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Abstract—The paper deals with the asymptotic laws of functionals of standard exponential random
variables. These classes of statistics are closely related to estimators of the extreme value index when
the underlying distribution function is in the Weibull domain of attraction. We use techniques based
on martingales theory to describe the non-Gaussian asymptotic distribution of the aforementioned
statistics. We provide results of a simulation study as well as statistical tests that may be of interest
with the proposed results.
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1. INTRODUCTION

Of interest in this manuscript are the asymptotic properties of functional stochastic processes based
on extreme values of independent and identically distributed (iid) random variables (rv) X1,X2, . . . ,
which are defined on the same probability space (Ω,P, P), whose common distribution function is F .
Let X1,n ≤ · · · ≤ Xn,n be the associated order statistics and k(n) a sequence of integers satisfying
1 ≤ k(n) < n.

Since we are only interested in the upper tail of F , we may and do suppose that Xi > 0. Accordingly,
we will have to use the log transform Y = log X to get iid rv’s Yi = log Xi, i ≥ 1, with common
distribution function (df) G(x) = F (ex) such that their order statistics satisfy {Yi,n, 1 ≤ i ≤ n} =
{log Xi,n, 1 ≤ i ≤ n} for each n ≥ 1.

Let f(j) be a real and increasing function of the integer j such that f(0) = 0. The following empirical
process, hereon called the functional Hill process,

Tn(f) =
k(n)∑

j=1

f(j)(log Xn−j+1,n − log Xn−j,n), (1)

was introduced by Dème et al. (2012). A generalization of the Diop et al. statistic given by

k(n)∑

j=1

jτ (log Xn−j+1,n − log Xn−j,n)/kτ (n), (2)
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for f(j) = jτ , τ > 0, j ≥ 1 and f(0) = 0 is obtained when (1) is divided by f(k) (cf. Diop and Lo (1994)
and Diop and Lo (2009)). The statistic (2) is a direct generalization of the classical Hill’s estimator
obtained for τ = 1. If K is some Kernel function (cf. Goegebeur et al. (2010) and Groeneboom et al.
(2003)), these statistics are closely related to the Kernel-type estimators like the one due to Csörgő et
al. (1985) and given by

{ k(n)∑

j=1

jK(j/k(n))(log Xn−j+1,n − log Xn−j,n)/k(n)
}/{ k(n)∑

j=1

K(j/k(n))
}

. (3)

The statistics (2) and (3) are generalizations of the Hill estimator corresponding to K = 1 in (3)
and τ = 1 in (2) respectively, the latter playing a crucial role in Extreme Value Theory (EVT). EVT is
a theory whose main purpose pertains to the derivation of the asymptotic distribution of the maximum
order statistics for a random sample X1, . . . ,Xn, usually denoted by Xn,n. The distribution of Xn,n has
applications in many areas such as actuarial science in the determination of the distributional properties
of the largest claim, or in survival analysis to determine the asymptotic properties of the largest failure
time of items subject to failure or censored data to name a few.

One says that the underlying distribution function F of the Xi’s is attracted to another distribution
function H if for some sequences (an > 0)n≥1 and (bn)n≥1, and for any real point of continuity x of H ,
the following holds

lim
n→∞

P

(
Xn,n − bn

an
≤ x

)
= lim

n→∞
Fn(anx + bn) = H(x). (4)

If H is nondegenerate, then it can be parametrized as Gγ(x) = exp[−(1 + γx)−1/γ ]I{1 + γx > 0}
with γ �= 0, where I{·} denotes the indicator function and G0(x) = exp(− exp(−x)). Here, the function
Gγ(x) is called the Generalized Extreme Value (GEV) distribution. If property (4) holds, one says that
F is in the domain of attraction of H , and we write F ∈ D(H). The reader is referred to de Haan and
Ferreira (2006), Resnick (1987), Galambos (1985), Beirlant et al. (2004), and Embrechts et al. (1997)
for a modern account of EVT. Although the parameter γ in the GEV distribution is continuous, the
three cases γ < 0, γ = 0 and γ > 0, named after the Weibull, Gumbel and Frechet domains of attraction
respectively have different distributional properties. However, in all three cases, the Hill statistic is used
to estimate the extreme value index corresponding to τ = 1 in (2).

(1) In the case of γ ≥ 0 for instance, (2) converges in probability to γ as n → ∞ and k/n → 0.
(2) For γ < 0, the upper endpoint of G(x) = F (ex) defined by y0 = sup{x ∈ �, G(x) < 1} is finite,

and it is related to the upper endpoint of F , x0 = sup{x ∈ �, F (x) < 1} by y0 = log x0. If G−1 stands for
the generalized inverse function of G, then (2), when normalized by y0 − G−1(1 − k(n)/n), converges
to (1 − γ)−1 as n → ∞ and k(n)/n → 0.

The Diop and Lo (2009) generalization of the Hill’s estimator which corresponds to (2) was
introduced in Diop and Lo (1994) and further studied in Diop and Lo (2009) where its asymptotic
normality was established for any γ, but only for τ > 1/2. It is not possible to obtain the asymptotic
distribution of the Diop and Lo estimator for τ ≤ 1/2 via Hungarian Gaussian approximation that was
utilized then. Recently, the statistic obtained by dividing the expression in (1) by f(k), which generalizes
(2) for f(j) = jτ , has been extensively studied for the Frechet and Gumbel distributions by Dème et
al. (2012). When dealing with the family of functions f(j) = jτ , parametrized by τ > 0, we will use the
notation fτ (j) = jτ . In the aforementioned paper, Dème et al. (2012) proved that (1) converges to a
limiting Gaussian process when A(2, f) =:

∑+∞
j=1 f(j)2/j2 = ∞ and

Bn(f) =:
max{f(j)/j, 1 ≤ j ≤ k}√∑k

j=1 f(j)2/j2

converges to 0 as n → ∞. However, when A(2, f) < +∞, (1) has a non-Gaussian limiting process.
Applying these results to the class of functions fτ (·), we get that for γ > 0, the asymptotic law of (2) is
Gaussian for τ ≥ 1/2 and non-Gaussian for 0 < τ < 1/2. Coupling those observations with the results
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of Diop and Lo (2009), we can easily conclude that the limiting distribution of (2) is known except for
the Weibull domain and for 0 < τ ≤ 1/2.

The problem of finding the asymptotic distribution of (2) in the Weibull domain when 0 < τ ≤ 1/2
has not been investigated. In this manuscript, we take a supermartingale approach to obtain the limiting
distribution of the generalized Hill statistics given in (2) in the said domain. The supermartingale
approach was motivated by the fact that under the condition A(2, f) < ∞, expression (1), when properly
centered and scaled, can be written as a sum of dependent random variables. With that approach and a
complete characterization of the process

k−1∑

j=1

(
f(j) − f(j − 1)

)[
exp

(
− γ

k−1∑

h=j

Eh/h
)
− E exp

(
− γ

k−1∑

h=j

Eh/h
)]

, (5)

we were able to find the asymptotic distribution of (1) and (2) for 0 < τ < 1/2.
The manuscript will proceed as follow. In Section 2, we study a special process based on a sequence

of iid unit exponential rvs whose limiting distribution will be found via martingale techniques. Section 3
is devoted to the application of the results of Section 2 to our problem. The results of a simulation study
are presented in Section 4 along with some results pertaining to statistical tests in the extreme value
domains. The manuscript will conclude with a discussion section and an Appendix.

2. A SUPERMARTINGALE TOOL

Let E1, E2, . . . be iid unit exponentially distributed rvs. Let k ≥ 1. Let also γ > 0 be a positive number
that is constant throughout this paper. Define the increments of f by Δf(j) = f(j) − f(j − 1) for
j = 1, 2, . . . . Let also the sequence Wk(f) be given by the sequence

Wk(f) =
k∑

j=1

Δf(j)
(

exp
(
− γ

k∑

h=j

Eh/h
)
− E exp

(
− γ

k∑

h=j

Eh/h
))

, (6)

for k ∈ N. Consider the filtration Fk = σ(E1, . . . , Ek), k ≥ 1, and observe that the sequence (Wk)k≥1

is adapted to (Fk)k≥1. We first introduce some intermediate results that will prove to be crucial for the
proof of our main results. The next two ones pertain to the martingale property of Wk(f) and its limiting
distribution.

Theorem 1. The sequence (Wk(f))k≥1 is a supermatingale with respect to Fk. Furthermore, it
converges almost surely (a.s) to a random variable W∞(f) with finite expectation whenever

lim sup
k→+∞

k−γ
k−1∑

j=L

Δf(j)jγ−1/2 < +∞. (K1)

Corollary 2. For f(j) = fτ (j) = jτ , 0 < τ < 1/2, Wk(fτ ) converges almost surely to a finite expec-
tation random variable W ∗

∞(τ).

Remark 2. Actually, the random variable W ∗
∞(τ) given in Corollary 2 is exactly W∞(fτ ) of Theorem 1,

where the function fτ is defined in Corollary 2. To simplify the notation, we will write W ∗
∞(τ) = W∞(τ),

when the argument is a positive number.

Proof of Theorem 1. Let

Sj,k = exp
(
− γ

k∑

h=j

Eh/h
)

(7)

and Vk = exp(−γEk/k) for k ≥ 1. We have for k ≥ 1

Wk+1 =
k∑

j=1

Δf(j)
(
Sj,kVk+1 − E exp(Sj,kVk+1)

)
+ Δf(k + 1)

(
Vk+1 − E exp(Vk+1)

)
.
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Observe that: (1) Vk+1 and Sj,k are independent for 1 ≤ j ≤ k, (2) Vk+1 is independent of Fk and
(3) an application of moment generating function for unit exponential distribution yields E(Vk+1) =
(1 + γ/(k + 1))−1.

From now on, the notation �(k, γ) = (1 + γ/(k + 1))−1 is used to simplify the formulas. The three
previous observations, when combined together, lead to E((Vk+1 − E exp(Vk+1)) | Fk) = 0 and

E(Wk+1 | Fk) = E(Vk+1)
k+1∑

j=1

Δf(j)
(
Sj,k − E exp(Sj,k)

)
= �(k + 1, γ)Wk.

Since the function �(k, γ) is increasing in k, we obtain

E
(

Wk+1

�(k + 1, γ)
| Fk

)
=

Wk

�(k, γ)
× �(k, γ)

�(k + 1, γ)
≤ Wk

�(k, γ)
.

Therefore, Wk/�(k, γ) is a supermartingale. A sufficient condition of a.s. convergence of Wk/�(k, γ) as
k → +∞ (γ is fixed) to a finite expectation rv is

lim sup
k→+∞

E(|Wk|) < ∞,

since �(k, γ) converges to unity as k → ∞, γ being fixed. Next, by denoting sj,k = E(Sj,k), 1 ≤ j ≤ k,
k ≥ 1, and by using the Cauchy–Schwarz and Minkowski inequalities, we have

E|Wk| ≤ (E(W 2
k ))1/2 = ‖Wk‖2 ≤

k∑

j=1

‖Δf(j)(Sj,k − sj,k)‖2

≤
k−1∑

j=1

Δf(j)
(
Var(Sj,k)

)1/2
.

In the Appendix, we provide moments computations of the Sj,k’s, especially concerning their expec-
tations, variances and covariances. These computations are based on integral calculations given in
Subsection 6.2. By (19), Var(Sj,k) is bounded by unity for any 1 ≤ j ≤ k. Combining this with (27)
and fixing ε such that 0 < ε ≤ 1, we get for L large enough and k − 1 > L

E|Wk| ≤
L∑

j=1

Δf(j)
(
Var(Sj,k)

)1/2 +
(2(1 + ε)(ε + 1/2))1/2γ

kγ

k−1∑

j=L+1

Δf(j)jγ−1/2

≤
L∑

j=1

Δf(j) +
4γ
kγ

k−1∑

j=L+1

Δf(j)jγ−1/2. (8)

Since the first term in the right-hand side of (8) is bounded for a fixed L, we see that the supremum limit
of E|Wk| is finite whenever (K1) holds. This proves the theorem.

Proof of Corollary. Observe that for large values of j, Δf(j) ∼ τjτ−1 and Condition (K1) is equivalent
to boundedness of

k−γ
k−1∑

j=L

jτ+γ−3/2. (9)

Now, let 0 < τ ≤ 1/2 and consider the four possible cases: (i) τ + γ − 3/2 = −1; (ii) τ + γ − 3/2 < −1;
(iii) τ + γ − 3/2 = 0 and (iv ) τ + γ − 3/2 > 0. Using (31), we get that (9) is less than k−γ(log(k −
1) − log L) + (k − 1)−1 for (i) and is less than k−γ((k − 1)γ+(τ−1/2) − Lγ+(τ−1/2))/(γ + τ − 1/2) +
(k − 1)γ+(τ−3/2) for (ii). In the third case, (9) is exactly k−γ(k − 1−L) = (k(τ−1/2) − (1 + L)k−(3/2−τ).
Finally, applying (32) to the last case, (9) is found to be less than

k−γ
(
(k − 1)γ+(τ−1/2) − Lγ+(τ−1/2)

)/
(γ + τ − 1/2) + Lγ+(τ−3/2).
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In all these four cases, we get that lim supk→+∞ k−γ
∑k−1

j=L jτ+γ−3/2 < ∞, and the corollary is proven.

3. MAIN RESULTS

Let us give a brief statement about the problem of interest. To make the notation compact, we set
k(n) ≡ k. Recall that G ∈ D(G−γ) if and only if F ∈ D(G−γ). As mentioned earlier, this manuscript
pertains to the properties of the leading part of (1) when F ∈ D(G−γ) and 0 < γ < 1/2. We begin with
the special case of functions F ∈ D(G−γ), that is

y0 − G−1(1 − u) = uγI{u ∈ [0, 1]}, (10)

where y0 is the upper endpoint of G. We use here the index −γ < 0 instead of γ < 0, hence condition (10)
still holds. The next theorem characterizes the asymptotic distribution of Tn(f) when Condition (K1) is
satisfied.

Theorem 2. Let X1,X2, . . . be a sequence of iid rv’s with common df F such that (10) holds for
G(x) = F (ex). Let f(j) be an increasing function of j ≥ 0, with f(0) = 0 such that (K1) holds. For
any 1 ≤ k ≤ n, let

Ak,n(f) =: f(k − 1) −
k−1∑

j=1

(
f(j) − f(j − 1)

)
exp

(
−

k−1∑

h=j

log(1 + γ/h)
)
.

Then

W ∗
k−1,n(f) := Ak,n(f) − Tn(f)

y0 − Yn−k+1,n

converges in distribution to the finite expectation random variable W∞(f) defined in Theorem 1.
Furthermore, if f(j) = fτ (j) = jτ for 0 < τ ≤ 1/2, then W ∗

k−1,n(fτ ) converges in distribution to
W∞(fτ ) = W ∗

∞(τ) defined in Corollary 2.

Proof of Theorem 2. The proof uses the classical representation of the Yj = log Xj associated with the
df G(x) = F (ex) through a sequence of independent standard uniform rv’s U1, U2, . . . , that is

{Yj , j ≥ 1} =d {G−1(1 − Uj), j ≥ 1}
and then

{
{Yn−j+1,,n, 1 ≤ j ≤ n}, n ≥ 1

}
=d

{
{G−1(1 − Uj,n), 1 ≤ j ≤ n}, n ≥ 1

}
.

This gives

Tn(f)
y0 − Yn−k+1,n

=
k∑

j=1

f(j)
log Xn−j+1,n − log Xn−j,n

y0 − Yn−k+1,n

=
k∑

j=1

f(j)
(y0 − log Xn−j,n) − (y0 − log Xn−j+1,n)

y0 − Yn−k+1,n

=d

j=k∑

j=1

f(j)
(
(Uj+1,n/Uk,n)γ − (Uj,n/Uk,n)γ

)
.

We have for 1 ≤ j ≤ k − 1
[

Uj,n

Uk,n

]γ

=
k−1∏

h=j

[
Uh,n

Uh+1,n

]γ

= exp
(
− γ

k−1∑

h=j

1
h

log
(Uh+1,n

Uh,n

)h
)

≡ exp
(
− γ

k−1∑

h=j

E
(n)
h /h

)
.
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By the Malmquist representation (see Proposition 31 in [14], p. 112 or Shorack and Wellner (1986),

p. 336), the rvs E
(n)
h for 1 ≤ h ≤ n are independent unit exponential. From that observation, it follows

that

Tn(f)
y0 − Yn−k+1,n

=
k∑

j=1

f(j)
[

exp
(
− γ

k−1∑

h=j+1

E
(n)
h /h

)
− exp

(
− γ

k−1∑

h=j

E
(n)
h /h

)]
.

Some algebraic manipulations yield

Tn(f)
y0 − Yn−k+1,n

= f(k − 1) −
( j=k−1∑

j=1

(
f(j) − f(j − 1)

)
exp

(
− γ

k−1∑

h=j

E
(n)
h /h

))
.

Set

Sj,k,n = exp
(
− γ

k−1∑

h=j

E
(n)
h /h

)

and observe that for each n ≥ 1, Sj,k,n and Sj,k, which are defined in (7), have the same distribution. Let

sj,k,n = E(Sj,k,n) = exp
(
−

k−1∑

h=j

log(1 + γ/h)
)
.

Then we have

Ak,n(f) = f(k − 1) −
k−1∑

j=1

Δf(j)sj,k,n. (11)

This yields

W ∗
k−1,n(f) =

k−1∑

j=1

Δf(j)(Sj,k,n − sj,k,n). (12)

Next, observe that for any n ≥ 1, W ∗
k(n)−1,n(f) =d Wk(n)−1. Therefore, W ∗

k(n)−1,n(f) converges in

distribution to W∞(f) whenever Wk(n)−1 converges almost surely to W∞(f), which completes the proof
of the theorem.

4. APPLICATION TO EXTREME VALUE THEORY

4.1. Asymptotic Results in the Weibull Case

In this section, we are interested in the particular case of the Weibull distribution which was obtained
for 0 < τ < 1/2. For the general case, we have the following Karamata representation when F is Weibull
distributed with parameter γ > 0, x0(F ) < ∞

log x0 − F−1(1 − u) = c(1 + p(u))uγ exp
(∫ 1

u
b(t)t−1 dt

)
, (13)

where (p(u), b(u)) → (0, 0) as u → 0. Theorem 2 dealt with the special case of p(u) = b(u) = 0. In this
section, we provide statistical tests for this special case and further consider perturbation models that
arise with special cases of b(u).

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 1 2017



74 FALL et al.

4.2. Critical Points of the df of W∞(f)
We use computer-based methods for approximating the law of W∞(f). Simulation studies show that

the empirical d.f. based of B0 = 1000 replications are very stable from k = 2000.
We proceed as follows. Fix τ in 0 < τ < 1/2, γ > 0 and k ≥ 2000. At each step, B runs from 1 to

B0 = 1000. We generate standard exponential samples E1(B), . . . , Ek(B) and compute W ∗
k denoted by

W ∗
k (B). We finally consider the empirical d.f. denoted by Gk, based on W ∗

k (1), . . . ,W ∗
k (B0). Since Gk is

stable in the sense that it does not significantly change from k = 2000, we approximate the d.f. G∞
of W∞(fτ ) by Gk for large k. As an example, we give an illustration in Fig. 1 the d.f. Gk for k in
{250, 500, 750, 1000, 2000, 5000}; γ = 1 and τ = 1/4. Here for instance, we infer that the support of
G∞ is [−0.5, 0.5]. Overall, the figures clearly establish stability and support our proposal. Users who are
interested in using the method provided in this paper may require executable files from the authors, the
computation of P (W∞(fτ ) ≤ x) = G∞(x) and P (|W∞(fτ )| ≤ |x|) = G∞(|x|) − G∞(−|x|) for x ∈ �.

Fig. 1. Illustration of the distribution functions of Wk,n(1/4) for different values of k.

4.3. Statistical Tests
In this subsection, we show how G∞ may be used to test the null hypothesis that F ∈ D(G−γ). The

following approximation is used in the sequel:

T ∗
n(f) = Tn(f)/(y0 − log Xn−k+1,n) ≈ Tn(f)/(log Xn,n − log Xn−k+1,n).

MATHEMATICAL METHODS OF STATISTICS Vol. 26 No. 1 2017



A SUPERMARTINGALE ARGUMENT 75

Table 1. Statistical tests for four models using the law of W∞(1/4).

Models Quantile functions T ∗
n(fτ ) p-values

Weibull 1 F−1(1 − u) = exp(1 − uγ) 3.16 67.4%

Weibull 2 F−1(1 − u) = exp(1 − uγ(1 + u9)) 0.0367 38.9%

Weibull 3 F−1(1 − u) = exp(1 − uγ(1 + u8)) 0.048 27.3%

Weibull 4 F−1(1 − u) = exp(1 − uγ(1 + u7)) 3.063 13.2%

Weibull 5 F−1(1 − u) = exp(1 − uγ(1 + u6)) 3.0725 10.4%

Weibull 6 F−1(1 − u) = exp(1 − uγ(1 + u5)) 3.097 2%

Weibull 7 F−1(1 − u) = exp(1 − uγ(1 + u4)) 3.17 0%

Standard Exponential F−1(1 − u) = − log u 3.77 0%

Pareto F−1(1 − u) = u−1 19.755 0%

For testing the null hypothesis that F ∈ D(G−γ), we compute the p-values for the seven models
with γ = 1, as described in Table 1. The first corresponds to the pure model for which p(u) = b(u) = 0,
u ∈ (0, 1). In the remaining six others, a shift of order (1 + uq) is included in order to assess the impact
of the perturbation, especially that of exponent q. We use n = 300 and k = 200. The conclusions that
transpired are as follows: (i) the pure model is accepted with a large p-value around 68%, (ii) the models
Weibull 2 up to Weibull 6, which correspond to shift parameters q ∈ {6, 7, 8, 9}, are accepted with p-
values at least greater than 10.4%; and (iii) the Weibull 6 and Weibull 7 models, corresponding to shift
parameters q = 4 and q = 5, and the exponential and Pareto models are rejected. This is reasonable
since, as we pointed out earlier, the convergence depends on the functions b and p in (13) that are given
by p(u) = 0 and b(u) = −quq(1 + uq)−1 and c = 1.

5. REMARKS AND DISCUSSION

We observe that for the Weibull simple case, the law of the functional Hill process is found for
0 < τ < 1/2. For the general case, we have the following Karamata representation when F is in the
Weibull case of parameter γ > 0: x0(F ) < ∞ and

log x0 − F−1(1 − u) = c(1 + p(u))uγ exp
(∫ 1

u
b(t)t−1 dt

)
, (14)

where (p(u), b(u)) → (0, 0) as u → 0. In an upcoming paper we will study the dependence of the results
on the auxiliary functions p and b and we also determine general conditions on b and p under which
T ∗

n(f) = Tn(f)/(y0 − log Xn−k+1,n) behaves as W ∗
k,n as in the present case. Nevertheless, we will

include in the statistical tests some models with specific forms of b(·) as shown in Table 1 and used
in Subsection 4.3.

6. APPENDIX

This section is devoted to the computations of the moments of

Sj,k = exp
(
− γ

k−1∑

h=j

Eh/h
)

and to their approximations for large values of j, where the Eh’s are independent unit exponential r.v.
We begin by giving a particular and useful tool for the expansion of the logarithm function. Let ε > 0 be
fixed. There exists u0 > 0 such that

0 < u < u0, log(1 + u) = u + θ(ε, u)u2, (15)
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where θ(ε, u) ∈ [−ε − 1/2, ε − 1/2] ≡ A(ε) = [a1(ε), a2(ε)]. For any integer m ≥ 1, let J0(m) be a
positive integer such that J0(m) ≥ γ/(mu0). Then we have

j ≥ J0(m) =⇒ log(1 + γ/j) =
j

γ
+ θj

(
j

γ

)2

with θj ∈ A(ε). (16)

This expansion (15) will be instrumental in the computations below. All coming numbers of the form θj

and θh(r) stand as notation of the number θ(u, ε) in (15) depending of the form of u. In all cases, these
numbers are in A(ε).

6.1. Moment Estimation
6.1.1. Exact values. For any integer m ≥ 1, we have

E(Sm
j,k) = E exp

(
− mγ

k−1∑

h=j

Eh/h
)

=
k−1∏

h=j

E exp(−mγEh/h) =
k−1∏

h=j

(1 + mγ/h)−1

= exp
(
−

k−1∑

h=j

log(1 + mγ/h)
)
. (17)

Now for j ≥ J0(m),

E(Sm
j,k) = exp

(
− mγ

k−1∑

h=j

(1/h) − m2γ2
k−1∑

h=j

θh/h2
)
. (18)

Then for any j and k, Var(Sj,k) is

exp
(
− 2

k−1∑

h=j

log(1 + 2γ/h)
)
− exp

(
− 2

k−1∑

h=j

log(1 + γ/h)
)
≤ 1, (19)

since this is a difference of two points in [0, 1]. Later, we will need this notation,

E(Sm
j,k) = exp

(
− mγ

k−1∑

h=j

(1/h) − m2γ2
k−1∑

h=j

θh/h2
)

= exp
(
− mγ

k−1∑

h=j

(1/h)
)
B(1, j,m), (20)

where

B(1, j,m) = exp
(
− m2γ2

k−1∑

h=j

θh/h2
)
.

6.1.2. Approximate values for moments. Combining formula (16) above and formula (34) in the last
Subsection 6.2 of this Appendix, leads to

∣∣∣m2γ2
k−1∑

h=j

θh/h2
∣∣∣ ≤ |a1(ε)|m2γ

(
1
j
− 1

k − 1
− 1

j2

)
≤ |a2(ε)|m2γ

j
, (21)

for j ≥ J0(m).

Let J1(ε,m) be a positive integer such that |a1(ε)|m2γ
J1(ε,m) ≤ ε. Then we have

j ≥ J1(ε,m) ∨ J0(m) =⇒ exp
(
− m2γ2

k−1∑

h=j

θh/h2
)
≤ eε.
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From the definition of B(1, j,m) in (20) above and from (21), we have for j ≥ J0(m)

B(1,m, j) = 1 + O
( |a1(ε)|m2γ

j

)
= 1 + O(j−1),

for m fixed, since γ is fixed in all the text. Next, by denoting

B(2,m, j) = exp
(
− mγ

{ k−1∑

h=j

1
h
− log

(
(k − 1)/j

)})
, (22)

we get by (33) that

exp
(
− (mγ)/j

)
≤ B(1,m, j) ≤ exp

(
− (mγ)/(k − 1)

)

so that, since 1 ≤ j ≤ k and since γ is fixed, for m fixed,

B(1,m, j) = 1 + O(j−1) as j increases indefinitely.

Now, since

exp
(
− mγ

k−1∑

h=j

(1/h)
)

=
( j

k − 1

)mγ
exp

(
− mγ

{ k−1∑

h=j

1
h
− log((k − 1)/j)

})
, (23)

we have from (18) and (22) that

E(Sm
j,k) =

(
j

k − 1

)mγ

B(1,m, j)B(2,m, j), (24)

with, for m fixed and for j ≥ J1(ε,m) ∨ J0(m),

B(1,m, j) = 1 + O(j−1) and B(2,m, j) = 1 + O(j−1).

6.1.3. Approximate values for variances. We have for j > J0(2)

E(S2
j,k) = exp

(
− 2γ

k−1∑

h=j

(1/h) − 42γ2
k−1∑

h=j

θh(1)/h2
)
,

and for j > J0(1)

E(Sj,k)2 = exp
((

− γ

k−1∑

h=j

(1/h) − γ2
k−1∑

h=j

θh(2)/h2
))2

= exp
(
− 2γ

k−1∑

h=j

(1/h) − 2γ2
k−1∑

h=j

θh(2)/h2
)
.

Thus

Var(S∗
j ) = exp

(
2γ

k−1∑

h=j

1/h
)
× V (2, 2, j), (25)

where

V (2, 2, j) =
{

exp
(
− 42γ2

k−1∑

h=j

θh(1)/h2
)
− exp

(
− 2γ2

k−1∑

h=j

(2θh(1) − θh(2))/h2
)}

.

Now, the same technique as used in formula (23) above proves that for m = 2,

exp
(
2γ

k−1∑

h=j

1/h
)

=
( j

k − 1

)2γ
V (1, 2, j),

with V (1, 2, j) = 1 + O(j−1) as j → +∞.
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Let us now handle V (2, 2, j). Since x = 42γ2
∑k−1

h=j θh(1)/h2 and y = 2γ2
∑k−1

h=j θh(2)/h2 are both
nonnegative, we have |e−x − e−y| ≤ |x − y|. Thus

0 ≤ exp
(
− 42γ2

k−1∑

h=j

θh(1)/h2
)
− exp

(
− 2γ2

k−1∑

h=j

θh(2))/h2
)

≤ 2γ2
k−1∑

h=j

|2θh(1) − θh(2)|/h2 ≤ 2γ2|a2(ε)|
j

(26)

by (34). Therefore

Var(Sj,k) =
( j

k − 1

)2γ
V (1, 2, j)V (2, 2, j) (27)

with

|V (1, 2, j)| = 1 + O(j−1) and V (2, 2, j) = 1 + O(j−1).

6.1.4. Covariance approximate values. Let � > 1 and consider σj,j+� = cov(Sj+�,k, Sj,k). We have

E(Sj,k) = exp
( k−1∑

h=j

− log(1 + γ/h)
)

= exp
( j+�−1∑

h=j

− log(1 + γ/h)
)

exp
( k−1∑

h=j+l

− log(1 + γ/h)
)

= E(Sj+�,k) exp
( j+�−1∑

h=j

− log(1 + γ/h)
)

. (28)

Further,

Sj,kSj+�,k = exp
(
− γ

k−1∑

h=j

Eh/h
)

exp
(
− γ

k−1∑

h=j+�

Eh/h
)

= exp
(
− γ

j+�−1∑

h=j

Eh/h − γ
k−1∑

h=j+�

Eh/h
)

exp
(
− γ

k−1∑

h=j+�

Eh/h
)

= exp
(
− 2γ

k−1∑

h=j+�

Eh/h
)

exp
(
− γ

j+�−1∑

h=j

Eh/h
)

= S2
j+�,k exp

(
− γ

j+�−1∑

h=j

Eh/h
)
. (29)

Hence

E(Sj,kSj+�,k) = E(Sj+�,k)2 exp
( j+�−1∑

h=j

− log(1 + γ/h)
)

.

For j ≥ J0(1) ∨ J0(2),

cov(Sj,kSj+�,k) = Var(Sj+�,k) exp
( j+�−1∑

h=j

− log(1 + γ/h)
)

= Var(Sj+�,k) exp
(
− γ

j+�−1∑

h=j

1/h − γ2
j+�−1∑

h=j

θh/h2

)
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= Var(Sj+�,k)
(

j

j + � − 1

)γ

(1 + O(j−1)). (30)

6.2. Integrals Computations

Let b ≥ 1. By comparing the area under the curve of f(x) = x−b going from j to k − 1 and that of the
rectangles based on the intervals [h, h + 1], h = 1, . . . , k − 2, we obtain

k−1∑

h=j+1

h−b ≤
∫ k−1

j
x−b dx ≤

k−2∑

h=j

h−b,

that is
∫ k−1

j
x−b dx + (k − 1)−b ≤

k−1∑

h=j

h−b ≤
∫ k−1

j
x−b dx + j−b. (31)

Likely, comparing the area under the curve of f(x) = xb going from j to k − 1 with that of the rectangles
based on the intervals [h, h + 1], j = 1, . . . , k − 2, we also get

∫ k−1

j
xb dx + jb ≤

k−1∑

h=j

hb ≤
∫ k−1

j
xb dx + (k − 1)b. (32)

Next, for b = 1 and b = 2, (31) yields

1
j
≤ log

(
(k − 1)/j

)
−

k−1∑

h=j

1
h
≤ 1

k − 1
(33)

and

1
j
− 1

k − 1
− 1

j2
≥

k−1∑

h=j

h−2 ≥ 1
j
− 1

k − 1
− 1

(k − 1)2
, (34)

respectively. Combining both implications, we further get

1
j2

≤ 1
j

(
1 − j

k − 1

)
−

k−1∑

h=j

h−2 ≤ 1
(k − 1)2

.
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