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Abstract—In this paper, a Bayesian nonparametric approach to the two-sample problem is pro-

posed. Given two samples X = X1, . . . , Xm1

i.i.d.∼ F and Y = Y1, . . . , Ym2

i.i.d.∼ G, with F and G
being unknown continuous cumulative distribution functions, we wish to test the null hypothesis
H0 : F = G. The method is based on computing the Kolmogorov distance between two posterior
Dirichlet processes and comparing the results with a reference distance. The parameters of the
Dirichlet processes are selected so that any discrepancy between the posterior distance and the ref-
erence distance is related to the difference between the two samples. Relevant theoretical properties
of the procedure are also developed. Through simulated examples, the approach is compared to the
frequentist Kolmogorov–Smirnov test and a Bayesian nonparametric test in which it demonstrates
excellent performance.
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1. INTRODUCTION

Two-sample comparison is a common problem in statistics. Namely, given two samples X =

X1, . . . ,Xm1

i.i.d.∼ F and Y = Y1, . . . , Ym2

i.i.d.∼ G, with F and G being unknown continuous cumulative
distribution functions (cdf’s), the problem is to decide whether F = G. Although there have been many
procedures developed for the two-sample problem, the approach considered in this paper is Bayesian in
nature. First, two Dirichlet processes DP (a1,H1) and DP (a2,H2) are considered as priors for F and
G. Then the distance between the two processes is compared with a reference distance. The parameters
of the Dirichlet processes are chosen so that any disagreement between the posterior distance and the
reference distance is a consequence of the difference between the two samples.

Recently, there has been considerable interest in developing Bayesian nonparametric techniques for
hypothesis testing. Most of these include goodness-of-fit tests for one-sample problems. Two standard
nonparametric Bayesian approaches for one-sample goodness-of-fit tests can be found in the literature.
The first approach consists in embedding the proposed model in the null hypothesis into a larger family
of models (the alternative family). Following this step, a prior is placed on the alternative family. Then,
the Bayes factor of the null hypothesis to the alternative is computed. For example, see Carota and
Parmigiani [12] and Florens, Richard, and Rolin [17] used a Dirichlet process prior for the alternative
distribution. McVinish, Rousseau, and Mengersen [29] considered mixtures of triangular distributions.
Another form of the prior, the Pólya tree process [28], was suggested by Berger and Guglielmi [7]. The
second approach for one-sample goodness-of-fit tests is based on placing a prior on the true distribution
generating the data. For this test, the distance between the posterior distribution and the proposed one is
measured. Muliere and Tardella [30], Swartz [33], Al-Labadi and Zarepour [3, 6] considered the Dirichlet
process and used the Kolmogorov distance to derive a goodness-of-fit test for continuous distributions.
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Viele [35] used the Dirichlet process and the Kullback-Leibler distance to test only discrete distributions.
Explicit expressions for calculating the different types of distance between the Dirichlet process and
its base measure were derived in [6]. On the other hand, Hsieh [22] used the Pólya tree prior and the
Kullback–Leibler distance to test continuous distributions. As for two-sample tests, Holmes, Caron,
Griffin, and Stephens [23] developed a way to compute the Bayes factor for testing the null hypothesis
through the marginal likelihood of the data with Pólya tree priors centered either subjectively or using
an empirical procedure. Under the null hypothesis, they modeled the two samples to come from a single
random measure distributed as a Pólya tree, whereas under the alternative hypothesis the two samples
come from two separate Pólya tree random measures. Ma and Wong [28] allowed the two distributions
to be generated jointly through optional coupling of a Pólya tree prior. Borgwardt and Ghahramani [11]
discussed two-sample tests based on Dirichlet process mixture models and derived a formula to compute
the Bayes factor in this case. Generalizations of the Bayes factor approach based on Pólya tree priors
to censored and multivariate data were proposed in [13]. Huang and Ghosh [24] considered the two-
sample hypothesis testing problems under Pólya tree priors and Lehmann alternatives. Recently, Shang
and Reilly [32] introduced a class of tests, which use the connection between the Dirichlet process prior
and the Wilcoxon rank sum test. They also extend their idea using the Dirichlet process mixture prior
and developed a Bayesian counterpart to the Wilcoxon rank sum statistic and the weighted log rank
statistic for right and interval censored data.

Note that, the two-sample Bayesian nonparametric tests based on the distance approach are not
found in the literature. The method proposed in this paper is considered the first endeavor in this
direction.

This paper is structured as follows. In Section 2, the Dirichlet process prior DP (a,H) is briefly
reviewed. In Section 3, the Kolmogorov distance between two Dirichlet processes is considered and
several of its theoretical properties are derived. The proposed approach is developed in Section 4. It also
addresses how to choose parameters of the Dirichlet processes. In Section 5, illustrative examples and
simulation results are included. Some additional properties of the proposed approach are discussed in
Section 6. Finally, some concluding remarks are made in Section 7.

2. THE DIRICHLET PROCESS

Before proceeding to describe the Bayesian nonparametric approach to the two-sample problem, it
is necessary to provide a short introduction of the Dirihclet process. The Dirichlet process, formally
introduced in [16], is the most well-known and widely used prior in Bayesian nonparametric inference.
Consider a space X with a σ−algebra A of subsets of X. Let H be a fixed probability measure on
(X,A) and a be a positive number. Following [16], a random probability measure P = {P (A)}A∈A
is called a Dirichlet process on (X,A) with parameters a and H , if for any finite measurable partition
{A1, . . . , Ak} of X, the joint distribution of the vector (P (A1), . . . P (Ak)) has the Dirichlet distribution
with parameters (aH(A1), . . . , aH(Ak)), where k ≥ 2. We assume that if H(Aj) = 0, then P (Aj) = 0
with probability one. If P is a Dirichlet process with parameters a and H , we write P ∼ DP (a,H). The
parameter a is known as the concentration parameter and the probability measure H is called the
base(centering) measure of P .

An attractive feature of the Dirichlet process is the conjugacy property. If X1, . . . ,Xm is a sample from
P ∼ DP (a,H), then the posterior distribution of P given X1, . . . ,Xm coincides with the distribution of
the Dirichlet process with parameters a∗ and H∗, where

a∗ = a + m and H∗
m =

a

a + m
H +

m

a + m
Fm. (1)

Here and throughout the paper, Fm =
∑m

i=1 δXi/m is the empirical distribution and δXi denotes the
Dirac measure at Xi. We also use a “∗" as a superscript to denote posterior quantities. Notice that
the posterior base distribution H∗ is a convex combination of the base distribution and the empirical
distribution. The weight associated with the prior base distribution H is proportional to a, while the
weight associated with the empirical distribution is proportional to the number of observations m. The
posterior base distribution H∗ approaches the prior base measure H for large values of a. On the other
hand, for small values of a, H∗ is close to the empirical distribution.
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Following [16], P ∼ DP (a,H) has the following series representation

P =
∞∑

i=1

JiδYi , (2)

where Γi = E1 + · · · + Ei, Ei
i.i.d.∼ exponential(1), Yi

i.i.d.∼ H independent of Γi, L(x) = a
∫ ∞
x t−1e−tdt,

x > 0, L−1(y) = inf{x > 0: L(x) ≥ y} and Ji = L−1(Γi)/
∑∞

i=1 L−1(Γi).

It follows clearly from (2) that a realization of the Dirichlet process is a discrete probability measure.
This is true even when the base measure is absolutely continuous [9]. We point out that this discreteness
property of the Dirichlet process has no more troublesome than that of the empirical process. Also,
since data is always measured to finite accuracy, the true distribution being sampled from is discrete.
This makes the discreteness property of P with no practical significant limitation. By imposing the
weak topology, the support for the Dirichlet process is quite large. Specifically, the support for the
Dirichlet process is the set of all probability measures whose support is contained in the support of
the base measure. This means that whenever the support of the base measure is X, the space of all
probability measures is the support of the Dirichlet process. See [16] and [18] for further discussion
about the support of the Dirichlet process. In practice, it is difficult to work with (2) because there is
no tractable form for the Lévy measure L and determining the random weights in the sum requires the
computation of an infinite sum. Recently, Zarepour and Al-Labadi [37] derived an efficient approximation
of the Dirichlet process with monotonically decreasing weights. Specifically, let Xn be a random variable
with a Gamma(a/n, 1) distribution. Define

Gn(x) = Pr(Xn > x) =
1

Γ(a/n)

∫ ∞

x
e−tta/n−1 dt.

Let (θi)1≤i≤n be a sequence of i.i.d. random variables with values in X and common distribution H ,
independent of (Γi)1≤i≤n+1. Then, as n → ∞,

Pn =
n∑

i=1

G−1
n

(
Γi

Γn+1

)

∑n
i=1 G−1

n

(
Γi

Γn+1

) δθi
(3)

converges almost surely (a.s.) to P defined by (2). Note that G−1
n (p) is the (1 − p)th quantile of the

gamma(a/n, 1) distribution. This provides the following algorithm.

Based on representation (3), the following algorithm outlines the steps required to generate a sample
from the approximate Dirichlet process with parameters a and H :

Algorithm A: Simulating an approximation for the Dirichlet process

1. Fix a relatively large positive integer n.

2. Generate θi
i.i.d.∼ H for i = 1, . . . , n.

3. For i = 1, . . . , n + 1, generate Ei from an exponential distribution with mean 1, independent of
(θi)1≤i≤n and let Γi = E1 + · · · + Ei.

4. For i = 1, . . . , n, compute G−1
n (Γi/Γn+1).

5. Use representation (3) to find an approximate sample of the Dirichlet process.

For other simulation methods of the Dirichlet process, consult [10, 31, 36].
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3. KOLMOGOROV DISTANCE

A well-known distance between two distributions is the Kolmogorov distance. For cdf’s F and G this
is defined as

d(F,G) = sup
x∈R

|F (x) − G(x)|.

Note that other distances such as the Cramér–von Mises distance and the Anderson–Darling distance
could be employed in our approach, see [19].

The following lemma demonstrates that, as sample sizes get large, the Kolmogorov distance between
posterior distributions of Dirichlet processes converges to the Kolmogorov distance between the true
(population) distributions generated the data.

Lemma 1. Let X = X1, . . . ,Xm1

i.i.d.∼ F and Y = Y1, . . . , Ym2

i.i.d.∼ G, with F and G being contin-
uous cdf’s. Let P ∼ DP (a1,H1) and Q ∼ DP (a2,H2). Let P ∗ = P | X and Q∗ = Q | Y. Then, as
m1,m2 → ∞, d(P ∗, Q∗) a.s.→ d(F,G).

Proof. From the triangle inequality we have

d(P ∗
m1

, Q∗
m2

) ≤ d(P ∗
m1

,H∗
m1

) + d(Q∗
m2

,H∗
m1

)
≤ d(P ∗

m1
,H∗

m1
) + d(Q∗

m2
,H∗

m2
) + d(H∗

m1
,H∗

m2
).

It follows that,

d(P ∗
m1

, Q∗
m2

) − d(H∗
m1

,H∗
m2

) ≤ d(P ∗
m1

,H∗
m1

) + d(Q∗
m2

,H∗
m2

).

Similarly,

d(H∗
m1

,H∗
m2

) ≤ d(P ∗
m1

,H∗
m1

) + d(P ∗
m1

,H∗
m2

)
≤ d(P ∗

m1
,H∗

m1
) + d(Q∗

m2
,H∗

m2
) + d(P ∗

m1
, Q∗

m2
),

d(H∗
m1

,H∗
m2

) − d(P ∗
m1

, Q∗
m2

) ≤ d(P ∗
m1

,H∗
m1

) + d(Q∗
m2

,H∗
m2

).

Therefore,

|d(P ∗
m1

, Q∗
m2

) − d(H∗
m1

,H∗
m2

)| ≤ d(P ∗
m1

,H∗
m1

) + d(Q∗
m2

,H∗
m2

). (4)

The proof of the lemma is complete since, as m1,m2 → ∞, the right-hand side of (4) converges to zero
[31, 4] and d(H∗

m1
,H∗

m2
) → d(F,G) by the continuous mapping theorem and Polyá’s theorem [14].

Corollary 2. Under the null hypothesis H0 : F = G, d(P ∗
m1

, Q∗
m2

) → 0 as m1,m2 → ∞.

The following result allows the use of the approximation to the Dirichlet process when considering
the prior and posterior distributions of the Kolmogorov distance.

Lemma 3. Let P ∼ DP (a1,H1) and Q ∼ DP (a2,H2). Let Pn1 and Qn2 be two approximations of P

and Q, respectively, as defined in (3). Then, as n1, n2 → ∞, d(Pn1 , Qn2)
a.s.→ d(P,Q).

Proof. Similarly to the proof of Lemma 1, the result follows since

|d(Pn1 , Qn2) − d(P,Q)| ≤ d(Pn1 , P ) + d(Qn2 , Q)
≤ d(Pn1 ,H1) + d(P,H1) + d(Qn2 ,H2) + d(Q,H2).

Now, by Corollary 4.2 in [6], the right-hand side converges to zero as n1, n2 → ∞.

The next lemma shows that the Kolmogorov distance between two Dirichlet processes is independent
of the base measures when they are identical. This result will play a key role in the proposed approach.

Lemma 4. Let P ∼ DP (a1,H1) and Q ∼ DP (a2,H2), where H1 and H2 are continuous cumulative
distribution functions. If H1 = H2, then the distribution of d(P,Q) does not depend on H1 and H2.
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Proof. Since H1 is nondecreasing, we have

θi < t if and only if H1(θi) < H1(t).

It follows from (2) that

P (t) = P
(
(−∞, t]

)
=

∞∑

i=1

Jiδθi

(
(−∞, t]

)
=

∞∑

i=1

JiδH1(θi)

(
(0,H1(t)]

)
.

Observe that, since (θi)i≥1 is a sequence of i.i.d. random variables with continuous distribution H1,

for i ≥ 1, we have Ui
d= H1(θi), where (Ui)i≥1 is a sequence of i.i.d. random variables with a uniform

distribution on [0, 1]. Hence, P (t) = Pλ(H1(t)), where Pλ ∼ DP (a1, λ) and λ is the Lebesgue measure
on [0, 1]. Similarly, Q(t) = Qλ(H2(t)), where Qλ ∼ DP (a2, λ). Thus,

d(P,Q) = sup
t∈R

|P (t) − Q(t)| = sup
t∈R

|Pλ(H1(t)) − Qλ(H2(t))|.

If H1 = H2, and since they are continuous, we have

d(P,Q) = sup
t∈R

∣
∣Pλ(H1(t)) − Qλ(H2(t))

∣
∣ = sup

0≤z≤1

∣
∣Pλ(z) − Qλ(z)

∣
∣.

This shows that the distribution of d(P,Q) does not depend on the base measures H1 and H2 whenever
H1 = H2.

4. A BAYESIAN NONPARAMETRIC TWO-SAMPLE TEST

Given two samples X = X1, . . . ,Xm1

i.i.d.∼ F and Y = Y1, . . . , Ym2

i.i.d.∼ G with F and G being
unknown continuous cumulative distribution functions, we want to test the null hypothesis H0 : F = G.
To this end, we use the priors P ∼ DP (a1,H1) and Q ∼ DP (a2,H2) so, by (1), P ∗

m1
= P | X ∼

DP (a1 + m1,H
∗
1 ) and Q∗

m2
= Q | Y ∼ DP (a2 + m2,H

∗
2 ). By Lemma 1, d(P ∗

m1
, Q∗

m2
) almost surely

approximates d(F,G). Thus, it seems reasonable to use a test procedure that specifies rejecting the
null hypothesis when the distance between P ∗

m1
and Q∗

m1
is large. Specifically, we reject H0 if, for some

cut-off number U ,

E∗(d(P ∗
m1

, Q∗
m2

)
)

> U, (5)

where E∗ is the expectation with respect to posterior probability measures.
The first step in computing (5) is to pick parameters for the two priors DP (a1,H1) and DP (a2,H2).

Note that, by Lemma 4, it is necessary to set H1 = H2 for the approach to be independent of the choice
of H1 and H2. Another important reason of this choice is to avoid prior-data conflict as discussed, for
example, in [15] and [1]. Prior-data conflict here means that DP (a1,H1) lies in the “tails” of DP (a2,H2).
Prior-data conflict will occur whenever there is only a tiny overlap between the effective support regions
of P and Q. In this context, the existence of prior-data conflict can yield a failure in computing the
distribution of d(P,Q). To avoid this problem it is necessary that H1 and H2 share the same effective
support (note that, P and Q have the same support as H1 and H2, respectively). This can certainly be
secured by setting H1 = H2. The effect of prior-data conflict is demonstrated in Section 5, Table 2. On
the other hand, by Lemma 4, the distribution of the distance d(P,Q) is independent from the choice of
the base measures. For simplicity we suggest setting H1 = H2 = N(0, 1), although other choices are
certainly possible.

The selection of a1 and a2 is also important. It is possible to consider several values of a1 and a2. In
general, it is highly recommended to choose ai ≤ 0.5mi, i = 1, 2, otherwise the prior may become too
influential. For example, setting ai = 0.5mi in (1) gives

H∗
mi

=
1
3
H +

2
3
Fmi , (6)

which means the chance to draw a sample from the collected data is two times of the chance to generate
a new value from H . It is noticed that, for most purposes, setting a1 = a2 = 1 is considered adequate.
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This issue is further explored in Table 1 in Section 5, where the sensitivity of approach with respect to
the choice of the concentration parameter of the Dirichlet process is discussed.

To compute the threshold U , in an old version of the paper [2], suggested to set U to be d0.975, the
97.5% quantile of a “reference” distance between the following two Dirchlet processes

P r
m1

∼ DP
(
1 + m1,H = N(0, 1)

)
and Qr

m2
∼ DP

(
1 + m2,H = N(0, 1)

)
. (7)

The proposed forms of the Dirichlet processes in (7) ensure that any discrepancy between the distance
d(P r

m1
, Qr

m2
) and the posterior distance d(P ∗

m1
, Q∗

m2
) is due to the difference between the distributions of

the two samples. To clarify this point, notice that any Dirichlet process is centered about its mean. The
deviation from the mean is controlled via the concentration parameter. Now, P r

m1
and Qr

m2
have the same

concentration parameters as P ∗
m1

and Q∗
m2

, respectively. Also, by Lemma 4, since the distribution of the
distance is independent of the base measures, we expect that E(d(P r

m1
, Qr

m2
)) ≈ E∗(d(P ∗

m1
, Q∗

m2
)
)

a.s.
whenever F = G. See also Proposition 5 below for the consistency of the approach. It follows that, we
reject H0 if

E
(
d(P ∗

m1
, Q∗

m1
)
)

> d0.975 (8)

and we do not reject H0 otherwise. Clearly, by Lemma 4, d0.975 does not depend on the choice of the base
measures.

Instead of computing d0.975 in (8) it seems more rational to use a test statistic that compares the
expectation of the posterior distance with the expectation of the prior distance. That is, reject the null
hypothesis if

∣
∣E∗(d(P ∗

m1
, Q∗

m2
)
)
− E

(
d(P r

m1
, Qr

m2
)
)∣
∣ > ε (9)

and do not reject the null hypothesis otherwise. One can set values of ε by simulating data under the
null hypothesis and then take the empirical 0.95 quantile of the distribution of

∣
∣E∗(d(P ∗

m1
, Q∗

m2
)
)
−

E
(
d(P r

m1
, Qr

m2
)
)∣
∣. This method is also used in [23] and is known as “the Bayes, non-Bayes compromise”

described in [20]. See also Fig. 1 for histograms of samples from the distribution of
∣
∣E∗(d(P ∗

m1
, Q∗

m2
)
)
−

E
(
d(P r

m1
, Qr

m2
)
)∣
∣, when m1 = m2 = 50 and several values of a1 and a2.

The following proposition establishes the consistency of the approach to the two-sample problem as
sample sizes increase. So the procedure performs correctly as sample sizes increase when H0 is true.

Proposition 5. Let P r
m1

and Qr
m2

be as defined in (7). As m1,m2 → ∞, (i) if H0 is true, then
∣
∣E∗(d(P ∗

m1
, Q∗

m2
) − E(d(P r

m1
, Qr

m2
))

)∣
∣ a.s.→ 0

and (ii) if H0 is false, then
∣
∣E∗(d(P ∗

m1
, Q∗

m2
)
)
− E

(
d(P r

m1
, Qr

m2
)
)∣
∣ a.s.→ c > 0.

Proof. Note that, by the triangle inequality, we have

d(P r
m1

, Qr
m2

) ≤ d(P r
m1

,H) + d(Qr
m1

,H).

The right-hand side of this inequality converges a.s. to 0 [25, 4]. That is, d(P r
m1

, Qr
m2

) a.s.→ 0. By Corol-

lary 2, d(P ∗
m1

, Q∗
m2

) a.s.→ 0. Now (i) follows from the continuous mapping theorem and Theorem 25.8
in [8]. To prove (ii), notice that, if H0 is false, then

d(P ∗
m1

, Q∗
m2

) a.s.→ d(F,G) = c > 0.

By arguments similar to (i), we get (ii).

The following algorithm summarizes the steps required for a Bayesian nonparametric test for the
two-sample problem.

Algorithm B:
Bayesian nonparametric test for two samples X = X1, . . . ,Xm1 and Y = Y1, . . . , Ym2
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(a) (b)

(c) (d)

Fig. 1. Histograms of samples from the distribution of |E∗(d(P ∗
m1 , Q∗

m2))−E(d(P r
m1 , Qr

m2))|, when m1 = m2 = 50.
(a) a1 = a2 = 1; (b) a1 = a2 = 5; (c) a1 = a2 = 10; (d) a1 = a2 = 20.

1. Use Algorithm A to generate approximate samples from the two posterior processes

P ∗
m1

= P | X ∼ DP
(
a1 + m1,

a1

a1 + m1
H1 +

1
a1 + m1

m1∑

i=1

δXi

)

and

Q∗
m2

= Q | Y ∼ DP
(
a2 + m2,

a2

a2 + m2
H2 +

1
a2 + m2

m2∑

i=1

δYi

)
.

Here we recommend to take a1 = a2 = 1 and H1 = H2 = N(0, 1). Denote the approximated
processes of P ∗

m1
and Q∗

m2
by P ∗

n1,m1
and Q∗

n2,m2
, respectively.

2. Compute d(P ∗
n1,m1

, Q∗
n2,m2

).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. The solid lines represent sample paths of the posterior Dirichlet process given the first sample and the
dashed lines represent sample paths of the posterior Dirichlet process given the second sample. (a) X ∼ N(0, 1)
and Y ∼ N(0, 1); (b) X ∼ N(0, 1) and Y ∼ N(1, 1); (c) X ∼ N(0, 1) and Y ∼ N(0, 2); (d) X ∼ N(0, 1) and
Y ∼ 0.5N(−2, 1) + 0.5N(2, 1); (e) X ∼ N(0, 1) and Y ∼ t3; (f) X ∼ N(0, 1) and Y ∼ t0.5; (g) logX ∼ N(0, 1)
and log Y ∼ N(1, 1); (h) X ∼ E(1) and Y ∼ E(1); (i) X ∼ Beta(4, 6) and Y ∼ 0.2 + Beta(4, 6).

3. Repeat steps (1) and (2) to obtain R1 i.i.d. samples of d(P ∗
n1,m1

, Q∗
n2,m2

). For large n1, n2 and R1,
the empirical distribution of these values is an approximation to the distribution of d(P ∗

m1
, Q∗

m2
).

4. Compute d, the average of the R1 values generated at step (3).

5. Compute d(P r
n1,m1

, Qr
n2,m2

) by repeating steps (1)–(3) with P ∗
m1

, Q∗
m2

, P ∗
n1,m1

, Q∗
n2,m2

, R1 and d

are replaced by P r
m1

, Qr
m2

, P r
n1,m1

, Qr
n2,m2

, R2 and dr, respectively. Here P r
m1

and Qr
m2

are defined
in (7).

6. Compute δ = |d − dr|.
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7. If δ > ε, then there is a sufficient evidence to reject H0. Otherwise, we do not reject the null
hypothesis H0.

The results of the next section are based on a simple implementation of this algorithm. The R codes
are available from the authors.

5. EXAMPLES

In this section, the proposed method is assessed through two examples, where simulated samples
from a variety of distributions are considered. The following notation is used for the distributions in
the tables, namely, N(μ, σ2) is the normal distribution with mean μ and standard deviation σ, tr is
the t distribution with r degrees of freedom, E(λ) is the exponential distribution with mean 1/λ and
U(a, b) is the uniform distribution over [a, b]. For all cases we set n1 = n2 = 1000 in Algorithm A
and R1 = R2 = 2000, and m1 = m2 = 50 in Algorithm B. The results are also compared with the
(frequentist) Kolmogorov–Smirnov (KS) test and the Bayesian nonparametric test in [23]. To calculate
the distance in the frequentist KS test, the R function “ks.test" is used. The cut-off of the frequentist
KS test can be obtained from standard tables. See, for example, [21]. As for test-B in [23], we use
the code provided by the same authors and posted at http://www.stats.ox.ac.uk/~caron/code/
polyatreetest/index.html.

Example 1. Consider samples generated from the distributions in Table 1, where each sample is of size
50 (Cases 1–9). To study the sensitivity of the approach to the choice of concentration parameters,
various values of a1 and a2 are considered. The results are reported in Table 1. In particular, when
a1 = a2 = 1, 5, 10, 20, we get dr = 0.165, 0.158, 0.151, 0.145, respectively. Recalling that we want δ =
|d − dr| < ε when H0 is true and δ = |d − dr| > ε when H0 is false, it is seen that the methodology
is powerful in every instance. For example, in Case 1, since δ = 0.027 < ε = 0.132, the two sampling
distributions are identical. On the other hand, in Case 2, since δ = 0.397 > ε = 0.132, the two samples
are drawn from two different distributions. Notice that, in all cases, the appropriate conclusion is attained
with a1 = a2 = 1. The other values of a1 and a2 considered in Table 1 support our conclusions. We
point out that the frequentist Kolmogorov–Smirnov fails to recognize the difference between the two
samples generated in Case 6 (i.e., x ∼ N(0, 1) and y ∼ t0.5). On the other hand, for the other cases,
the three tests gave the same conclusion. In particular, in Case 5, the three methods fail to reject
the null hypothesis. This could be explained since the actual Kolmogorov distance between N(0, 1)
and t3 is close to 0.049, which is quite a bit smaller than the other cases in Table 1. For example,
the t0.5 distribution has Kolmogorov distance from the N(0, 1) around 0.200 while the N(−1, 1) has
Kolmogorov distance from the N(0, 1) nearby 0.338. Here, the R code “distrMod" is used to calculate
the exact Kolmogorov distance.

Figure 2 provides a plot of 5 sample paths for each of the posterior Dirichlet processes given the first
sample and the posterior Dirichlet process given the second sample. In Case 1 (Fig. 2-a), Case 5 (Fig. 2-
e) and Case 8 (Fig. 2-h), the plots of the sample paths for the two posterior processes move toward each
other. This suggests that the null hypothesis is not rejected. On the other hand, in the other cases, the
plots of the sample paths for the posterior processes deviate from each other. This supports the rejection
of the null hypothesis.

It is also interesting to consider the effect of prior-data conflict on the methodology. As discussed
in Section 4, prior-data conflict will occur whenever there is only a tiny overlap between H1 and H2.
Table 2 gives the outcomes of particular samples of sizes m1 = m2 = 50 with various choices of H1

and H2. Obviously, when H1 = H2, we get the correct conclusion but not otherwise. For instance,
when X ∼ N(−5, 1) and Y ∼ N(5, 1) with H1 = N(−5, 1) and H2 = N(5, 1), we get δ = 0, which
yields accepting the null hypothesis. Obviously, this conclusion is incorrect. On the other hand, when
H1 = H2, δ is close to 0.8 and the right conclusion is attained. This illustrates the importance of setting
H1 = H2 in the priors DP (a1,H1) and DP (a1,H1).

Example 2. In this example, we explore the performance of the proposed test as sample sizes increase.
We consider samples from the distributions X ∼ N(0, 1), Y ∼ N(0, 1) (Case 1) and X ∼ N(0, 1),
Y ∼ N(1, 1) (Case 2). The results are summarized in Table 3. It follows that the null hypothesis is
not rejected in Case 1 but rejected in Case 2. Clearly, the proposed approach works well even with small
sample sizes.
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Table 1. The proposed Bayesian nonparametric test against the (frequentist) Kolmogorov–Smirnov test
and the Holmes et al. test [23]. Here dKS is the (frequentist) Kolmogorov–Smirnov distance.

Samples a1 = a2 d(dr) δ(ε) dKS(cut-off) Holmes et al.

X ∼ N(0, 1) 1 0.192(0.165) 0.027(0.132) 0.100(0.272) Fail to reject

Y ∼ N(0, 1) 5 0.186(0.158) 0.028(0.122)

10 0.173(0.151) 0.022(0.116)

20 0.166(0.145) 0.0210(0.088)

X ∼ N(0, 1) 1 0.562(0.165) 0.397(0.132) 0.540(0.272) Reject

Y ∼ N(1, 1) 5 0.524(0.158) 0.366(0.122)

10 0.488(0.151) 0.337(0.116)

20 0.424(0.145) 0.279(0.088)

X ∼ N(0, 1) 1 0.351(0.165) 0.186(0.132) 0.300(0.272) Reject

Y ∼ N(0, 4) 5 0.329(0.158) 0.171(0.122)

10 0.307(0.151) 0.156(0.116)

20 0.272(0.145) 0.127(0.088)

X ∼ N(0, 1) 1 0.378(0.165) 0.213(0.132) 0.340(0.272) Reject

Y ∼ 0.5(N(−2, 1) 5 0.352(0.158) 0.194(0.122)

+N(2, 1)) 10 0.327(0.151) 0.176(0.116)

20 0.309(0.145) 0.164(0.088)

X ∼ N(0, 1) 1 0.200(0.165) 0.035(0.132) 0.120(0.272) Fail to reject

Y ∼ t3 5 0.194(0.158) 0.036(0.122)

10 0.183(0.151) 0.032(0.116)

20 0.165(0.145) 0.020(0.088)

X ∼ N(0, 1) 1 0.340(0.165) 0.175(0.132) 0.320(0.272) Reject

Y ∼ t0.5 5 0.317(0.158) 0.159(0.122)

10 0.295(0.151) 0.144(0.116)

20 0.258(0.145) 0.113(0.088)

log X ∼ N(0, 1) 1 0.491(0.165) 0.326(0.132) 0.480(0.272) Reject

log Y ∼ N(1, 1) 5 0.452(0.158) 0.294(0.122)

10 0.419(0.151) 0.268(0.116)

20 0.357(0.145) 0.212(0.088)

X ∼ E(1) 1 0.225(0.165) 0.060(0.132) 0.160(0.272) Fail to reject

Y ∼ E(1) 5 0.208(0.158) 0.050(0.122)

10 0.201(0.151) 0.050(0.116)

20 0.181(0.145) 0.036(0.088)

X ∼ Beta(4, 6) 1 0.671(0.165) 0.506(0.132) 0.660(0.272) Reject

Y ∼ 0.2 + Beta(4, 6) 5 0.632(0.158) 0.474(0.122)

10 0.577(0.151) 0.426(0.116)

20 0.492(0.145) 0.347(0.088)
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Table 2. Study of prior-data conflict of the proposed Bayesian nonparametric test for various choices of
base measures H1 and H2.

Distribution H1 H2 d dr δ = |d − dr|
X ∼ N(0, 1) N(0, 1) N(0, 1) 0.210 0.165 0.045

Y ∼ N(0, 1) N(−5, 1) N(5, 1) 0.204 1 0.796

U(10, 20) N(0, 1) 0.208 1 0.792

U(10, 20) U(10, 20) 0.206 0.162 0.044

E(1) E(1) 0.205 0.166 0.039

X ∼ N(−5, 1) N(0, 1) N(0, 1) 0.993 0.165 0.828

Y ∼ N(5, 1) N(−5, 1) N(5, 1) 1 1 0

U(10, 20) N(0, 1) 1 1 0

U(10, 20) U(10, 20) 0.999 0.162 0.837

E(1) E(1) 0.980 0.166 0.814

Table 3. The proposed Bayesian nonparametric test against the (frequentist) Kolmogorov–Smirnov test
and the Holmes et al. test [23] when considering small sample sizes. Here dKS is the Kolmogorov–Smirnov
distance obtained by the frequentist Kolmogorov–Smirnov test.

Sample Sizes
X ∼ N(0, 1), Y ∼ N(0, 1)

d(dr) δ(ε) dKS(cut-off) Holmes et al.

m1 = m2 = 5 0.486(0.412) 0.074(0.244) 0.400(0.800) Fail to reject

m1 = m2 = 10 0.407(0.326) 0.081(0.196) 0.333(0.600) Reject

m1 = m2 = 15 0.337(0.279) 0.058(0.114) 0.385(0.467) Fail to reject

m1 = m2 = 20 0.295(0.242) 0.053(0.143) 0.211(0.400) Reject

m1 = m2 = 30 0.271(0.203) 0.068(0.112) 0.207(0.333) Reject

m1 = m2 = 50 0.271(0.165) 0.027(0.132) 0.180(0.272) Fail to reject

m1 = m2 = 100 0.145(0.122) 0.023(0.060) 0.081(0.192) Fail to reject

m1 = m2 = 200 0.118(0.090) 0.028(0.038) 0.075(0.136) Fail to reject

6. ASYMPTOTIC THEORY
Similar to the two-sample frequentist’s Kolmogorov–Smirnov test, it is possible to construct a

test based on the fact that the two independent processes
√

m1(P ∗
m1

− H∗
m1

) and
√

m2(P ∗
m2

− H∗
m2

)
converge jointly in distribution to the two independent Brownian bridges BF and BG, where F and G are
the “true” distributions generating the data. In particular, the next lemma establishes a direct connection
between the frequentist two-sample Kolmogorov–Smirnov test and the one that relies on the Dirichlet
process. Recall that a Gaussian process is called a Brownian bridge with parameter measure F ,
denoted by {BF (t), t ∈ R}, if E(BF (t)) = 0 and Cov(BF (s), BF (t)) = F (min(s, t)) − F (s)F (t), for
any t, s ∈ R [26].

Lemma 6. Consider the two-sample problem considered in Section 3. Suppose that m1,m2 → ∞,
m1/(m1 + m2) → γ ∈ (0, 1). If the hypothesis H0 holds, then

√
m1m2

m1 + m2
d
(
P ∗

m1
(t), Q∗

m2
(t)

) d→ 2 sup
x∈R

|BF (t)|, (10)

where BF is a Brownian bridge with parameter measure F .
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Table 4. The proposed Bayesian nonparametric test against the (frequentist) Kolmogorov–Smirnov test and the
Holmes et al. test [23] when considering small sample sizes. Here dKS is the Kolmogorov–Smirnov distance
obtained by the frequentist Kolmogorov–Smirnov test.

Sample Sizes
X ∼ N(0, 1), Y ∼ N(1, 1)

d(dr) δ(ε) dKS(cut-off) Holmes et al.

m1 = m2 = 5 0.869(0.412) 0.457(0.244) 1.00(0.800) Reject

m1 = m2 = 10 0.773(0.326) 0.447(0.196) 0.800(0.600) Reject

m1 = m2 = 15 0.550(0.279) 0.271(0.114) 0.550(0.467) Reject

m1 = m2 = 20 0.552(0.242) 0.310(0.143) 0.550(0.400) Reject

m1 = m2 = 30 0.475(0.203) 0.272(0.112) 0.467(0.333) Reject

m1 = m2 = 50 0.562(0.165) 0.397(0.132) 0.280(0.272) Reject

m1 = m2 = 100 0.447(0.122) 0.325(0.06) 0.420(0.192) Reject

m1 = m2 = 200 0.409(0.090) 0.319(0.038) 0.39(0.136) Reject

Proof. Note that
√

m1m2

m1 + m2

(
P ∗

m1
(t) − Q∗

m2
(t)

)
=

√
m2

m1 + m2

√
m1

(
P ∗

m1
(t) − H∗

m1
(t)

)

−
√

m1

m1 + m2

√
m2

(
Q∗

m2
(t) − H∗

m2
(t)

)
+

√
m1m2

m1 + m2

(
H∗

m1
(t) − H∗

m2
(t)

)
. (11)

The first two terms in (11) converge respectively to
√

1 − γBF (t) and −√
γBG(t) [25]. On the other

hand, the last term in (11) is equal to
√

m1m2

m1 + m2

(
a

a + m1
H(t) +

m1

a + m1
Fm1(t) −

a

a + m2
H(t) − m2

a + m2
Gm2(t)

)

=
√

m1m2

m1 + m2

(
m1

a + m1
Fm1(t) −

m2

a + m2
Gm2(t)

)

(12)

+
√

m1m2

m1 + m2

a(m2 − m1)H(t)
(a + m1)(a + m2)

. (13)

It follows from a well-known result in empirical processes [34] that, under H0, (12) converges in dis-
tribution to

√
1 − γBF (t) −√

γBG(t). On the other hand, taking m2 = km1, for some k > 0, simplifies
(13) to

a(k − 1)

√
k

1 + k

m
3/2
1

(a + m1)(a + km1)
H(t),

which clearly converges to zero as m1 → ∞. Hence
√

m1m2

m1 + m2

(
P ∗

m1
(t) − Q∗

m2
(t)

)
→ 2(

√
1 − γBF (t) +

√
γBG(t)) = 2BF (t), (14)

where the last equality in (14) holds since BF (t) is the sum of two independent Gaussian processes and

E(BF (t)) = E
(√

1 − γBF (t) +
√

γBG(t)
)

= 0,

Cov(BF (s), BF (t)) = Cov
(√

1 − γBF (s) +
√

γBG(s),
√

1 − γBF (t) −√
γBG(t)

)

= (1 − γ)Cov(BF (s), BF (t)) + γ Cov(BG(s), BG(t))
= Cov(BF (s), BF (t)) = F (min(s, t)) − F (s)F (t).
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Now the continuous mapping theorem completes the proof of the lemma.

Note that the result derived in Lemma 6 is, somehow, close to the following well-known result in the
theory of empirical processes [34]:

√
m1m2

m1 + m2
d
(
Fm1(t), Gm2(t)

) d→ sup
x∈R

|BF (t)|. (15)

This is a fairly surprising result as one expects that, asymptotically, the right-hand sides of (10) and
(15) should converge to the same limit, which is not the case.

7. CONCLUDING REMARKS

An approach based on the Kolmogorov distance and approximate samples from the Dirichlet process
is proposed to assess the equality of two unknown distributions. The current study may lead to further
research directions. For instance, it would be interesting to study the effect of selecting other distances
such as the Wasserstein (or Kantorovich) distance, the Cramér–von Mises distance and the Anderson–
Darling distance on the proposed approach. It is also interesting to make an extensive comparison study
between the proposed approach and other Bayesian and frequentist tests. Another important extension is
the generalization of the approach to construct a test for multivariate distributions. Finally, constructing
a test based on the result derived in Lemma 6 and comparing it with the Kolmogorov–Smirnov test
seems motivating. We leave this direction for future work.

8. ACKNOWLEDGMENTS

We would like to thank the editors and an anonymous referee for their careful review of the paper and
their extremely helpful comments.

Research of the second author is supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

REFERENCES
1. L. Al-Labadi and M. Evans, “Optimal Robustness Results for Relative Belief Inferences and the Relationship

to Prior-Data Conflict”, Bayesian Analysis 12, 705–728 (2016).
2. L. Al-Labadi, M. Masuadi, and M. Zarepour, “Two-Sample Bayesian Nonparametric Goodness-of-Fit Test”

(2015), https://arxiv.org/abs/1411.3427.
3. L. Al-Labadi and M. Zarepour, “A Bayesian Nonparametric Goodness of Fit Test for Right Censored Data

Based on Approximate Samples from the Beta–Stacy Process”, Canadian J. Statist. 41 (3), 466–487 (2013).
4. L. Al-Labadi and M. Zarepour, “On Asymptotic Properties and Almost Sure Approximation of the Normal-

ized Inverse-Gaussian Process”, Bayesian Analysis 8, 553–568 (2013).
5. L. Al-Labadi and M. Zarepour, “On Simulations from the Two-Parameter Poisson-Dirichlet Process and the

Normalized Inverse-Gaussian Process”, Sankhya A 76, 158–176 (2014).
6. L. Al-Labadi and M. Zarepour, “Goodness of Fit Tests Based on the Distance between the Dirichlet Process

and Its Base Measure”, J. Nonparam. Statist. 26, 341–357 (2014).
7. J. O. Berger and A. Guglielmi, “Bayesian Testing of a Parametric Model versus Nonparametric Alternatives”,

J. Amer. Statist. Assoc. 96, 174–184 (2001).
8. P. Billingsley, Probability and Measure, 2nd ed. (Wiley, New York, 1995).
9. D. Blackwell and J. B. MacQueen, “Ferguson Distributions via Polya Urn Schemes”, Ann. Statist. 1, 353–

355 (1973).
10. L. Bondesson, “On Simulation from Infinitely Divisible Distributions”, Advances in Appl. Probab. 14, 885–

869 (1982).
11. K. M. Borgwardt and Z. Ghahramani, Z. “Bayesian Two–Sample Tests” (2009),

http://arxiv.org/abs/0906.4032.
12. C. Carota and G. Parmigiani, “On Bayes Factors for Nonparametric Alternatives”, in Bayesian Statistics 5,

Ed. by J. M. Bernardo, J. Berger, A. P. Dawid, and A. F. M. Smith (Oxford Univ. Press, London, 1996).
13. Y. Chen and T. Hanson, “Bayesian Nonparametric k-Sample Tests for Censored and Uncensored Data”,

Comp. Statist. and Data Analysis 71, 335–346 (2014).
14. A. Dasgupta, Asymptotic Theory of Statistics and Probability (Springer, New York, 2008).
15. M. Evans and H. Moshonov, “Checking for prior-data conflict”, Bayesian Analysis 1 (4), 893–914 (2006).

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 3 2017



TWO-SAMPLE KS TEST USING A BNP APPROACH 225

16. T. S. Ferguson, “A Bayesian Analysis of Some Nonparametric Problems”, Ann. Statist. 1, 209–230 (1973).
17. J. P. Florens, J. F. Richard, and J. M. Rolin, Bayesian Encompassing Specification Tests of a Parametric

Model against a Nonparametric Alternative, Techn. Rep. 9608, Univ. Catholique de Louvain, Inst. de
Statistique (1996).

18. J. K. Ghosh and R. V. Ramamoorthi, Bayesian Nonparametrics (Springer, New York, 2003).
19. A. Gibbs and E. F. Su, “On choosing and bounding probability metrics”, Int. Statist. Review 70, 419–435

(2002).
20. I. J. Good, “The Bayes/Non-Bayes Compromise: A Brief Review”, J. Amer. Statist. Assoc. 87, 597–606

(1992).
21. H. L. Harter and D. B. Owen, Selected Tables in Mathematical Statistics (Markham Publ. Co., Chicago,

1972), Vol. I.
22. P. Hsieh, “A Nonparametric Assessment of Model Adequacy Based on Kullback–Leibler Divergence”,

Statist. and Comput. 23, 149–162 (2011).
23. C. C. Holmes, F. Caron, J. E. Griffin, and D. A. Stephens, “Two-Sample Bayesian Nonparametric Hypothesis

Testing”, Bayesian Analysis 2, 297–320 (2015).
24. L. Huang and M. Ghosh, “Two-Sample Hypothesis Hypothesis Testing Problems under Lehmann Alterna-

tives and Polya Tree Priors”, Statist. Sinica 24, 1717–1733 (2014).
25. L. F. James, “Large Sample Asymptotics for the Two-Parameter Poisson–Dirichlet Process”, in Pushing

the Limits of Contemporary Statistics: Contributions in Honor of Jayanta K. Ghosh, Ed. by B. Clarke
and S. Ghosal (Inst. of Math. Statist., Ohio, 2008)

26. N. Kim and P. Bickel, “The Limit Distribution of a Test Statistic for Bivariate Normality”, Statistica Sinica
13, 327–349 (2003).

27. M. Lavine, “Some Aspects of Polya Tree Distributions for Statistical Modelling”, Ann. Statist. 20, 1222–
1235 (1992).
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