c = c(μ) minimizing R∗(c, μ) satisfies the equation

Eμ

{
L′

(
c(μ)
S

)
1
S

∣∣
∣∣V = v

}
= 0.

We consider v > 0. For any μ the conditional density of S given V = v when σ = 1 is

hS(s, μ) ∝ sn−1e−(1+v)s, s > max{0, μ/v}.
Again R∗(c, 0) is a strictly convex function and minimized at c = c(0). For μ ≤ 0 the conditional density
of S given V = v is independent of μ. Hence c(0) is given by

E0

{
L′

(
c(0)
S

)
1
S

∣∣
∣∣V = v

}
= 0.

Now c(0) is the unique solution of
∫ ∞

0
L′

(
c(0)
s

)
sn−2e−(1+v)s ds = 0 or

∫ ∞

0
L′

(
c(0)(1 + v)

z

)
zn−2e−z dz = 0. (2.7)

Comparing (2.7) with (2.6) we get c(0) = b0
(1+v) . We define a function φ(v) as

φ(v) =

⎧
⎨

⎩

max
{
a0,

b0
(1+v)

}
, v > 0,

a0, v ≤ 0.
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Then we have c(μ) > φ(v) > a0 on a set of positive probability for μ ≤ 0. Hence from the strict convexity
of R∗(c, μ) we obtain

Eμ

{
L

(
φ(v)
S

)∣
∣∣
∣V = v

}
≤ Eμ

{
L

(
a0

S

)∣
∣∣
∣V = v

}
.

This implies that R(δST , μ) ≤ R(δ0, μ). This proves the result.

The following theorem gives another class of improved affine equivariant estimators. We define a class
of estimators of the form

δK(T, S) =

⎧
⎨

⎩

φ(V )
S , V > 0,

a0
S , V ≤ 0,

(2.8)

where φ is an absolutely continuous positive function.

Theorem 2.3. Let the function φ(x) satisfy the following conditions:

(i) φ(x) is nondecreasing and limx→∞ φ(x) = a0,

(ii)
∫ ∞

0

∫ x

0
L′

(
φ(x)

y

)
yn−2e−y(1+v) dv dy ≤ 0.

Then the estimator δK has uniformly smaller risk than δ0 under the scale invariant loss function
L(t), where a0 is the unique solution of

∫ ∞

0
L′

(
a0

y

)
yn−3e−y dy = 0.

Proof. The risk difference of δK and δ0 can be written as

Δ(δK , δ0) = E

∫ ∞

1
L′

(
φ(zv)

y

)
v

y
φ′(zv)I(v > 0) dz

=
∫ ∞

0

∫ ∞

max(0, μσ
y

)

∫ ∞

1
L′

(
φ(zv)

y

)
v

y
φ′(zv)fY,V (y, v) dz dv dy,

where fY,V (y, v) is the joint density of Y = σS and V = T
S . For μ ≤ 0 we have

Δ(δK , δ0) =
∫ ∞

0

∫ ∞

0

∫ ∞

1
L′

(
φ(zv)

y

)
v

y
φ′(zv)fY,V (y, v) dz dv dy

=
∫ ∞

0

∫ ∞

0

∫ ∞

v
L′

(
φ(x)

y

)
φ′(x)

y
fY,V (y, v) dx dv dy

=
∫ ∞

0
φ′(x)

[ ∫ ∞

0

∫ x

0
L′

(
φ(x)

y

)
1
y
fY,V (y, v) dv dy

]
dx.

Since φ(x) is nondecreasing, that is, φ′(x) ≥ 0, the risk difference is nonpositive if
∫ ∞

0

∫ x

0
L′

(
φ(x)

y

)
1
y
fY,V (y, v) dv dy ≤ 0

which is equivalent to
∫ ∞

0

∫ x

0
L′

(
φ(x)

y

)
yn−2e−y(1+v) dv dy ≤ 0.

This proves the result.
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Example 2.1 (Entropy Loss). Let L(t) = t − log t − 1. For this loss function the best affine equivariant
estimator is δ0 = n−2

S . In this case a0 = n − 2.

Consider an estimator of the form (2.2). By Lemma 2.1 we get the following result which gives a class
of improved estimators based on the restricted MLE δML given by (2.1).

Lemma 2.4. The class of estimators {δc : (n − 2) ≤ c ≤ (n − 1)} forms an admissible class of
estimators among all estimators of the form (2.2).

Remark 2.1. The restricted MLE δML = δn is inadmissible and improved by the estimator δn−1.

The following result gives a Stein type improved estimator.

Theorem 2.5. The best affine equivariant estimator δ0 is inadmissible for estimating σ when
μ(≤ 0) is unknown under the entropy loss function and is improved by the estimator

δST (V ) =

⎧
⎨

⎩

max
{
(n − 2), n−1

(V +1)

}
S−1, V > 0,

n−2
S , V ≤ 0.

An application of Theorem 2.3 yields the following result.

Theorem 2.6. Assume that the function φ(x) satisfies the following conditions:

(i) φ(x) is nonincreasing and limx→∞ φ(x) = a0,

(ii) φ(x) ≤ φ0(x) for all x > 1 with φ0(x) = (n − 2)
(

1 − (1 + x)1−n

1 − (1 + x)2−n

)
.

Then the estimator δK given by (2.8) improves upon the best affine equivariant estimator δ0 under
the entropy loss function.

The Brewster–Zidek type improved estimator is

δBZ(V ) =

⎧
⎨

⎩

(n−2)
S

(1−(1+V )1−n

1−(1+V )2−n

)
, V > 0,

n−2
S , V ≤ 0.

Remark 2.2. Consider the noninformative prior on the restricted parameter space of μ and σ as

g(μ, σ) =
1
σ

, 0 < σ < ∞, ∞ < μ < 0. (2.9)

Under this prior the generalized Bayes estimator of σ with respect to the entropy loss function is

δGB =

⎧
⎨

⎩

n−2
T+S , T > 0,

n−2
S , T ≤ 0.

From Lemma 2.4 it is seen that the generalized Bayes estimator δGB belongs to the class δd given by
(2.2) and improves upon the restricted maximum likelihood estimator.

Example 2.2 (Symmetric Loss). Let L(t) = t + 1
t − 2. For this loss function the best affine equivariant

estimator is δ0 =
√

(n−1)(n−2)

S for n > 2. For this case a0 =
√

(n − 1)(n − 2).
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Consider an estimator of the form (2.2). The minimizing choice of d is obtained as

d(μ, σ) =
(

σ2 E[S + max(0, T )]
E

[
1

S+max(0,T )

]
)1/2

.

It is easily seen that

E

[
1

S + max(0, T )

]
=

σeμσ

n − 2

[
e−μσ − 1

n − 1

]
(2.10)

and

E[S + max(0, T )] =
(n − 1)eμσ

σ

[
e−σμ +

1
n − 1

]
. (2.11)

Using (2.10) and (2.11) we have

d(μ, σ) =
√

(n − 1)(n − 2)
(

e−μσ + 1
n−1

e−μσ − 1
n−1

)1/2

, μσ ≤ 0. (2.12)

Now we have

sup
μσ≤0

d(μ, σ) =
√

n(n − 1) and inf
μσ≤0

d(μ, σ) =
√

(n − 1)(n − 2). (2.13)

Since the risk function is convex in d, we get the following result.

Lemma 2.7. The class of estimators {δc :
√

(n − 1)(n − 2) ≤ c ≤
√

n(n − 1)} forms an admissible
class of estimators among all estimators of the form (2.2).

Remark 2.3. The restricted MLE δn is inadmissible and is improved by the estimator

δIML =

√
n(n − 1)

S + max(0, T )
.

The following result gives Stein-type improved estimator for σ when μ(≤ 0) is unknown.

Theorem 2.8. The best affine equivariant estimator δ0 is inadmissible for estimating σ with
unknown μ(≤ 0) under the symmetric loss function and is improved by the estimator

δST (V ) =

⎧
⎪⎨

⎪⎩

max
{√

(n − 1)(n − 2),
√

n(n−1)

(V +1)

}
S−1, V > 0,

√
(n−1)(n−2)

S , V ≤ 0.

An application of Theorem 2.3 yields the following result.

Theorem 2.9. Assume that the function φ(x) satisfies the following conditions:

(i) φ(x) is nonincreasing and limx→∞ φ(x) = a0,

(ii) φ(x) ≤ φ0(x) for all x > 1 with φ0(x) =
[
(n − 1)(n − 2)

1 − (1 + x)−n

1 − (1 + x)2−n

]1/2

.

Then the estimator δK given by (2.8) improves upon the best affine equivariant estimator δ0 under
the symmetric loss function.
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The Brewster–Zidek type improved estimator is

δBZ(V ) =

⎧
⎪⎨

⎪⎩

√
(n−1)(n−2)

S

[
1−(1+V )−n

1−(1+V )2−n

]1/2
, V > 0,

√
(n−1)(n−2)

S , V ≤ 0.

Remark 2.4. Under the noninformative prior (2.9) a generalized Bayes estimator of σ with respect to
this symmetric loss function is

δGB =

⎧
⎪⎨

⎪⎩

√
(n−1)(n−2)

T+S , T > 0,

√
(n−1)(n−2)

S , T ≤ 0.

From Lemma 2.7 it is seen that the generalized Bayes estimator δGB belongs to the class δd given by
(2.2) and improves upon the restricted maximum likelihood estimator.

2.1. Numerical Comparisons
In this section, we numerically compare the risk performance of various estimators. The risk values

of estimators are calculated using simulations based on 10,000 samples of sizes n = 10 and n = 20 with
β = 1. In Figs. 1 and 2, we plot the risk functions of the estimators δML, δn−1, δ0, δGB , δST and δBZ for
entropy loss function, and in the Figs. 3 and 4, we plot the risk functions of the estimators δML, δIML

δ0, δGB , δST and δBZ for symmetric loss function.
For entropy loss function from the Figs. 1 and 2 we made the following observations.

(i) From the Figs. 1 (a) and 2 (a), it is seen that

(a) δGB and δn−1 improve upon the restricted MLE δML.

(b) δGB improves upon δn−1 for all α except near α = 1.

(ii) From Figs. (b) and 2 (b) we can see that δST and δBZ improve upon the best affine equivariant
estimator δ0.

(iii) Comparing risk plots in Figs. 1 (a), 1 (b), 2 (a), 2 (b), we see that

(a) δ0, δBZ and δST improve upon δML.

(b) δ0 and δBZ improve δn−1 for all α except in a neighborhood of 1.

(c) δST uniformly improves upon δn−1 and δGB .

(iv) The risk values of all estimators decrease as n increases.

Similar observations are made from risk plots in Figs. 3 and 4 for symmetric loss function.
Thus, it may be recommended that estimate δST be used for this estimation problem.

Remark 2.5. Consider the estimation of α (0 < α ≤ 1) when β is known under a general scale
invariant loss function L(t). For this problem Y = X(1) is a complete sufficient statistic, where X(1) =
min{X1,X2, . . . ,Xn}. The distribution of Y is P (α, nβ). For existence of moments, it is also assumed
that nβ > 1. The best scale equivariant estimator of α is given by δc0 = c0Y , where c0 is the unique
solution of the equation

∫ ∞
1 L′(c0y) nβ

ynβ dy = 0.

Consider an estimator of the form

δφ(Y ) =

⎧
⎨

⎩

φ(Y )Y if Y > 1,

c0Y if Y ≤ 1,
(2.14)

where φ is an absolutely continuous positive function. Using the IERD approach of Kubokawa as in
Theorem 2.3, we can establish the following result.
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Fig. 1. Risk plots for the Entropy loss function (n = 10).
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Fig. 2. Risk plots for the Entropy loss function (n = 20).

Theorem 2.10. Assume that the function φ(w) satisfies the following conditions:

(i) φ(w) is nonincreasing and limw→1 φ(w) = c0,

(ii)
∫ ∞

w
L′(φ(w)z)

nβ

znβ
dz ≥ 0.

Then the estimator δφ have uniformly smaller risk than the best scale equivariant estimator δc0

under the scale equivariant loss function L(t).

Remark 2.6. When the shape parameter β is known and 0 < α ≤ 1, the MLE of α is δML(Y ) =
min{Y, 1}. Consider a class of estimators based on the restricted MLE as

δd = dδML(Y ), d > 0. (2.15)

Let d0(α) be the choice of d minimizing the risk function R(δd, α) = EL
(

δd
α

)
of δd. Denote

d∗ = inf
0<α≤1

d0(α) and d∗ = sup
0<α≤1

d0(α).
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Fig. 3. Risk plots for the Symmetric loss function (n = 10).
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Fig. 4. Risk plots for the Symmetric loss function (n = 20).

It can be shown that the class of estimators {δd : d∗ ≤ d ≤ d∗} forms a complete class among all the
estimators of the form (2.15) with respect to the scale invariant loss function L(t).

Results similar those in Examples 2.1 and 2.2 can be obtained for the entropy loss function and a
symmetric loss function.
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