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Abstract—It is well known that any natural exponential family (NEF) is characterized by its vari-
ance function on its mean domain, often much simpler than the corresponding generating probability
measures. The mean value parametrization appeared to be crucial in some statistical theory, like in
generalized linear models, exponential dispersion models and Bayesian framework. The main aim
of the paper is to expose the mean value parametrization for possible statistical applications. The
paper presents an overview of the mean value parametrization and of the characterization property
of the variance function for NEF’s. In particular it introduces the relationships existing between the
NEF’s generating measure, Laplace transform and variance function as well as some supplemental
results concerning the mean value representation. Some classes of polynomial variance functions
are revisited for illustration. The corresponding NEF’s of such classes are generated by counting
probabilities on the nonnegative integers and provide Poisson-overdispersed competitors to the
homogeneous Poisson distribution.
Keywords: natural exponential families, exponential dispersion models, variance functions, polyno-
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1. INTRODUCTION

Natural exponential families (NEFs) on R (or on R
k) play an important role both in probability and

statistical applications. Most of the frequently used distributions are indeed belonging to such families.
However, as will be described in the sequel, a huge number of NEFs have not been used in probabilistic
or statistical modelling for a mainly one reason: they have not yet been revealed, although they could
provide new models useful in applications.

There are various reasons why parametric models are employed for modelling. Some of them are
obtained as limiting distributions of sample functionals (as the normal distribution and extreme value
distributions). Others are obtained as a result of a probabilistic characterization (as stable and self
decomposable distributions), but mainly some have been used as they are analytically tractable for
statistical and probabilistic analysis as the Poisson and exponential distributions. Just for example,
the Poisson distribution (or process) has been used for decades (if not centuries) to model counting
characteristics of random phenomena (e.g., the number of insurance claims or an arrival process in
queueing modelling aspects). The exponential distribution has been used, among other targets, to model
survival data. The latter two distributions are manipulable and easily managed for obtaining relatively
easy explicit relevant expressions.

For quite some time it is known that both distributions do not necessarily reflect real data analysis.
The M/M/k or M/G/k (i.e., Poisson arrival, exponential service time M – or arbitrary service time
distribution G, respectively – and k servers) policies that have been used in the early beginning of
queueing modelling are now known not to really describe real data of queueing processes. As in practice
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the arrival process into a queueing system (or call centers) is rather much more complicated than that
described by the homogeneous Poisson process, and likewise is the exponential service time of a server.
Also, it is well known that Poisson distribution does not really reflect the number of claims into an
insurance system or describing mortality rates (e.g., [22, 20, 14]), as real data are overdispersed and
zero-inflated; c.f., [40] and the references cited therein. Moreover, the exponential distribution is hardly
served in practice as a distribution for describing the survival lifetime to failure of electronic (or other)
components (as had been used for several decades of the last century) and is often replaced by more
suitable parametric distributions or by nonparametric modelling.

Nowadays, we are well aware of the fact that real data are more complex than just describing them
by the above two distributions (or some other well used distributions). It seems to us that distributions
such as the above have been frequently utilized for their tractability to obtain nice and explicit expressions
and by that avoiding a computational complexity. In a way, such a use of ’light’ distributions for inference
appears like ’looking for the lost coin under the first light street’. Notwithstanding, with the availability of
powerful mathematical software as MATHEMATICA, R, S and Matlab, it appears that intractable and
more complex functional forms of competitive distributions is no longer a hindrance for computation
and data analysis and can be used accordingly. A referee correctly argued that "neither numerical
calculations nor lack of available software, never were a major obstacle, at least for the last several
decades, in addressing well known statistical problems". Nonetheless, we trust that the complexity of
the exact analytic forms of various distributions (as will be demonstrated in the sequel) is still often an
obstacle in implementing such distributions. This is in spite of the availability of advanced mathematical
software that could in principle cope with these distributions.

The main purpose of this study is to expose the mean value parametrization of NEFs and their as-
sociated variance functions for possible statistical applications. The latter parametrization is sometimes
available in closed analytical form whereas the related Laplace transform is either unknown or rather has
an intractable and cumbersome form. Moreover, the mean value parametrization provides and generates
huge classes of NEFs with rather tractable variance functions that have not been known before. This
will be exemplified by illustrative cases and examples, particularly in the Bayesian framework.

This paper is organized as follows. In Section 2 we review some background material on NEFs and
exponential dispersion models (EDMs), their related variance functions. Section 3 is devoted to the
mean value parametrization. In particular, it introduces the relationships existing between the NEF’s
generating measure, Laplace transform and variance function as well as some supplemental results
concerning the mean value representation. A class of polynomial variance functions is introduced in
Section 4 along with some of its subclasses associated with NEF’s composed of counting distributions.
Such subclasses can be smoothly utilized in Bayesian approach. Illustrations and applications are then
provided. Some concluding remarks are presented in Section 5.

Most of the exposition of the paper is a collection of relevant results in the literature. We however
present also some new results (particularly Proposition 1, Lemma 2 and Corollary 3) which aim at
clarifying some indistinct related results.

2. NEF’S – A GENERAL DESCRIPTION

2.1. Preliminaries

The following preliminaries are mainly taken from [34]. Let μ be a non-Dirac positive Radon measure
on R, Sμ the support of μ, and Cμ the convex-hull of Sμ. The Laplace transform (LT) of μ is a mapping
Lμ : R → (0,∞] defined by

Lμ(θ) =
∫

R

eθxμ(dx).

Let Dμ denote the effective domain of μ, i.e., Dμ = {θ ∈ R : Lμ(θ) < ∞}, assume that Θμ = intDμ �= ∅
and let kμ(θ) = log Lμ(θ) be the cumulant transform of Lμ. Also, let M(R) denote the set of positive
measures μ on R not concentrated on one point such that Θμ �= ∅. Then the NEF F generated by μ is
defined by probabilities

F = F (μ) =
{
P (θ, μ(dx)) = exp{θx − kμ(θ)}μ(dx), θ ∈ Θμ

}
. (1)
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The Mean value parametrization. The cumulant transform kμ is strictly convex and real analytic
on Θμ and

k′
μ(θ) =

∫
R

x exp{θx − kμ(θ)}μ(dx)

is the mean function of F . The open interval MF = k′
μ(Θμ) is called the mean domain of F . Since

the map θ �−→ k′
μ(θ) is one-to-one, its inverse function ψμ : MF −→ Θμ is well defined. Hence the

map m �−→ P (m,F ) = P (ψμ(m), μ) is one-to-one from MF onto F and is called the mean domain
parametrization of F .

The Variance Function. The variance corresponding to P (m,F ) is

VF (m) = 1/ψ′
μ(m) = k′′

μ(θ). (2)

The map m �−→ VF (m) from MF into R
+ is called the variance function (VF) of F . In fact a VF of

an NEF F is a pair (VF ,MF ). It uniquely determines an NEF within the class of NEFs. Morris [37]
characterized all NEFs having quadratic VFs (six families) and Letac and Mora [34] all NEFs with
strict cubic VFs (six families). Bar-Lev [2] showed that any kth degree polynomial with nonnegative
coefficients constitutes an infinitely divisible VF with mean domain R

+. Tweedie [45], Bar-Lev and
Enis [10] and Jørgensen [24] have considered, in different contexts, the class of NEFs with power
variance functions (NEF-PVFs) of the form V (m) = bmγ , for some b > 0, γ ∈ R, and where M = R

or R
+ (depending on γ). This class is huge and contains the following families: normal (γ =0), Poisson

(γ = 1), gamma (γ =2), inverse Gaussian (γ = 3), compound Poisson NEFs generated by all gamma
distributions (1 < γ <2), NEFs generated by extreme stable distributions with stable index belonging to
the open interval (0, 1) (γ > 2). All of the above NEFs are steep (see definition below) and M = intC =
R

+ (c.f., [10]). The remaining subclass of NEF-PVFs with γ < 0 are NEFs generated by extreme
stable distributions with stable index belonging to the interval (1, 2). The latter subclass is composed
of nonsteep NEFs with M = R

+ and intC = R. All such NEF-PVFs are infinitely divisible. No NEFs-
PVFs exist if γ ∈ (0, 1). All of the NEFs with power VFs are often refereed to as Tweedie class.

A steep NEF. An NEF F = F (μ) is called steep if and only if MF = int Cμ. An equivalent condition
to steepness of F is presented in Theorem 2.1 in [34] and it states the following. Let Θμ = (c, d),−∞ ≤
c < d ≤ ∞, then F is steep if and only if the two following conditions hold: (i) either c /∈ Dμ or c ∈ Dμ

and limθ↓c k′
μ(θ) = −∞; and (ii) either d /∈ Dμ or d ∈ Dμ and limθ↑d k′

μ(θ) = ∞. If F is regular, i.e.,
Dμ = Θμ, then F is steep.

Bases of F . The measure μ generating F = F (μ) is called a basis. The basis of F is not unique.
If μ and μ′ belong to M(R), then F (μ) = F (μ′) if and only if there exists (a, b) ∈ R

2 such that
μ′(dx) = eax+bμ(dx), implying that all bases of F generate the same VF (VF ,MF ).

The Jørgensen set of NEF and Exponential Dispersion Models (EDMs). EDMs have been
studied thoroughly by Jørgensen [25, 26] and others, suggesting them to describe the error component
in generalized linear models (GLIM). An EDM is related to an NEF as follows. The Jørgensen set
Λ = ΛF associated with F is defined by

Λ =
{
λ ∈ R

+ : λkμ(θ) is a cumulant transform of some measure μλ on R
}
, (3)

and is nonempty since by convolution it contains N.
It is worthy of note the following equivalent statements:

F (μ) is composed of infinitely divisible distributions ⇐⇒
μ is infinitely divisible ⇐⇒ Λ = R

+. (4)

For λ ∈ Λ, the NEF Fλ generated by μλ is

Fλ = Fλ(μλ) =
{
P (θ, λ, μλ(dx)) = exp{θx − λkμ(θ)}μλ(dx), θ ∈ Θμ

}
, (5)

where the support of μλ may depend on λ.
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For λ ∈ Λ, the mean function, the mean domain and VF of the NEF Fλ, denoted by mλ,Mλ and Vλ,
respectively, are given by

mλ = λκ′(θ) = λm, Mλ = λMF

and

Vλ(m) = λκ′′
μ(θ) = λVF (m), m ∈ MF , or Vλ(mλ) = λVλ(mλ/λ), mλ ∈ Mλ. (6)

The set of probabilities

G =
{
P (θ, λ, μλ) : θ ∈ Θμ, λ ∈ Λ

}
,

is called the EDM associated with F and is parameterized by (θ, λ) ∈ Λ × Θν . The parameter σ2 = 1/λ
is termed the dispersion parameter.

As can be seen, EDMs form a large class of models for data modelling and are used, among other
applications, to describe the error component in generalized linear models, c.f., [39] and [24, 25].

The properties of infinite divisibility and steepness are important for the present study. Infinite
divisibility ensures that Λ = R

+ and thus EDM distributions resemble in GLIM the role of the
normal distribution in simple regression models for describing the distribution of the error component.
Steepness of F (or μ) ensures that the MLE of m exists with probability one and is given as the unique
solution of the maximum likelihood equation m̂− X̄n = 0 (c.f., [13], Chapter 9), where X̄n is the sample
mean based on n independent replicas X1, . . . ,Xn of X, where the distribution of X belongs to (1).

2.2. Some Statistical Applications of VFs Related to NEFs and EDMs

Various applications of VFs, NEFs and EDMs appeared in the statistical literature. Here we mention
only a few of them.

1. Statistical modelling. Numerous works have dealt with the applications of VFs of NEFs and
EDMs for statistical modelling by using GLIM. For example, the Tweedie class has been applied
to actuarial problems related to insurance claims (cars and life insurance), c.f., [44, 16, 17, 46] and
the references cited therein.

2. Estimation. EDMs with unknown mean and dispersion parameters were studied in [12] with
respect to second-order minimax estimation of the mean. Bar-Lev, Bshouty and Landsman [9]
studied the problem of the improvement of the sample mean in the second order minimax
estimation sense for a mean belonging to an unrestricted mean. They solved such a problem for
the class of NEFs whose VFs are regular at zero and at infinity. Such a class of VFs is huge and
contains (among others): Polynomial VF’s (e.g., quadratic VFs in the Morris class, cubic VFs in
the Letac and Mora class and VFs in the Hinde–Demétrio class); VFs belonging to the Tweedie
class with power VF’s, VFs belonging to the Babel class (see [32, 33]) and many others.

3. Prior distribution and information theory. Jeffreys and Shtarkov distributions play an important
role in universal coding and minimum description length inference, two central areas within
the field of information theory. It was recently discovered that in some situations Shtarkov
distributions exist while Jeffreys distributions do not. Some of these situations were considered
in [8] in which they constructed numerous classes of infinitely divisible NEFs for which Shtarkov
distributions exist and Jeffreys do not. The method used to obtain these general results was based
on the VFs of such NEFs.
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2.3. Relationships between the Generating Measure of an NEF and Its LT and VF

There are infinitely many μ ∈ M(R) and such are the associated LT’s, NEF’s and VF’s. Various
cases of relationships exist among the triple: the generating measure μ of F , the LT Lμ and the
associated VF (VF ,MF ). We outline only some of them with relevant examples.

(i) Cases in which the three of them are known and have nice explicit forms (e.g., NEF’s with
quadratic VF’s including, among others, the normal, gamma, binomial, negative binomial and Poisson
NEF’s).

(ii) Cases in which the three are explicitly known but either one or two of them have intractable
forms. For example, positive stable measures with stable index 0 < ρ < 1 have LT’s of the form
exp(−(−θ)ρ), θ < 0, and VF’s of the form

(V,M) =
(
ρ(1 − ρ)(m/ρ)

ρ−2
ρ−1 , R

+
)
,

whereas μ (except for the inverse Gaussian measure with ρ = 1/2) can be either represented as an
infinite sum, or in terms of some transcendental function. Note that stable distributions have been
obtained by a probabilistic characterization and also appear as limiting distributions for some stochastic
processes; c.f., [35, 36].

(iii) Cases where both μ and its VF are explicitly specified whereas the respective LT is a solution of
an implicit equation. An example of this type that will be considered in the sequel (see Example 1) is
the Ressel distribution; c.f., [41, 34, 11, 3] (and various references cited therein). Its probability density
function and VF are given by

μ(dx) =
xx−1e−x

Γ(x + 1)
(dx), x > 0, (V,M) =

(
m2(1 + m), R

+
)
, (7)

whereas its LT is the solution of an implicit equation which was first obtained by Prabhu [41], p. 73, to
describe the LT of the busy period in an M/G/1 queue.

(iv) Cases in which only the VF is explicit. Such cases are important as they apparently reveal new
NEF’s that have not been used in statistical modelling. Examples of cases of this kind are (almost)
all polynomials of degree ≥ 4 whose generating measures are concentrated on the set of nonnegative
integers. These are well exemplified in Section 4.

2.4. Derivation of Cumulants via the VF

Needless to say that the mean value parametrization is of a more interest for statistical applications
as the canonical parameter θ is a somewhat artificial parameter for any statistical usage. Nonetheless, as
the present study focuses on some practical aspects, the mean value parametrization is useful whenever
both integrals of ψμ(m) and kμ(ψμ(m)) in (10) are expressible in terms of m. Note that if this is
indeed the case, and whether or not μ is known, all moments of the corresponding NEF F are also
nicely expressible in terms of m. This follows as the rth cumulant of F is k(r)(θ) .= dkr(θ)/dθr, where
k(r) denotes the rth derivative of k (here, when no ambiguity is caused, we suppress the dependence
of kμ, Θμ, VF on μ and F , and so on). By following [7] and defining an operator L acting on V by
L(V ) ≡ L1(V ) = V V ′ and Ln(V ) = L(Ln−1(V )), n ∈ N, with L0(V ) = V , the rth cumulant of F ,
expressed in terms of m, is given by

kr+2(m) .= k(r+2)(ψμ(m)) = Lr(V (m)) for all r = 0, 1, . . . and m ∈ M, (8)

where kj = kj(m) stands for the jth cumulant expressed in terms of m. Consequently, the skewness and
kurtosis of F are easily obtained.
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3. THE MEAN VALUE PARAMETRIZATION

As there are necessary and/or sufficient conditions for a function to be a LT there are also such
conditions for a pair (V,M) to be a VF of an NEF (some of which will be introduced in the sequel), with
or without knowing the corresponding measure μ.

Given an LT (or a VF) related to a measure μ, theoretically it is possible to reveal μ by using the
inversion theorem for LT’s. Practically, however, in most cases this mission seems to be impossible.
Likewise is the situation with a given VF, where it is not possible to reveal the generating measure except
for some few cases. We shall deal with this aspect, but first we present the mean value parametrization
of an NEF.

Let (VF ,MF ) be a given VF of an NEF F generated by μ. Then as m = k′
μ(θ) and VF (m) =

1/ψ′
μ(m) = k′′

μ(θ) (see (2)), the canonical parameter θ and the cumulant transform kμ can be represented
in terms of m as

θ = ψμ(m) =
∫

dm

VF (m)
+ c1, kμ(ψμ(m)) =

∫
m

VF (m)
dm + c2, (9)

where one needs to determine the constants c1 and c2. The simplest way to do so is to assume that μ is a
probability. Under this circumstance one chooses m0 in the domain of the means MF or at the boundary
of MF and writes

ψμ(m) =
∫ m

m0

dt

VF (t)
, kμ(ψμ(m)) =

∫ m

m0

t dt

VF (t)
. (10)

Indeed, the following proposition shows how to cope with the determination of the constants c1 and c2

in (9) by just expressing the mean value parametrization of the NEF F as generated by a probability
measure (and not by an arbitrary measure).

Proposition 1. Suppose that (VF ,MF ) is the VF of the NEF F , where MF = (a, b) with −∞ ≤
a < b ≤ ∞. Then the mean value parametrization of F = F (μ) can be expressed in terms of
probabilities as follows.

1. Let m0 ∈ (a, b), then

P (m,F )(dx) = exp
(∫ m

m0

x − t

VF (t)
dt

)
P (m0, F )(dx), m ∈ MF , (11)

where

P (m0, F )(dx) =
μ(dx)

exp
[
− (xψμ(m0) − kμ(ψμ(m0))

] .

2. Suppose that
∫ b

m

dt

VF (t)
and

∫ b

m

tdt

VF (t)
both exist for m ∈ MF . Then there exists a unique

probability μ = P (b, F ) such that

P (m,F )(dx) = exp−
(∫ b

m

x − t

VF (t)
dt

)
P (b, F )(dx), m ∈ MF (12)

holds. Furthermore if b = ∞ then
∫

R
max(−x, 0)μ(dx) < ∞ and

∫
R

xμ(dx) = ∞. If b < ∞,
then F is not steep and

∫
R

xP (b, F )(dx) = b.

Proof. 1. If F = F (μ) then, from P (m,F ) = exp
(
xψμ(m) − kμ(ψμ(m)

)
μ(dx), we have

μ(dx) = exp
[
− (xψμ(m0) − kμ(ψμ(m0))

]
P (m0, F )(dx) and

P (m,F ) = exp
(
x(ψμ(m) − ψμ(m0)) − (kμ(ψμ(m) − kμ(ψμ(m0))

)
P (m0, F )(dx).
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Finally we use the fact that

d

dm
(ψμ(m) − ψμ(m0)) =

1
VF (m)

and
d

dm
(kμ(ψμ(m) − kμ(ψμ(m0)) =

m

VF (m)

for getting (11).
2. Fix m0 ∈ (a, b). Let a < mn < b be an increasing sequence such that limn→∞ mn = b and denote

gn(x) =
∫ mn

m0

x − t

VF (t)
dt.

Then P (mn, F ) = egn(x)P (m0, F ) and there exists a subsequence nk and a measure μ of mass ≤ 1 such

that P (mnk
, F ) →k→∞ μ weakly. If X ∼ P (m0, F ) then since

∫ b

m0

dt

VF (t)
and

∫ b

m0

tdt

VF (t)
are finite, we

can claim that for all ε > 0 there exists M > 0 such that limk Pr(gnk
(X) > M) < 1 − ε. In other terms

the convergence P (mnk
, F ) →k→∞ μ is tight and μ is a probability with

μ(dx) = exp(g∞(x))P (m0, F )(dx) = exp
(∫ b

m0

x − t

VF (t)
dt

)
P (m0, F )(dx),

which does not depend on the particular subsequence (nk). This proves (12).

If b = +∞ consider the sequence n �→
∫ 0

−∞
xegn(x)P (m0, F ). It is increasing since gn+1(x) −

gn(x) < 0 for x < 0. Therefore its limit L− =
∫ ∞

0
xeg∞(x)P (m0, F ) is finite.

Similarly one proves by monotone convergence that the limit L+ =
∫ ∞

0
xeg∞(x)P (m0, F ) of the

sequence n �→
∫ ∞

0
xegn(x)P (m0, F ) exists in (0,∞]. For seeing that L+ = ∞, observe that +∞ = b =

limn mn = L+ + L−.

If b < ∞ then the fact that
∫ b
m

dt
VF (t) is finite implies that F is not steep as

b =
∫
−R

xP (b, F )(dx) = lim
n

∫
R

xegn(x)P (m0, F ),

an equality which is obtained by dominated convergence.

We present now a few illustrative examples for the above proposition in which the measure μ is known,
whereas in the next subsection we present examples in which the measure μ is unknown.

Example 1 (The Ressel NEF). This example is essentially important in terms of mean value
parametrization as its LT is not expressible and rather is obtained as a solution of implicit functional
equation. Its probability density is given by (12). By the Stirling formula Γ(x + 1) ∼x→∞

√
2πxx+ 1

2 e−x

and therefore

m0 =
∫ ∞

0
xμ(dx) = ∞,

implying that m0 = ∞ is a limit point of MF . Consequently, using the second part of the proposition we
have

ψμ(m) = −
∫ ∞

m

dt

VF (t)
= − 1

m
+ log

1 + m

m

and

kμ(ψμ(m)) = −
∫ ∞

m

tdt

VF (t)
= − log

1 + m

m
,
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implying that both ψμ(m) and kμ(ψμ(m)) can be written explicitly as a function of m. For more details
see [3].

The following two examples (Poisson and exponential) are obvious as their triples: μ, LT and VF are
well known. They are presented just for the sake of illustration of the proposition.

Example 2 (The Poisson NEF). The well known and typical generating measure of the Poisson NEF
is μ(dx) =

∑∞
n=0

1
n!δn, where δn is the Dirac mass on n, with ψμ(m) = log m and kμ(m) = m. It has a

mass e and it is not a probability, but μ1 = μ/e is. If you apply the above proposition to m0 = 1, one gets
ψμ1(m) = log m, kμ1(m) = m − 1 and

P (m,F )(dx) = ex log m−m+1μ1(dx) = ex log m−mμ(dx).

Example 3 (The exponential NEF). The typical generating measure of the exponential NEF is
μ(dx) = 1(0,∞)(x)dx. It is unbounded and has ψμ(m) = −1/m and kμ(m) = log m. Choose m0 = 1
then μ1(dx) = e−xμ(dx), ψμ1(m) = 1 − 1/m, kμ1(m) = log m and thus

P (m,F )(dx) = exp
{
x − x

m
− log m

}
μ1(dx) = exp

{
− x

m
− log m

}
μ(dx).

4. POLYNOMIAL VF’S

Various necessary and/or sufficient conditions for a pair (V,M) to be a VF of an NEF have appeared
in the literature. See for example: [37, 38, 24, 25, 34, 32, 5, 6, 29].

We shall however focus here on sufficient conditions leading to polynomial VF’s which have a simple
functional structure as a polynomial can be. Their corresponding cumulants are also polynomials and
can be easily computed by (8).

The main significant question related to polynomial VFs is the following. Given an nth degree
polynomial

Pn(m) =
n∑

i=0

aim
i,

under which conditions on the polynomial coefficients ai, i = 1, . . . , n, can Pn serve as a VF of an NEF,
i.e., does there exist a measure μ which generates an NEF and for which Pn (along with a corresponding
mean parameter space M ) is a VF? Moreover, if (Pn,M) is a VF, can we then reveal the forms of

θ = ψμ(m), kμ(ψμ(m)), Lμ(θ) or the generating measure μ? (13)

The answer to this question is equivocal as occasionally none of these functionals, or only some of
them, are available explicitly. The cases of quadratic, cubic or power VF’s are indeed exceptional. (Just
note that even for the Ressel NEF having a cubic VF, the corresponding LT is a solution of an implicit
functional equation).

However, for n = 0, 1, 2, Morris [37] characterized all polynomial VFs and revealed six NEFs (nor-
mal, Poisson, binomial, negative binomial, gamma and hyperbolic cosine) for which the corresponding θ,
kμ and μ are explicitly expressed. For n = 3, Letac and Mora [34] characterized all cubic VFs and
revealed six additional families (Takács, strict arcsine, large arcsine Ressel and inverse Gaussian). Also,
the special polynomial Pn(m) = anmn, n = 3, 4, . . . , is a special case of power VFs belonging to the
Tweedie class. Apart from the latter three cases of quadratic, cubic and power VFs, it seems that for
n ≥ 4 the generating measure μ of a polynomial VF cannot be evaluated explicitly and neither are Lμ or
kμ(ψμ(m)). Nonetheless, it would be of interest to know which polynomials Pn, n ≥ 4, are VFs of NEFs
(even without being able to delineate their corresponding generating measures). Indeed, and as already
indicated, various necessary and/or sufficient conditions have been imposed on the coefficients ai’s for
showing whether or not Pn is a VF. Worthy noted on this subject are the works [4, 7].
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However, one of the most relevant important result was given by Bar-Lev [2] who provided a sufficient
condition for a pair (V,M) to be a VF; a condition which has a significant relevance to the construction
of polynomial VF’s. Bar-Lev showed that if V : R

+ → R
+ is an absolutely monotone mapping satisfying

lim
m→0+

∫ m0

m

dt

V (t)
= ∞, where m0 ∈ R

+, (14)

then there exists an infinitely divisible NEF with VF (V, R+). As a simple consequence of this result it
readily follows that any polynomial V = Pn with nonnegative coefficients

V (m) =
q∑

i=1

aim
i, m ∈ R

+, q ∈ N, ai ≥ 0,
q∑

i=1

ai > 0, (15)

constitutes a VF of an infinitely divisible NEF with mean domain M = R
+ (for a more rigorous

treatment of this result see Theorem 3.2 and Corollary 3.3 in [34]). Indeed, four of the six NEFs in the
Morris class and all of the six NEFs in the Letac and Mora Class have VFs of the form (15). Also note
that as any polynomial VF of the form (15) is infinitely divisible it can be used to generate an EDM with
dispersion parameter space Λ = R

+ and VF of the form

Vλ(m) = λ

( q∑
i=1

ai

(
m

λ

)i)
, mλ ∈ R

+;

c.f., (4) and (6).

Also, any polynomial VF of the form (15) represents a steep NEF (i.e., M = int Cμ = R
+) as the

following lemma shows.

Lemma 2. Let (V, R+) be a given VF of the form (15) of an NEF with generating measure μ.
Then,
(i) as m → 0+ then θ → −∞ implying that the constant c1 in (9) is zero,
(ii) either 0 ∈ Dμ or 0 /∈ Dμ and θ = ψμ(m) → −∞ as m → ∞.

Proof. (i) The VF V in (15) is positive. Without loss of generality assume that all zeroes (other than the
origin) of V in absolute value are larger than some ρ > 0. Then the Laurent series of 1/V (t) converges
absolutely for 0 ≤ t ≤ ρ and has the form

θ = ψμ(m) =
∫ m

ρ

1
tn

(a−n + a−n+1t + a−n+2t
2 + · · · ) dt,

for some n ∈ N. The Laurent series is bounded away from zero and therefore the convergence or
divergence of ψμ(m) is equivalent to that of

∫ m
ρ t−q dt, which is −∞, implying that c1 in (9) is zero.

(ii) Since V (m) ∼ aqm
q as m → ∞ with q ≥ 1 and aq > 0 without loss of generality, one has as

previously θ = ψμ(m) ∼ −qaq

∫ m
ρ t−q−1 dt as m → ∞ which leads to the desired result. This would then

imply by Theorem 2.1 of Letac and Mora [34] that the corresponding NEF is steep.

The class of polynomial VF’s (15) is huge and contains, among others,

• The class of quadratic VF’s (except for the binomial and Normal NEF’s) characterized by
Morris [37], like Poisson and negative binomial distributions.

• The class of cubic VF’s characterized by Letac and Mora [34], like strict arcsine, large arcsine,
Abel or generalized Poisson, and Takács or generalized negative binomial distributions.

• The class of positive integer power VF’s in the form (αm�, R
+), α > 0, 
 ∈ N; c.f., [45, 10, 24].
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• The HD (Hinde and Demétrio) class of VF’s of the form

(V,M) = (m + m�, R+), 
 = 2, 3, . . . , (16)

corresponding to NEF’s of counting distributions supported on the set N0 of the nonnegative
integers and including negative binomial (
 = 2) and strict arcsine (
 = 3) distributions.

• The LM (Letac and Mora) class of VF’s of the form

(V,M) =
(

m

�∏
i=1

(
1 +

m

pi

)
, R+

)
, pi > 0, i = 1, . . . , 
, 
 ∈ N, (17)

which correspond to NEF’s generated by counting measures on N0.

• The ABM (Awad, Bar-Lev and Makov) class of VF’s of the form

(V,M) =
(

m
(
1 +

m

p

)r
, R+

)
, p > 0, r = 1, 2, 3, . . . , (18)

constituting a subclass of the LM class, including Poisson (r = 0 with p = 1), negative binomial
(r = 1) and Abel or generalized Poisson (r = 2) distributions.

We elaborate on the latter three classes in more detail in subsequent sections.

4.1. The LM Class

Letac and Mora [34] presented the class of polynomial VF’s given by (17) which correspond to NEF’s
supported on N0. This class includes four (of the six) NEF’s with quadratic VF’s and also four (of
the six) with cubic VF’s. Due to the factorization of (17), both primitives in (9) for θ = ψμ(m) and
kμ(ψμ(m)) can be computed explicitly (with some unpleasant forms) but not their inverse functions
(e.g., m = ψ−1

μ (θ)). This means that the likelihood function of a random sample taken from an NEF
with VF as in (17) can be explicitly expressed in terms of the mean parameter m, an important feature in
a Bayesian framework.

However, the main importance of the LM class comes from a frequentist approach as their Propo-
sition 4.4 [34] enables to express the generating measure μ in terms of m. Indeed, let μ(dx) =∑∞

n=0 μnδn(dx) be a generating measure of an NEF with VF of the form (17) and let G(m) =
m exp(−ψ(m) (here we suppress for simplicity the dependence of ψ on μ). Then, roughly writing, this
proposition states that μ0 and μn, n ≥ 1, are given by⎧⎪⎪⎨

⎪⎪⎩

μ0 = exp
(
k(ψ(m))

)
|m=0,

μn =
1
n!

[( d

dm

)n−1
exp

(
k(ψ(m)) × k′(ψ(m)) × (G(m))n

)] ∣∣∣∣
m=0

.
(19)

We illustrate (19) with two examples taken from [34].

Example 4 (The Poisson NEF). Here,

(V,M) = (m,R+), ψ(m) = log m, k(ψ(m) = m, G(m) ≡ 1,

so that

μ0 = 1, μn =
1
n!

, n ≥ 1, and μ(dx) =
∞∑

n=0

1
n!

δn(dx).
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Example 5 (The negative binomial NEF). Here, for p > 0,

(V,M) =
(

m
(
1 +

m

p

)
, R+

)
, ψ(m) = log

m

m + p
, k(ψ(m) = p log(m + p),

G(m) = m exp
[
− log

( m

m + p

)]
,

and thus

μ0 = μ1 = pp, μn =
1
n!

pp
n−1∏
i=1

(i + p), n ≥ 2.

Other explicit expressions for the generating measure μ of NEF’s with quadratic and cubic VF’s were
derived in [34] using their Proposition 4.4 (the derivation of some of them, however, required some rather
cumbersome calculations).

Explicit derivations of (19) for polynomial VF’s of degree n ≥ 4 do not seem to be feasible and
numerical computations based on mathematical software will be then required.

4.2. The HD Class

The HD class was presented by Hinde and Demétrio [21] for over dispersed models and characterized
by Kokonendji et al. [26]. They considered the class of VF’s of the form:

V (m) = m + mp, p ∈ {0} ∪ [1,∞),

where m > −1 if p = 0 and m > 0 if p ≥ 1. The corresponding support Sp is S0 = {−1} ∪ N0, S1 = 2N0

and Sp = pN0 ∪ N0 for p > 1. Accordingly, such VF’s are associated with NEF’s supported on N0 only
for p = 2, 3, . . . , in which case they are polynomial of the form (15). Such a polynomial version of the HD
class has been used by Kokonendji et al. [27] to analyze overdispersed and zero-inflated count data. They
employed the data used in Ridout et al. [43], originally modelled by the Poisson and negative binomial
distributions, and showed that their HD modelling performs better for such data. Further theoretical and
data analysis of the HD class can be found in [28] and [30].

We shall now illustrate (9) with respect to the HD class given in (16). As by Lemma 2, c1 = 0, ψμ(m)
can be obtained explicitly as

θ = ψμ(m) =
∫

dm

m + m�
+ c1 =

1

 − 1

log
1

1 + m−(�−1)
+ c1, 
 ∈ N.

On the other hand the integral for kμ(ψμ(m)) in (9), although can be computed explicitly for each 
 ∈ N,
does not have a closed form. Nonetheless, the corresponding cumulant LT can be expressed in terms of
the transcendental Gaussian hypergeometric series as

eθ ×2 F1

(
1


 − 1
,

1

 − 1

;




 − 1
; eθ(�−1)

)
, θ < 0, 
 = 2, 3, . . . ,

(see [30] and [23], pp. 17–19).

Summarizing the HD class in terms of the question posed in (13), we have: θ = ψμ(m) has a closed
form whereas k(ψμ(m)) does not (though it can be explicitly expressed for each 
 ≥ 2); the LT can be
expressed as a transcendental function (and thus has not practical appealing); the measure μ can be
computed only numerically by using (19).
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4.3. The ABM Class

The Lee–Carter model [31] and variants thereof (e.g., [42]) is a largely acceptable method of mortality
forecasting. Awad, Bar-Lev and Makov [1] have dealt with predicting mortality rates by embedding the
Lee–Carter model within a Bayesian framework. They used the ABM class of counting distributions
as alternatives to the Poisson counts of events (deaths) under the Lee–Carter modeling for mortality
forecast. They demonstratively obtained an improved prediction of mortality, especially on the sparse of
elderly groups, for real data from three countries (Ireland, the US and Ukraine).

More specifically, the Lee–Carter model was originally designed to forecast age-specific mortality
rates with the following specification:

log mxt = αx + βxkt + εxt,

where the logarithm of the age and time-specific mortality rate mxt is decomposed into an overall age
profile, αx, averaged over the entire period under consideration, and age-specific changes in mortality
βx. The subscripts x and t denote age and time, respectively. The βx parameter describes which rates
decline rabidly and which rates decline slowly in response to changes in the time-specific effect kt. The
error term εxt is assumed to be distributed with mean 0 and variance σ2

ε reflecting particular age-specific
historical influences not captured by the model. The age and time-specific mortality rate mxt should be
calculated as (Dxt/Ext), while Dxt denote the number of deaths in a population at age x = 1, 2, . . . , P
and time t = 1, 2, . . . , T and Ext the matching exposure to the risk of death. The general consensus in
actuarial modelling, the Poisson distribution is selected as the Poisson response model with the response
variable equal to the number of deaths (c.f., [42]). Namely

Dxt ∼ Poisson(μxt), μxt = Extmxt.

Such a Poissonian assumption does not seem to fit various kinds of data as zero-inflated and overdis-
persed data. Delwarde, Denuit and Partrat [15] demonstrated that it is possible to take into account
the overdispersion present in the mortality data by estimating the parameter in a negative binomial
regression model. Haberman and Renshaw [19] made comparison between recent model enhancements
including binomial model, and which these enhancements address the deficiencies that have been iden-
tified of some of the models. Awad, Bar-Lev and Makov [1] have assumed that Dxt ∼ ABM(p, r)(μxt),
where the latter expression stands for an ABM distribution with parameters p and r with mean μxt

depending on x and t. Under further prior distributions imposed on αx, βx and kt they found an improved
prediction of mortality, especially on the sparse of elderly groups, for real data from the above mentioned
three countries.

Particularly, since Awad, Bar-Lev and Makov [1] considered a Bayesian approach it was unnecessary
to compute the generating measures μ of the NEF’s related to the ABM class of VF’s in (18), as the
likelihood function of m is the only relevant component in such an approach. Nevertheless, for other
statistical purposes, they used the R package to numerically compute (19) for various values of r ≥ 3
and p and then stopped computing μn in (19) after getting that the corresponding cumulative probability
function is lager then 0.999.

For the sake of theoretical completeness we shall now apply Proposition 1 to represent the probabil-
ities of an NEF belonging to the ABM class in (18) in a more general form.

Corollary 3. Let F be an NEF with VF (18) belonging to the ABM class. Then the mean value
parametrization of F is given by the probabilities

P (m,F )(dx) = exp
(
x
(
log m − Rr(m)

)

+
pr

(n − 1)(m + p)r−1
− H(1)

)
μ(dx), m > 0, p > 0, (20)

where

Rr(m) = log(m + p) −
r−1∑
k=1

pk

k(m + p)k
, r ∈ N, (21)
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and

H(1) =
∞∑
i=1

1
i!
× 1

i

[( d

dm

)i−1
eiRr(m)

]
m=0

.

Proof. By using (18) it is easily shown that

θ = ψμ(m) = log
m

p + m
+

r−1∑
i=1

1
i

pi

(p + m)i
+ c1, r ≥ 1, where

0∑
i=1

= 0, (22)

and

kμ(ψμ(m) = − pr

(r − 1)(m + p)r−1
+ c2.

Alternatively, we write

kμ(ψμ(m)) = −
∫ ∞

m

dt

( t
p + 1)r

= −p

∫ ∞

m
p

+1

ds

sr
= − pr

(r − 1)(m + p)r−1

ψμ(m) = −
∫ ∞

m

dt

t( t
p + 1)r

=
∫ ∞

m
p

+1

ds

(1 − s)sr

=
∫ ∞

m
p

+1

((1
s

+
1

1 − s

)
+

1
sr

+ · · · + 1
s2

)
ds

= log m − Rr(m).

Note that, for r = 0 and r = 1, the expressions for kμ(ψμ(m)) and ψμ(m) are given explicitly in
Examples 4 and 5, respectively. Denote w = eθ = eψμ(m) and h(w) = k′(θ) = m. Since w = eψμ(m) =
me−Rr(m), we have

w = h(w)e−Rr(h(w)).

The Lagrange formula states that if h(w) = wg(h(w)) then

h(w) =
∞∑
i=1

wi

i!

[( d

dm

)i−1
(g(m))i

]
m=0

.

We apply the Lagrange formula to m = h(w) = k′
μ(θ) and to g(m) = eRr(m) and denote

H(w) =
∫ w

0
h(z)

dz

z
.

Then clearly

kμ(θ) = −C + H(eθ).

Hence, for μ to be a probability, C should satisfy

C = H(1) =
∫ 1

0

h(z)
z

dz =
∞∑
i=1

1
i!
× 1

i

[( d

dm

)i−1
eiRr(m)

]
m=0

,

and we need to show by Part 2 of Proposition 1 that μ = P (∞, F ). To prove this we need to show that
m = h(1) = ∞ or that the only solution h(1) of 1 = h(1)e−Rr(h(1)) is h(1) = ∞. For this purpose denote
u = p/(p + h(1)) ∈ (0, 1], so that the equation 1 = h(1)e−Rr(h(1)) becomes

exp
(

u +
u2

2
+ · · · + ur−1

n − 1

)
=

1 − 2u
1 − u

. (23)
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On [0, 1], the left-hand side of (23) is increasing and the right-hand side is decreasing. Consequently,
the only solution of (23) is u = 0 and therefore h(1) = ∞. Hence, by Part 2 of Proposition 1 it follows
that

P (m,F )(dx) = exp
(

x
(
log m − Rr(m)

)
+

pr

(n − 1)(m + p)r−1
− H(1)

)
μ(dx),

where μ is the probability generating F with infinite mean (just note that b = ∞ in the notation of
Proposition 1).

Summarizing the ABM class in terms of the question raised in (13): We have both θ = ψμ(m)
and k(ψμ(m)) in closed forms and thus the likelihood function of m is nicely expressed; the LT is not
expressible for r ≥ 3; the measure μ can be computed only numerically by using (19) or by (20).

5. CONCLUDING REMARKS
The main aim of this paper has been to expose the mean value parametrization of NEF’s (or EDM’s)

for possible implementation in both probability modelling and statistical inference. Particularly, this
parametrization is of great worth when the corresponding LT and/or the generating measures are not
known explicitly (as has been demonstrated for the ABM class or the Ressel NEF for which the LT is a
solution of an implicit functional equation).

The existence of polynomial VF’s of NEF’s in the form (15) provides a huge class of families of
distributions (either discrete or continuous), the majority of which have not been known (and thus have
not been utilized in applications). Moreover, by using (8), polynomial VF’s easily allow the computation
of all cumulants and moments (in terms of polynomial forms) as well as all measures of skewness and
kurtosis of the associated NEF’s.

The special case, but rather general though, of (15) in the form (17) presented by Letac and Mora [34]
sets ample examples of discrete distributions supported on N0 for which the generating measures can
in general be computed numerically by using available efficient software as MATHEMATICA, S, R,
MAPLE and the like. Many of these count NEF’s distributions can be used as competitors to the well
used Poisson distribution for describing overdispersed or zero-flatted data. Nonetheless, the form of the
generating measure is not needed in the Bayesian framework (as has been indicated for the ABM family).

We trust that this revisited presentation of the mean value parametrization of NEF’s will lead to the
exposure of new classes of VF’s (particularly of the polynomial type) which will be used for probabilistic
and statistical modelling (frequentist or Bayesian) as are the HD and ABM classes. New special classes
of VF’s in the form (17) for which both θ = ψ(m) and k(ψ(m)) have nicely closed forms can be definitely
obtained and used accordingly.

More specifically, consider the LM class in which the VF’s are products of linear functions whose
roots are trivially specified. This entails that the integrands of both θ = ψ(m) and k(ψ(m)) are proper
rational functions (where the corresponding numerator in both is 1), implying that one can use the
partial fraction method (c.f., [18], Section 2.10, pp. 2.101–2.104) to specifically (cumbersomely though)
calculate θ = ψ(m) and k(ψ(m)). For example one might consider a two-parameter subclass of the LM
class with VF of the form

V (m) = m(1 + m)
(
1 +

m

p

)l
, where p > 0, l ∈ N, (24)

for which it can be shown by the partial fraction method (computational details are omitted for brevity)
that

θ(m) =
∫

1
m(1 + m)(1 + m

p )l
dm

= log m + (1 − p)l log(m + p)
l−1∑
i=0

(−1)i+1

(
l

i

)
pi −

( p

p − 1

)l
log(m + 1)

+
l−1∑
i=1

1
i

Ai

(m + p)i(p − 1)l−i
+ c, (25)
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where

Ai =
l−1∑
j=1

(−1)j+l

(
l − i

j − i

)
pj and

0∑
i=1

= 0,

and

k(ψ(m)) =
( p

p − 1

)l
log

m + 1
m + p

+ pl
l∑

i=2

1
(i − 1)(p − 1)l−i+1(m + p)i−1

+ c, (26)

where
1∑

i=2

= 0.

The latter expressions for θ = ψ(m) and k(ψ(m)) resemble those in (22) of the ABM class (a subclass
of the LM class) which has been implemented, Bayesian-wise) under the Lee–Carter modelling for
mortality forecast and demonstratively obtained an improved prediction of mortality, especially on the
sparse of elderly groups, for real data from three countries.

We confide that the subclass of VF’s in (24) with θ = ψ(m) and k(ψ(m)) as in (25) and (26) might
be challenging when implemented similarly under the Lee–Carter modelling to perhaps yielding an
improved forecast for various age groups. In either case, this subclass provides a new class of counting
distributions whose probabilities can be computed numerically by using (19) and an appropriate
software.
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