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1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a set of algorithms in high-dimensional data analysis
which aims at factorizing a large matrix M with nonnegative entries. If M is an m1 × m2 matrix, NMF
consists in decomposing it as a product of two matrices of smaller dimensions: M � UV T , where U
is m1 × K, V is m2 × K, K � m1 ∧ m2 and both U and V have nonnegative entries. Interpreting the
columns M·,j of M as (nonnegative) signals, NMF amounts to decompose (exactly, or approximately)
each signal as a combination of the “elementary” signals U·,1, . . . , U·,K :

M·,j �
K∑

�=1

Vj,�U·,�. (1)

Since the seminal paper [28], NMF was successfully applied to various fields such as image process-
ing and face classification [23], separation of sources in audio and video processing [38], collaborative
filtering and recommender systems on the Web [26], document clustering [46, 42], medical image
processing [1] or topics extraction in texts [39]. In all these applications, it has been pointed out
that NMF provides a decomposition which is usually interpretable. A theoretical foundation to this
interpretatibility by exhibiting conditions under which the decomposition M � UV T is unique was given
in [16]. However, let us stress that even when this is not the case, the results provided by NMF are still
sensibly interpreted by practitioners.

Since a prior knowledge on the shape and/or magnitude of the signal is available in many settings,
Bayesian tools have extensively been used for (general) matrix factorization [13, 32, 40, 27, 50] and have
been adapted for the Bayesian NMF problem ([37, 12, 17, 41, 45, 49] among others).

The aim of this paper is to provide some theoretical analysis of the performance of an aggregation
method for NMF inspired by the aforementioned Bayesian works. We propose a quasi-Bayesian
estimator for NMF. By quasi-Bayesian, we mean that the construction of the estimator relies on a prior
distribution π, however, it does not rely on any parametric assumptions – that is, the likelihood used to
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build the estimator does not have to be well-specified (it is usually referred to as a quasi-likelihood). The
use of quasi-likelihoods in Bayesian estimation is advocated by [6] using decision-theoretic arguments.
This methodology is also popular in machine learning, and various authors developed a theoretical
framework to analyze it ([43, 36, 9, 10, 11], this is known as the PAC-Bayesian theory). It is also related
to recent works on exponentially weighted aggregation in statistics [14, 19]. Using these theoretical
tools, we derive an oracle inequality for our quasi-Bayesian estimator. The message of this theoretical
bound is that our procedure is able to adapt to the unknown rank of M under very general assumptions
on the noise.

The paper is organized as follows. Notation for the NMF framework and the definition of our quasi-
Bayesian estimator are given in Section 2. The oracle inequality, which is our main contribution, is given
in Section 3 and its proof is postponed to Section 5. The computation of our estimator being completely
similar to the computation of a (proper) Bayesian estimator, we end the paper with a short discussion
and references to state-of-the-art computational methods for Bayesian NMF in Section 4.

2. NOTATION

For any p × q matrix A we denote by Ai,j its (i, j)th entry, by Ai,· its ith row and by A·,j its jth
column. For any p × q matrix B we define

〈A,B〉F = Tr(AB�) =
p∑

i=1

q∑

j=1

Ai,jBi,j.

We define the Frobenius norm ‖A‖F of A by ‖A‖2
F = 〈A,A〉F . Let A−i,· denote the matrix A where the

ith column is removed. In the same way, for a vector v ∈ R
p, v−i ∈ R

p−1 is the vector v with its ith
coordinate removed. Finally, let Diag(v) denote the p × p diagonal matrix given by [Diag(v)]i,i = vi.

2.1. Model

The object of interest is an m1 × m2 target matrix M possibly polluted with some noise E . So we
actually observe

Y = M + E , (2)

and we assume that E is random with E(E) = 0. The objective is to approximate M by a matrix UV T

where U is m1 ×K, V is m2 ×K for some K � m1 ∧ m2, and where U , V and M all have nonnegative
entries. Note that, under (2), depending on the distribution of E , Y might have some negative entries
(the nonnegativity assumption is on M rather than on Y ). Our theoretical analysis only requires the
following assumption on E .

C1. The entries Ei,j of E are i.i.d. with E(εi,j) = 0. With the notation m(x) = E[εi,j1(εi,j≤x)] and
F (x) = P(εi,j ≤ x), assume that there exists a nonnegative and bounded function g with ‖g‖∞ ≤ 1
and

∫ v

u
m(x) dx =

∫ v

u
g(x) dF (x). (3)

First, note that if (3) is satisfied for a function g with ‖g‖∞ = σ2 > 1, we can replace (2) by the
normalized model Y/σ = M/σ + ε/σ for which C1 is satisfied. The introduction of this rather involved
condition is due to the technical analysis of our estimator which is based on Theorem 2 in Section 5.
Theorem 2 has first been proved in [15] using Stein’s formula with a Gaussian noise. However, Dalalyan
and Tsybakov [14] have shown that C1 is actually sufficient to prove Theorem 2. For the sake of
understanding, note that (3) is fulfilled when the noise is Gaussian (εi,j ∼ N (0, σ2) with ‖g‖∞ = σ2)
or uniform (εi,j ∼ U [−b, b] with ‖g‖∞ = b2/2).
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2.2. Prior

We are going to define a prior π(U, V ), where U is m1 ×K and V is m2 ×K, for a fixed K. Regarding
the choice of K, we prove in Section 3 that our quasi-Bayesian estimator is adaptive, in the sense
that if K is chosen much larger than the actual rank of M , the prior will put very little mass on many
columns of U and V , automatically shrinking them to 0. This seems to advocate setting a large K
prior to the analysis, say K = m1 ∧ m2. However, keep in mind that the algorithms discussed below
have a computational cost growing with K. Anyhow, the following theoretical analysis only requires
2 ≤ K ≤ m1 ∧ m2.

With respect to the Lebesgue measure on R+, let us fix a density f such that

Sf := 1 ∨
∫ ∞

0
x2f(x) dx < +∞.

For any a, x > 0, let

ga(x) :=
1
a
f

(
x

a

)
.

We define the prior on U and V by

Ui,�, Vi,� indep. ∼ gγ�
(·),

where

γ� indep. ∼ h(·)
and h is a density on R+. With the notation γ = (γ1, . . . , γK), define π by

π(U, V, γ) =
K∏

�=1

( m1∏

i=1

gγ�
(Ui,�)

)( m2∏

j=1

gγ�
(Vj,�)

)
h(γ�) (4)

and

π(U, V ) =
∫

R
K
+

π(U, V, γ) dγ.

The idea behind this prior is that under h, many γ� should be small and lead to insignificant columns U·,�
and V·,�. In order to do so, we must assume that a non-negligible proportion of the mass of h is located
around 0. On the other hand, a non-negligible probability must be assigned to significant values. This is
the meaning of the following assumption.

C2. There exist constants 0 < α < 1, β ≥ 0 and δ > 0 such that for any 0 < ε ≤ 1
2
√

2Sf
,

∫ ε

0
h(x) dx ≥ αεβ and

∫ 2

1
h(x) dx ≥ δ.

Finally, the following assumption on f is required to prove our main result.

C3. There exist a non-increasing density f̃ w.r.t. the Lebesgue measure on R+ and a constant
Cf > 0 such that for any x > 0,

f(x) ≥ Cf f̃(x).

As shown in Theorem 1, the heavier the tails of f̃(x), the better the performance of Bayesian NMF.

Note that the general form of (4) encompasses as special cases almost all priors used in the papers
mentioned in the Introduction. We end this subsection with classical examples of functions f and h.
Regarding f :
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1. Exponential prior f(x) = exp(−x) with f̃ = f , Cf = 1 and Sf = 2. This is the choice made
by [41]. A generalization of the exponential prior is the gamma prior used in [12].

2. Truncated Gaussian prior f(x) ∝ exp(2ax − x2) with a ∈ R.

3. Heavy-tailed prior f(x) ∝ 1
(1+x)ζ with ζ > 1. This choice is inspired by [14] and leads to better

theoretical properties.

Regarding h:

1. The uniform distribution on [0, 2] obviously satisfies C2 with α = 1/2, β = 1 and δ = 1/2.

2. The inverse gamma prior h(x) = ba

Γ(a)
1

xa+1 exp
(
− b

x

)
is classical in the literature for computa-

tional reasons (see for example, [40, 2]), but note that it does not satisfy C2.

3. Alquier, et al. [3] discuss the Γ(a, b) choice for a, b > 0: both gamma and inverse gamma
lead to explicit conditional posteriors for γ (under a restriction on a in the second case),
but the gamma distribution led to better numerical performance. When h is the density of
the Γ(a, b), assumption C2 is satisfied with β = a, α = ba exp[−b/(2

√
2Sf )]/Γ(a + 1) and δ =∫ 2

1 baxa−1 exp(−bx) dx/Γ(a).

2.3. Quasi-Posterior and Estimator

We define the quasi-likelihood as

L̂(U, V ) = exp
[
− λ‖Y − UV �‖2

F

]

for some fixed parameter λ > 0. Note that under the assumption that εi,j ∼ N (0, 1/(2λ)), this would
be the actual likelihood up to a multiplicative constant. As already pointed out, the use of quasi-
likelihoods to define quasi-posteriors is becoming rather popular in Bayesian statistics and machine
learning literature. Here, the Frobenius norm is to be viewed as a fitting criterion rather than as a ground
truth. Note that other criteria were used in the literature: the Poisson likelihood [28], or the Itakura–
Saito divergence [17].

Definition 1. We define the quasi-posterior as

ρ̂λ(U, V, γ) =
1
Z

L̂(U, V )π(U, V, γ) =
1
Z

exp
[
− λ‖Y − UV �‖2

F

]
π(U, V, γ),

where

Z :=
∫

exp
[
− λ‖Y − UV �‖2

F

]
π(U, V, γ) d(U, V, γ)

is a normalization constant. The posterior mean will be denoted by

M̂λ =
∫

UV T ρ̂λ(U, V, γ) d(U, V, γ).

Section 3 is devoted to the study the theoretical properties of M̂λ. A short discussion on the
implementation will be provided in Section 4.
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3. AN ORACLE INEQUALITY

Most likely, the rank of M is unknown in practice. So, as recommended above, we usually choose K
much larger than the expected order for the rank, with the hope that many columns of U and V will be
shrunk to 0. The following set of matrices is introduced to formalize this idea. For any r ∈ {1, . . . ,K},
let Mr be the set of pairs of matrices (U0, V 0) with nonnegative entries such that

U0 =

⎛

⎜⎜⎜⎝

U0
11 . . . U0

1r 0 . . . 0
...

. . .
...

...
. . .

...

U0
m11 . . . U0

m1r 0 . . . 0

⎞

⎟⎟⎟⎠ , V 0 =

⎛

⎜⎜⎜⎝

V 0
11 . . . V 0

1r 0 . . . 0
...

. . .
...

...
. . .

...

V 0
m21 . . . V 0

m2r 0 . . . 0

⎞

⎟⎟⎟⎠ .

We also define Mr(L) as the set of matrices (U0, V 0) ∈ Mr such that, for any (i, j, �), U0
i,�, V

0
j,� ≤ L.

We are now in a position to state our main theorem, in the form of the following oracle inequality.

Theorem 1. Fix λ = 1/4. Under Assumptions C1, C2 and C3,

E
(
‖M̂λ − M‖2

F

)
≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr

{
‖U0V 0� − M‖2

F + R(r,m1,m2, U
0, V 0, β, α, δ,K, Sf , f̃)

}
,

where

R
(
r,m1,m2, U

0, V 0, β, α,K, Sf , f̃
)

= 8(m1 ∨ m2)r log
(√

2(m1 ∨ m2)
r

(
‖U0‖F + ‖V 0‖F +

√
Kr

)2

Cf

)

+ 4
∑

1≤i≤m1
1≤�≤r

log
(

1

f̃(U0
i� + 1)

)
+ 4

∑

1≤j≤m2
1≤�≤r

log
(

1

f̃(V 0
j� + 1)

)

+ r

[
8 + log

(
1
δ

)]
+ 4 log(4) + 4K log

(
1
α

)

+ 4βK log
(

2Sf
√

m1m2

(
‖U0‖F + ‖V 0‖F +

√
Kr

)2

r

)
.

We remind the reader that the proof is given in Section 5. The main message of the theorem is that M̂λ

is as close to M as would be an estimator designed with the actual knowledge of its rank (i.e., M̂λ is
adaptive to r), up to remainder terms. These terms might be difficult to read. In order to demonstrate
the rate of convergence, we now provide a weaker version, where we only compare M̂λ with the best
factorization in Mr(L).

Corollary 1. Fix λ = 1/4. Under Assumptions C1, C2 and C3,

E
(
‖M̂λ − M‖2

F

)
≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr(L)

{
‖U0V 0� − M‖2

F + 8(m1 ∨ m2)r log
(

2(L + 1)2m1m2

Cf f̃(L + 1)

)

+ r

[
8 + log

(
1
δ

)]
+ 4 log(4) + 4βK log

(
2Sf (L + 1)2m1m2

)
+ 4K log

(
1
α

)}
.

First, note that when L2 = O(1), the magnitude of the error bound is

(m1 ∨ m2)r log(m1m2),

which is roughly the variance multiplied by the number of parameters to be estimated in any (U0, V 0) ∈
Mr(L). Alternatively, when M ∈ Mr(L) only for huge L, the log term in

8(m1 ∨ m2)r log
(

(L + 1)2m1m2

f̃(L + 1)

)
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becomes significant. Indeed, in the case of the truncated Gaussian prior f(x) ∝ exp(2ax − x2), the
previous quantity is in

8(m1 ∨ m2)rL2 log(Lm1m2)

which is terrible for large L. On the contrary, with the heavy-tailed prior f(x) ∝ (1 + x)−ζ (as in [14]),
the leading term is

8(m1 ∨ m2)r(ζ + 2) log(Lm1m2)

which is way more satisfactory. Still, this prior has not received much attention from practitioners.

Remark 1. When (3) in C1 is satisfied with ‖g‖∞ = σ2 > 1 we already remarked that it is necessary to
use the normalized model Y/σ = M/σ + E/σ in order to apply Theorem 1. Going back to the original
model, we get that, for λ = 1/(4σ2),

E
(
‖M̂λ − M‖2

F

)
≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr

{
‖U0V 0� −M‖2

F + σ2R(r,m1,m2, U
0, V 0, β, α, δ,K, Sf , f̃)

}
.

4. ALGORITHMS FOR BAYESIAN NMF

As the quasi-Bayesian estimator takes the form of a Bayesian estimator in a special model, we
can obviously use tools from computational Bayesian statistics to compute it. The method of choice
for computing Bayesian estimators for complex models is Monte-Carlo Markov Chain (MCMC). In
the case of Bayesian matrix factorization, the Gibbs sampler was considered in the literature: see for
example [40, 3] for the general case and [37, 41, 49] for NMF. The Gibbs sampler (described in its general
form in [5], for example), is given by Algorithm 1.

Algorithm 1 Gibbs sampler.

Input Y , λ.

Initialization U (0), V (0), γ(0).

For k = 1, . . . , N :

For i = 1, . . . ,m1: draw U
(k)
i,· ∼ ρ̂λ(Ui,·|V (k−1), γ(k−1), Y ).

For j = 1, . . . ,m2: draw V
(k)
j,· ∼ ρ̂λ(Vj,·|U (k), γ(k−1), Y ).

For � = 1, . . . ,K: draw γ
(k)
� ∼ ρ̂λ(γ�|U (k), V (k), Y ).

In the aforementioned papers, there are discussions on the choice of f and h that lead to explicit forms
for the conditional posteriors of Ui,·, Vj,· and γ�, leading to fast algorithms. We refer the reader to these
papers for detailed descriptions of the algorithm in this case, and for exhaustive simulation studies.

Optimization methods used for (non-Bayesian) NMF are much faster than the MCMC methods
used for Bayesian NMF though: the original multiplicative algorithm [28, 29], projected gradient descent
[33, 20], second order schemes [25], linear progamming [7], ADMM (alternative direction method of
multipliers [8, 48]), block coordinate descent [47] among others.

We believe that an efficient implementation of Bayesian and quasi-Bayesian methods will be based on
fast optimisation methods, like Variational Bayes (VB) or Expectation–Progapation (EP) methods [24,
34, 5]. VB was used for Bayesian matrix factorization [32, 3] and more recently in Bayesian NMF [39]
with promising results. Still, there is no proof that these algorithms provide valid results. To the best of
our knowledge, the first attempt to study the convergence of the VB to the target distribution is made
in [4] for a family of problems, that do not include NMF. We believe that further investigation in this
direction is necessary.
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5. PROOFS

This section contains the proof to the main theoretical claim of the paper (Theorem 1).

5.1. A PAC-Bayesian Bound from [14]

The analysis of quasi-Bayesian estimators with PAC bounds started with [43]. McAllester improved
on the initial method and introduced the name “PAC-Bayesian bounds” [36]. Catoni also improved these
results to derive sharp oracle inequalities [9, 10, 11]. This methods were used in various complex models
of statistical learning [21, 2, 44, 35, 22, 18, 31]. Dalalyan and Tsybakov [14] proved a different PAC-
Bayesian bound based on the idea of unbiased risk estimation (see [30]). We first recall its form in the
context of matrix factorization.

Theorem 2. Under C1, as soon as λ ≤ 1/4,

E‖M̂λ − M‖2
F ≤ inf

ρ

{∫
‖UV � − M‖2

F ρ(U, V, γ) d(U, V, γ) +
K(ρ, π)

λ

}
,

where the infimum is taken over all probability measures ρ absolutely continuous with respect
to π, and K(μ, ν) denotes the Kullback–Leibler divergence between two measures μ and ν.

We let the reader check that the proof in [14], stated for vectors, is still valid for matrices (also, the
result [14] is actually stated for any σ2, we only use the case σ2 = 1).

The end of the proof of Theorem 1 is organized as follows. First, we define in Section 5.2 a parametric
family of probability distributions ρ:

{
ρr,U0,V 0,c : c > 0, 1 ≤ r ≤ K, (U0, V 0) ∈ Mr

}
.

We then upper bound the infimum over all ρ by the infimum over this parametric family. So, we have to
calculate, or upper bound

∫
‖UV � − M‖2

F ρr,U0,V 0,c(U, V, γ) d(U, V, γ)

and

K(ρr,U0,V 0,c, π).

This is done in two lemmas in Sections 5.2 and 5.4, respectively. We finally gather all the pieces together
in Section 5.5, and optimize with respect to c.

5.2. A Parametric Family of Factorizations

We define, for any r ∈ {1, . . . ,K} and any pair of matrices (U0, V 0) ∈ Mr, for any 0 < c ≤
√

Kr,
the density

ρr,U0,V 0,c(U, V, γ) =
1{‖U−U0‖F≤c,‖V −V 0‖F≤c}π(U, V, γ)

π
(
{‖U − U0‖F ≤ c, ‖V − V 0‖F ≤ c}

) .

5.3. Upper Bound for the Integral Part

Lemma 5.1. We have∫
‖UV � − M‖2

F ρr,U0,V 0,c(U, V, γ) d(U, V, γ)

≤ ‖U0V 0� − M‖2
F + 4c2

(
‖U0‖F + ‖V 0‖F +

√
Kr

)2
.
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Proof. Note that (U, V ) belonging to the support of ρr,U0,V 0,c implies that

‖UV � − U0V 0�‖F = ‖U(V � − V 0�) + (U − U0)V 0�‖F

≤ ‖U(V � − V 0�)‖F + ‖(U − U0)V 0�‖F

≤ ‖U‖F ‖V − V 0‖F + ‖U − U0‖F ‖V 0‖F

≤ (‖U0‖F + c)c + c‖V 0‖F = c
(
‖U0‖F + ‖V 0‖F + c

)
.

Now, let Π be the orthogonal projection on the set
{

M0 : ‖M0 − U0V 0�‖F ≤ c
(
‖U0‖F + ‖V 0‖F + c

)}

with respect to the Frobenius norm. Note that

‖UV � − M‖2
F ≤ ‖UV � − Π(M)‖2

F + ‖Π(M) − M‖2
F

≤
[
2c

(
‖U0‖F + ‖V 0‖F + c

)]2 + ‖U0V 0� − M‖2
F .

Integrate with respect to ρr,U0,V 0,c and use c ≤
√

Kr to get the result.

5.4. Upper Bound for the Kullback–Leibler Divergence

Lemma 5.2. Under C2 and C3,

K(ρr,U0,V 0,c, π) ≤ 2(m1 ∨ m2)r log
(√

2(m1 ∨ m2)r
cCf

)

+
∑

1≤i≤m1
1≤�≤r

log
(

1

f̃(U0
i� + 1)

)
+

∑

1≤j≤m2
1≤�≤r

log
(

1

f̃(V 0
j� + 1)

)

+ βK log
(

2Sf

√
2Km1m2

c

)
+ K log

(
1
α

)
+ r log

(
1
δ

)
+ log(4).

Proof. By definition

K(ρr,U0,V 0,c, π) =
∫

ρr,U0,V 0,c(U, V, γ) log
(

ρr,U0,V 0,c(U, V, γ)
π(U, V, γ)

)
d(U, V, γ)

= log
(

1∫
1{‖U−U0‖F≤c,‖V −V 0‖F≤c}π(U, V, γ) d(U, V, γ)

)
.

Then, note that
∫

1{‖U−U0‖F≤c,‖V −V 0‖F ≤c}π(U, V, γ) d(U, V, γ)

=
∫ (∫

1{‖U−U0‖F≤c,‖V −V 0‖F≤c}π(U, V |γ) d(U, V )
)

π(γ) dγ

=
∫ (∫

1{‖U−U0‖F≤c}π(U |γ) dU

)
π(γ) dγ

︸ ︷︷ ︸
=:I1

∫ (∫
1{‖V −V 0‖F≤c}π(V |γ) dV

)
π(γ) dγ

︸ ︷︷ ︸
=:I2

.

So we have to lower bound I1 and I2. We deal only with I1, as the method to lower bound I2 is exactly
the same. We define the set E ⊂ R

K as

E =
{

γ ∈ R
K : γ1, . . . , γr ∈ (1, 2] and γr+1, . . . , γK ∈

(
0,

c

2Sf

√
2Km1

]}
.
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Then
∫ (∫

1{‖U−U0‖F≤c}π(U | γ) dU

)
π(γ) dγ ≥

∫

E

(∫
1{‖U−U0‖F≤c}π(U | γ) dU

︸ ︷︷ ︸
=:I3

)
π(γ) dγ

and we first focus on a lower-bound for I3 when γ ∈ E:

I3 = π

( ∑

1≤i≤m1
1≤�≤K

(Ui,� − U0
i,�)

2 ≤ c2 | γ

)

= π

( ∑

1≤i≤m1
1≤�≤r

(Ui,� − U0
i,�)

2 +
∑

1≤i≤m1
r+1≤�≤K

U2
i,� ≤ c2 | γ

)

≥ π

( ∑

1≤i≤m1
r+1≤�≤K

U2
i,� ≤

c2

2
| γ

)
π

( ∑

1≤i≤m1
1≤�≤r

(Ui,� − U0
i,�)

2 ≤ c2

2
| γ

)

≥ π

( ∑

1≤i≤m1
r+1≤�≤K

U2
i,� ≤

c2

2
| γ

)

︸ ︷︷ ︸
=:I4

∏

1≤i≤m1
1≤�≤r

π

(
(Ui,� − U0

i,�)
2 ≤ c2

2m1r
| γ

)
.

Now, using Markov’s inequality,

1 − I4 = π

( ∑

1≤i≤m1
r+1≤�≤K

U2
i,� ≥

c2

2
| γ

)

≤ 2
Eπ

(∑
1≤i≤m1

r+1≤�≤K
U2

i,� | γ
)

c2
= 2

∑
1≤i≤m1

r+1≤�≤K
γ2

j S2
f

c2
≤ 1

2
,

and as on E, for � ≥ r + 1, γj ≤ c/(2Sf

√
2Km1). So

I4 ≥ 1
2
.

Next, we remark that

π

((
Ui,� − U0

i,�

)2 ≤ c2

2m1r
| γ

)
≥

∫ U0
i,�+

c√
2m1r

U0
i,�

1
γj

f

(
u

γj

)
du

≥
∫ U0

i,�+
c√

2m1r

U0
i,�

Cf

γj
f̃

(
u

γj

)
du.

Recall that 1 ≤ γj ≤ 2 and f̃ is non-increasing, so

π

((
Ui,� − U0

i,�

)2 ≤ c2

2m1r
| γ

)
≥ 2cCf√

2m1r
f̃

(
U0

i,� +
c√

2m1r

)

≥ 2cCf√
2m1r

f̃
(
U0

i,� + 1
)

as c ≤
√

Kr ≤ √
m1r. We plug this result and the lower-bound I4 ≥ 1/2 into the expression of I3 to get

I3 ≥ 1
2

(
2cCf√
2m1r

)m1r[ ∏

1≤i≤m1
1≤�≤r

f̃(U0
i,� + 1)

]
.
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So

I1 ≥
∫

E
I3π(γ) dγ

=
1
2

(
2cCf√
2m1r

)m1r[ ∏

1≤i≤m1
1≤�≤r

f̃(U0
i,� + 1)

] ∫

E
π(γ) dγ

=
1
2

(
2cCf√
2m1r

)m1r[ ∏

1≤i≤m1
1≤�≤r

f̃(U0
i,� + 1)

](∫ 2

1
h(x) dx

)r(∫ c

2Sf
√

2Km1

0
h(x) dx

)K−r

≥ 1
2

(
2cCf√
2m1r

)m1r[ ∏

1≤i≤m1
1≤�≤r

f̃(U0
i,� + 1)

]
δrαK−r

(
c

2Sf

√
2Km1

)β(K−r)

≥ 1
2

(
2cCf√
2m1r

)m1r[ ∏

1≤i≤m1
1≤�≤r

f̃(U0
i,� + 1)

]
δrαK

(
c

2Sf

√
2Km1

)βK

,

using C2. Proceeding exactly in the same way,

I2 ≥ 1
2

(
2cCf√
2m2r

)m2r[ ∏

1≤j≤m2
1≤�≤r

f̃(V 0
j,� + 1)

]
δrαK

(
c

2Sf

√
2Km2

)βK

.

We combine these inequalities, and we use trivia between m1, m2, m1 ∨ m2 and m1 + m2 to obtain

K(ρr,U0,V 0,c, π) ≤ 2(m1 ∨ m2)r log
(√

2(m1 ∨ m2)r
cCf

)

+
∑

1≤i≤m1
1≤�≤r

log
(

1

f̃(U0
i� + 1)

)
+

∑

1≤j≤m2
1≤�≤r

log
(

1

f̃(V 0
j� + 1)

)

+ βK log
(

2Sf

√
2Km1m2

c

)
+ K log

(
1
α

)
+ r log

(
1
δ

)
+ log(4).

This ends the proof of the lemma.

5.5. Conclusion

We now plug Lemmas 5.1 and 5.2 into Theorem 2. We obtain, under C1, C2 and C3,

E
(
‖M̂λ − M‖2

F

)
≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr

inf
0<c≤

√
Kr

{
‖U0V 0� − M‖2

F

+
2(m1 ∨ m2)r

λ
log

(√
2(m1 ∨ m2)r

cCf

)

+
1
λ

∑

1≤i≤m1
1≤�≤r

log
(

1

f̃(U0
i� + 1)

)
+

1
λ

∑

1≤j≤m2
1≤�≤r

log
(

1

f̃(V 0
j� + 1)

)

+
βK

λ
log

(
2Sf

√
2Km1m2

c

)
+

K

λ
log

(
1
α

)
+

r

λ
log

(
1
δ

)
+

1
λ

log(4)

+ 4c
(
‖U0‖F + ‖V 0‖F +

√
Kr

)2
}

.
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Recall that we fixed λ = 1
4 . We finally choose

c =
2r

(‖U0‖F + ‖V 0‖F +
√

Kr)2
≤ 2r

Kr
=

2
K

and so the condition c ≤
√

Kr is always satisfied as we imposed K ≥ 2. The inequality becomes

E
(
‖M̂λ − M‖2

F

)
≤ inf

1≤r≤K
inf

(U0,V 0)∈Mr

{
‖U0V 0� − M‖2

F

+ 8(m1 ∨ m2)r log
(√

2(m1 ∨ m2)
r

(
‖U0‖F + ‖V 0‖F +

√
Kr

)2

Cf

)

+ 4
∑

1≤i≤m1
1≤�≤r

log
(

1

f̃(U0
i� + 1)

)
+ 4

∑

1≤j≤m2
1≤�≤r

log
(

1

f̃(V 0
j� + 1)

)

+ 4βK log
(

2Sf
√

m1m2

(
‖U0‖F + ‖V 0‖F +

√
Kr

)2

r

)

+ r

[
8 + 4 log

(
1
δ

)]
+ 4K log

(
1
α

)
+ 4 log(4)

}
,

which ends the proof.
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