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Abstract—Let (Pi, Qi), i = 0, 1, be two pairs of probability measures defined on measurable
spaces (Ωi, Fi) respectively. Assume that the pair (P1, Q1) is more informative than (P0, Q0) for
testing problems. This amounts to say that If(P1, Q1) ≥ If(P0, Q0), where If(·, ·) is an arbitrary f-
divergence. We find a precise lower bound for the increment of f-divergences If(P1, Q1) − If(P0, Q0)
provided that the total variation distances ‖Q1 − P1‖ and ‖Q0 − P0‖ are given. This optimization
problem can be reduced to the case where P1 and Q1 are defined on the space consisting of four
points, and P0 and Q0 are obtained from P1 and Q1 respectively by merging two of these four points.
The result includes the well-known lower and upper bounds for If(P, Q) given ‖Q − P‖.
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1. INTRODUCTION AND MAIN RESULTS

A dichotomy is an (ordered) pair (P,Q) of probability measures on a common measurable space
(Ω,F ). We shall also say that E = (Ω,F ,P,Q) is a (binary statistical) model or experiment. A
convenient way to study dichotomies is via testing problems. Namely, denote by Φ(E) the set of all
test functions ϕ in E, i.e., measurable mappings from (Ω,F ) to [0, 1]. Any ϕ(ω) may be interpreted as
the probability to accept the alternative ‘Q’ and to reject the null hypothesis ‘P’ if ω is observed. Let

N(E) :=
{(∫

ϕdP,

∫
ϕdQ

)
: ϕ ∈ Φ(E)

}

be the set of values of the power function. A model E1 is said to be at least as informative as E0,
denoted E1 � E0, if N(E1) ⊇ N(E0); E1 and E0 are said to be equivalent (E1 ∼ E0) if both E1 � E0 and
E0 � E1.

Here is an instructive example. Let a model E1 = (Ω1,F1,P1,Q1), a measurable space (Ω0,F0), and
a Markov kernel K : Ω1 × F0 → [0, 1] from (Ω1,F1) to (Ω0,F0) be given. Put

KP1(B) :=
∫

Ω1

K(ω,B)P1(dω), B ∈ F0,

and define KQ1 similarly. Put P0 = KP1, Q0 = KQ1, E0 = (Ω0,F0,P0,Q0). Then, trivially, E1 � E0.
The model E0 is sometimes referred to as indirect observations in contrast to the model E1 of direct
observations. A special case arises if a kernel K is defined by

K(ω,B) =

{
1 if T (ω) ∈ B,

0 otherwise,

where T is a measurable mapping (statistic) from (Ω1,F1) to (Ω0,F0). Then P0 and Q0 are the images
P1 ◦ T−1 and Q1 ◦ T−1 of P1 and Q1 respectively under T , i.e., the data are reduced by the statistic T
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(which is not necessarily sufficient). An even more special case is when Ω0 = Ω1, F0 is a sub-σ-field
of F1, and T is the identity mapping; then P0 and Q0 are the restrictions of P1 and Q1 respectively
onto F0 (data grouping). In this situation one can interpret also the model E1 as obtained from E0 by
making additional observations. It is useful to the reader to keep in mind the fact that, according to [2],
if E1 and E0 are arbitrary experiments such that E1 � E0, then one can find experiments E

′
1 ∼ E1 and

E
′
0 ∼ E0 such that E

′
0 is obtained from E

′
1 by passing to a sub-σ-field as it has been just described.

If E1 � E0, a natural question is how to quantify the loss of information when passing from E1 to E0,
or the additional information contained in E1 compared to E0. A natural way of doing this is to use the
difference I(P1,Q1) − I(P0,Q0), where I is a functional defined on dichotomies which is increasing with
respect to the partial order �. In particular, the so-called f-divergence If is an appropriate choice for I,
see the definition (1.2) and the data processing inequality (1.7) below. On the other hand, there are the
notions of deficiency δ(E0, E1) and insufficiency η(E0, E1) introduced by Le Cam [11, 12] for statistical
experiments with a general parameter space. We refer to [4], [20, Chapter 3], [21], [14], and the references
therein for connections between these approaches and related results.

In this paper our purpose is to find the lower bound for the increment

If(P1,Q1) − If(P0,Q0) (1.1)

of f-divergences for an arbitrary f in terms of the increment

‖P1 − Q1‖ − ‖P0 − Q0‖
of the total variation distances (which are also f-divergences with f(x) = |x − 1|). More precisely, we
find the lower bound for the increment (1.1) provided that E1 � E0 and the values of ‖P1 − Q1‖ and
‖P0 − Q0‖ are given. Our result includes the well-known lower and upper bounds for the f-divergence
given the total variation distance. The special cases of these bounds corresponding to the Kullback–
Leibler divergence and the Hellinger distance are widely used in probability, statistics, and information
theory. Let us also mention that the problem of finding the upper bound for the increment (1.1) under the
same constraints is trivial.

Before stating the main result let us give the definition of the f-divergence. We refer to [15] for the
unexplained facts.

Let f : (0,+∞) → R be a convex function. The ∗-conjugate f∗ of f is defined by f∗(x) = xf(1/x),
x > 0, then f∗ is also finite and convex on (0,+∞). Put f(0) := limx↓0 f(x) ∈ (−∞,+∞]; simi-
larly, f∗(0) = limx↑∞ f(x)/x ∈ (−∞,+∞]. It is convenient to introduce the function F : [0,+∞) ×
[0,+∞) → R ∪ {+∞} constructed from f by

F(x, y) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y f(x/y) if x > 0, y > 0,

y f(0) if x = 0, y > 0,

x f∗(0) if x > 0, y = 0,

0 if x = y = 0.

The function F is convex, lower semicontinuous, and positively homogeneous.
Let (P,Q) be a dichotomy. Denote by p and q the Radon–Nikodým derivatives of P and Q respectively

with respect to some σ-finite measure μ dominating P and Q. The f-divergence If(P,Q) of P with respect
to Q is defined by

If(P,Q) =
∫

F(p, q) dμ. (1.2)

The definition is correct and does not depend on the choice of μ. It was introduced by Csiszár [3] and
independently by Ali and Silvey [1]. Special cases of f lead to Kullback–Leibler divergence, total variation
distance, squared Hellinger distance and other widely used divergences between probability measures.
An equivalent definition of the f-divergence in terms of the Fenchel transform g of f was suggested
in [10]. If dQ/dP is the Radon–Nikodým derivative of the P-absolutely continuous part of Q with respect
to P, then P(p = 0) = 0, dQ/dP = q/p P-a.s., and we can rewrite (1.2) as

If(P,Q) =
∫

{p>0,q>0}
q f(p/q) dμ + f∗(0)

∫

{p>0,q=0}
p dμ + f(0)

∫

{p=0}
q dμ
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=
∫

{p>0}
p f∗(q/p) dμ + f(0)

(
1 −

∫

{p>0}
p(q/p) dμ

)

=
∫

f∗(dQ/dP) dP + f(0)
(
1 −

∫
(dQ/dP) dP

)
. (1.3)

The following is always true:

f(1) ≤ If(P,Q) ≤ f(0) + f∗(0),
If(P,Q) = If∗(Q,P), (1.4)

if b and c are numbers and f1(x) = f(x) + c + b(x − 1), then

If1(P,Q) = If(P,Q) + c. (1.5)

In view of (1.5), we shall always assume without loss of generality that

f(1) = 0. (1.6)

Let E1 = (Ω1,F1,P1,Q1) and E0 = (Ω0,F0,P0,Q0) be two experiments. Assume that E1 is at least
as informative as E0. One of the most fundamental properties of the f-divergence is the data processing
inequality

If(P1,Q1) ≥ If(P0,Q0). (1.7)

For the sake of completeness, we give a short proof in Section 2.
Our goal is to find a quantitative version of this inequality. Namely, we find a (sharp) lower bound for

the difference

If(P1,Q1) − If(P0,Q0) (1.8)

provided that

E1 � E0, (1.9)

If(P0,Q0) < ∞, (1.10)

and the total variation distances ‖Q1 − P1‖ and ‖Q0 − P0‖ take some fixed values 2v1 and 2v0 respec-
tively, i.e.,

v1 = sup
B∈F1

|Q1(B) − P1(B)|, v0 = sup
B∈F0

|Q0(B) − P0(B)|, (1.11)

0 ≤ v0 ≤ v1 ≤ 1.
Define, for 0 ≤ v0 ≤ v1 ≤ 1, 0 ≤ a ≤ 1 − v1,

df(a, v1, v0) := F(1 − a − v0, 1 − a − v1) + F(a, a + v1 − v0),
Lf(v1, v0) := inf

0≤a≤1−v1

df(a, v1, v0).

Proposition 1.1. The function Lf(v1, v0), 0 ≤ v0 ≤ v1 ≤ 1, is convex, lower semicontinuous, non-
negative, and Lf(v1, v0) = 0 if v1 = v0. Moreover, Lf(v1, v0) is increasing in v1 and decreasing in v0,
and Lf(v1, v0) ≤ Lf(v1 + h, v0 + h) for 0 < h ≤ 1 − v1.

The following theorem is the main result of the paper.

Theorem 1.1. We have

inf
(
If(P1,Q1) − If(P0,Q0)

)
= Lf(v1, v0), (1.12)

where the infimum is taken over all models E1 = (Ω1,F1,P1,Q1) and E0 = (Ω0,F0,P0,Q0) such
that (1.9)–(1.11) hold (inf

∅

:= 0).

Remark 1.1. Assume that Ω1 = Ω0 = {ω1, ω2, ω3, ω4}, F1 is the σ-field of all subsets of Ω1, F0 =
σ{{ω1}, {ω2, ω3}, {ω4}}, P1 and Q1 are defined in the following table:
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ω1 ω2 ω3 ω4

P1 v0 1 − a − v0 a 0

Q1 0 1 − a − v1 a + v1 − v0 v0

and P0 and Q0 are the restrictions of P1 and Q1 respectively onto F0. If f(0) + f∗(0) < +∞ or v0 = 0,
then df(a, v1, v0) = If(P1,Q1) − If(P0,Q0) and thus the infimum in (1.12) is attained on the above
model with a = a∗, where a∗ = arg min df(·, v, v0). This is not the case if f(0) + f∗(0) = +∞ and v0 > 0
because then If(P0,Q0) = +∞. However, let us show that the infimum in (1.12) over all models can
still be replaced by the infimum over models with the same spaces (Ω1,F1) and (Ω0,F0) as above. We
consider only the case where 0 < v0 < v1 < 1 and leave the remaining cases to the reader. Note also
that if f(0) = +∞, then a = 0 is irrelevant for the definition of Lf(v1, v0) because df(0, v1, v0) = +∞;
similarly, a = 1 − v1 is irrelevant if f∗(0) = +∞. If f(0) = +∞, then we add the same amount ε to
P1({ω4}) and Q1({ω4}) and subtract ε from P1({ω3}) and Q1({ω3}). This can be done if a > 0 and ε > 0
is small enough, the distances ‖Q1 − P1‖ and ‖Q0 − P0‖ being unchanged. Similarly, if f∗(0) = +∞,
then we add ε∗ to P1({ω1}) and Q1({ω1}) and subtract ε∗ from P1({ω2}) and Q1({ω2}). Then the
difference If(P1,Q1) − If(P0,Q0) is increasing in ε and ε∗, so its infimum corresponds to the case
ε = ε∗ = 0 and equals df(a, v0, v1). We leave the details to the reader, cf. also the proof of Theorem 1.1.

As a direct consequence of Theorem 1.1, we obtain the well-known lower and upper bounds for the f-
divergence If(P,Q) in terms of the total variation distance ‖P− Q‖. The lower bound corresponds to the
case v0 = 0. The upper bound is trivial if f(0) + f∗(0) = ∞ and corresponds to the case v1 = 1 otherwise.

Corollary 1.1 (Vajda [22]). For every v ∈ [0, 1],

Lf(v, 0) = inf
‖P−Q‖=2v

If(P,Q) ≤ sup
‖P−Q‖=2v

If(P,Q) = v(f(0) + f∗(0)).

It is known that the function Lf(v, 0) can be represented in a simpler form in some special cases (see,
e.g., [15, Proposition 8.28], [6], [7, Lemma 2.4]). The same is true for Lf(v1, v0).

Proposition 1.2. (i) If f(u) = f∗(u) for all u ∈ (0, 1), then

Lf(v1, v0) = F(1 + v1 − 2v0, 1 − v1).

(ii) If f(u) = f(2 − u) for all u ∈ (0, 1), then

Lf(v1, v0) =

{
F(1 + 2v1 − 3v0, 1 − v0) if 1 + v0 ≥ 2v1,

(v1 − v0) f(2) + F(1 − v0, 1 − v1) otherwise.

(iii) If f(u) = 0 for all u ∈ (0, 1), then

Lf(v1, v0) = F(1 − v0, 1 − v1).

Remark 1.2. The assumptions in (i)–(iii) can be slightly relaxed taking into account relation (1.5). Also,
one may use (1.4) and to replace f by f∗ in (ii) and (iii).

Remark 1.3. If a function f can be represented as f = f1 + f2, where f1 and f2 are convex functions,
f1 satisfies one of “symmetry” assumptions (i) or (ii), and f2 is null either to the right or to the left of
u = 1, then one can estimate Lf(v1, v0) from below by Lf1(v1, v0) + Lf2(v1, v0) with explicit expressions
for the summands given in Proposition 1.2. This idea is due to Gilardoni [7, 8], who considers the case
v0 = 0 and assumption (i) on f1 and shows that it works with f(u) = u log u, i.e., the Kullback–Leibler
divergence.
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Example 1.1. Let f(x) = 1
2 (
√

x − 1)2, then If(P,Q) = ρ2(P,Q) is the squared Hellinger distance. By
Proposition 1.2 (i),

ρ2(P1,Q1) ≥ ρ2(P0,Q0) + 1 − 1
2
‖P0 − Q0‖

−
√

1 − 1
4
‖P1 − Q1‖2 − ‖P0 − Q0‖

(
1 − 1

2
‖P1 − Q1‖

)
.

Inverting this inequality, we get that, if ρ2(P1,Q1) − ρ2(P0,Q0) ≤ κ ≤ 1 − 1
2‖P0 − Q0‖, then

‖P1 − Q1‖ ≤ ‖P0 − Q0‖ + 2
√

κ(2 − ‖P0 − Q0‖ − κ).

Example 1.2. Let f(x) = x log x − x + 1, then If(P,Q) = D(P,Q) is the Kullback–Leibler divergence.
According to Remark 1.3, put f1(x) = f(x) for x ∈ (0, 1) and f1(x) = xf1(1/x) for x > 1; f2(x) =
f(x) − f1(x) for x > 0.

It is easy to check that f1 and f2 are convex functions. Put D1 = D(P1,Q1), D0 = D(P0,Q0),
V1 = ‖P1 − Q1‖, V0 = ‖P0 − Q0‖. Then we obtain the inequality

D1 − D0 ≥− 2 − V0

2
log

2 − V1

2
+

4 − V0 − V1

2
log

2 − V0

2

− 2 − V1

2
log

2 + V1 − 2V0

2
.

If D0 = V0 = 0, this inequality is obtained in [7, 8]. Let us emphasize that the bound is not sharp.

2. PROOFS

There are several characterizations of binary experiments, i.e., objects that determine the dichotomy
up to equivalence: the power function (the power of the most powerful test of given level), the error
function (the minimum Bayes risk function), the distribution of the likelihood ratio, the standard mea-
sure, etc., see [21]. In our problem, the power function has the advantage that it provides a convenient
representation of experiments (see below), a simple description of the order � (pointwise ordering), and
a simple geometric representation of the total variation distance. Feldman and Österreicher [5] use this
approach to give an independent proof of Corollary 1.1. The disadvantage of using error functions is the
absence of a convenient representation for experiments, but this is not so important for finite sample
spaces that usually occur in solutions of optimization problems, see, e.g., [19] and [9].

First, we provide the reader with a short proof of inequality (1.7). The representation (2.1) appears
in [18] for twice differentiable f and in [5] in the general case. See also [16, 17] and [14].

Given an experiment E = (Ω,F ,P,Q), let lE(x, y), x, y ∈ R, be the support function of the set N(E).
Then it satisfies

lE(x, y) := sup
(u,t)∈N(E)

(xu + yt) = sup
ϕ∈Φ

∫
(xp + yq)ϕdμ =

∫
(xp + yq)+ dμ,

where μ, p, and q are as in (1.2).

Let also a convex function f : (0,∞) → R be given. Then the right-hand derivative f ′+ is a right-
continuous increasing function on (0,∞) and, hence, determines the Lebesgue–Stieltjes measure νf on
(0,∞) satisfying νf((x, y]) = f ′+(y) − f ′+(x).

Lemma 2.1. Assume that f(1) = 0 and f ′+(1) = 0. Then, for every x, y ≥ 0,

F(x, y) =
∫

(0,1)
(sy − x)+ νf(ds) +

∫

[1,∞)
(x − sy)+ νf(ds).
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The proof of the lemma is a direct consequence of the integration by parts formula. Now, by Fubini’s
theorem we obtain from (1.2) that

If(P,Q) =
∫

(0,1)
lE(−1, s) νf(ds) +

∫

[1,∞)
lE(1,−s) νf(ds). (2.1)

Obviously, E1 � E0 implies lE1(x, y) ≥ lE0(x, y) for all x, y, and (1.7) follows.
If E is a binary model, the set N(E) is a convex and closed subset of [0, 1] × [0, 1], contains (0, 0), and

is symmetric with respect to the point (0.5, 0.5), see, e.g., [13, p. 62]. In Fig. 1 we present a set N(E) of
generic form.

Fig. 1. The solid line is the boundary of the set N(E). The presence of horizontal segments in this line indicates that P
is not absolutely continuous with respect to Q: the length of the horizontal segments is equal to the P-measure of the
singular component of P with respect to Q. Similarly, the length of the vertical segments is equal to the Q-measure of
the singular component of Q with respect to P.

Let βE(u) := sup {t ∈ [0, 1] : (u, t) ∈ N(E)}, u ∈ [0, 1], be the maximal power among all tests of
level u. Then, obviously, βE(u) is a concave continuous function from [0, 1] to [0, 1], βE(1) = 1, and

N(E) := {(u, t) ∈ [0, 1] × [0, 1] : 1 − βE(1 − u) ≤ t ≤ βE(u)}.
In particular, E1 � E0 if and only if βE1(u) ≥ βE0(u) for all u ∈ [0, 1].

Conversely, let β(u) be a concave continuous function from [0, 1] to [0, 1], β(1) = 1. Consider the
dichotomy (λ, β) on [0, 1] with the Borel σ-field, where λ is the Lebesgue measure and β, by abuse of
notation, is the measure on [0, 1] such that its distribution function coincides with β(u) on [0,1]. Then
dβ/dλ(u) = β′(u) du-a.s., where β′(u) denotes, say, the right-hand derivative of β(u) at u. Since the
function β(u) is concave, the derivative is decreasing. Therefore, by the Neyman–Pearson lemma, 1[0,u]

is the most powerful test of level u. Therefore, βE(u) = β(u), u ∈ [0, 1].
Thus, to every experiment E = (Ω,F ,P,Q), we put into correspondence the equivalent experiment

Ẽ := ([0, 1],B([0, 1]), λ, μE), which we consider as the representation of E. Now (1.3) can be rewritten
as

If(P,Q) =
∫

(0,1)
f∗(β′

E
(u)) du + f(0)βE(0), (2.2)

where β′
E
(u) can be still interpreted as the right-hand derivative of the function βE at u. Using this

formula, we obtain, in particular,

‖Q − P‖ = 2 sup
u∈[0,1]

(βE(u) − u).

Now we see that the set of dichotomies (P,Q) with ‖P− Q‖ = 2v contains the greatest element with
respect to the order �, which corresponds to the function β(u) = (v + u) ∧ 1, which immediately gives
the sharp upper bound in Corollary 1.1. On the other hand, the smallest element in this set does not
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exist. However, every model is at least as informative as one of the models given by the probabilities on
two points: P = (1 − a, a), Q = (1 − a − v, a + v), where a runs over [0, 1 − v]. This proves the lower
bound in Corollary 1.1. These arguments are due to [5].

Proof of Proposition 1.1. It follows from assumption (1.6) that F(x, x) ≡ 0. Since F is convex and
lower semicontinuous, the function df(a, v1, v0), 0 ≤ v0 ≤ v1 ≤ 1, 0 ≤ a ≤ 1 − v1, is convex, lower
semicontinuous and

df(a, v1, v0) ≥ 2F((1 − v0)/2, (1 − v0)/2) = 0.

Since the infimum in the definition of Lf(v1, v0) is taken over a compact set, we obtain that Lf(v1, v0) is
convex, lower semicontinuous, and nonnegative, and is equal to 0 on {v0 = v1}. The last fact together
with convexity implies that the function is increasing in the first argument and decreasing in the second
one.

Let us prove the remaining claim. Since F is convex and positively homogeneous, for all x, y, h ≥ 0,

F(x, y) =
1
2

F(2x, 2y) +
1
2

F(2h, 2h) ≥ F(x + h, y + h). (2.3)

The inequality Lf(v1 + h, v0 + h) ≥ Lf(v1, v0) follows now from the definition of Lf .

Proof of Theorem 1.1. Let E1 = (Ω1,F1,P1,Q1) and E0 = (Ω0,F0,P0,Q0) be two models satisfying
(1.9) and (1.11), that is,

βE1(u) ≥ βE0(u) for all u ∈ [0, 1],

v1 = sup
u∈[0,1]

(βE1(u) − u), v0 = sup
u∈[0,1]

(βE0(u) − u), (2.4)

see Fig. 2. If v1 = v0, then both sides of (1.12) are equal to 0, so we will assume that 0 ≤ v0 < v1 ≤ 1.
If v0 < v1 = 1 and f(0) + f∗(0) = ∞, then both sides of (1.12) are equal to +∞, so this case is also
excluded from further consideration. In the remaining cases Lf(v1, v0) < ∞, so we may assume that
If(P1,Q1) < ∞.

Fig. 2. In the figure on the left, the solid curves are the graphs of the functions u � βE1(u) (the upper one) and
u � βE0(u) (the lower one), the dashed straight lines u � u + v1 and u � u + v0 are corresponding tangent lines. In
the figure on the right, A is a point where the tangent line u � u + v1 and the curve u � βE1(u) meet, and B and C are
the points where the curve u � βE1(u) intersects the line u � u + v0 (if βE1(0) > v0, then B = (0, v0)). The functions
u � β1(u) and u � β0(u) are defined via their graphs represented by solid curves. The graph of u � β1(u) contains
the straight segments from B to A and from A to C, the graph of u � β0(u) contains the straight segment from B to
C. Finally, the graphs of both functions replicate the graph of u � βE1(u) to the left of B and to the right of C.

The following construction is the core of the proof, see Fig. 2. According to (2.4), there exists a
point A on the graph of βE1(u), which belongs to the line t = u + v1. The graph of βE1(u) intersects
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the line t = u + v0 to the right of A at a (unique) point denoted by C. Similarly, if βE1(0) ≤ v0, the
graph of βE1(u) intersects the line t = u + v0 to the left of A at a (unique) point denoted by B; otherwise,
B := (0, v0). Now define new functions β1(u) and β0(u) in the following way: the graph of β1(u) contains
two straight segments BA and AC, while the graph of β0(u) contains the straight segment BC; for other
values of u, we put β1(u) := β0(u) := βE1(u). It is clear that β1(u) and β0(u) are concave continuous
functions equal to 1 at 1,

βE1(u) ≥ β1(u) ≥ β0(u) ≥ βE0(u) for all u ∈ [0, 1],

v1 = sup
u∈[0,1]

(β1(u) − u), v0 = sup
u∈[0,1]

(β0(u) − u),

so

If(P1,Q1) − If(P0,Q0) ≥ If(λ, β1) − If(λ, β0),

and the infimum in (1.12) can be replaced by the infimum over all pairs of dichotomies (λ, β1), (λ, β0)
obtained through the above construction.

Now we note that, according to (2.2),

If(λ, β1) − If(λ, β0) = F(uA − uB , tA − tB) + F(uC − uA, tC − tA),

where A = (uA, tA), and similarly for B and C. According to (2.3), F(x + h, y + h) is decreasing in h.
Since the points B and C lie on the line t = u + v0, for a fixed A, the infimum of F(uA − uB , tA − tB)
over B is attained if uB = 0, and the infimum of F(uC − uA, tC − tA) over C is attained if tC = 1. Thus,

inf
B,C

[
F(uA − uB , tA − tB) + F(uC − uA, tC − tA)

]

= F(uA, tA − v0) + F(1 − v0 − uA, 1 − tA) = d(a, v0, v1),

where a = uA. It may happen that the set of possible positions for B does not include the extreme point
(0, v0) (if f∗(0) = +∞) and similarly for C, but this is irrelevant for the above equality.

Proof of Corollary 1.1. If ‖P0 − Q0‖ = 0, then P0 = Q0, If(P0,Q0) = 0 for any convex f, and E1 � E0

for any model E1. Thus, if v0 = 0, (1.12) reduces to the first equality in the assertion.

If ‖P1 − Q1‖ = 2, then P1 and Q1 are singular, If(P1,Q1) = f(0) + f∗(0) for any convex f, and
E1 � E0 for any model E0. This means that if v1 = 1 and f(0) + f∗(0) < +∞, (1.12) reduces to

sup
‖P−Q‖=2v

If(P,Q) = f(0) + f∗(0) − Lf(1, v) = v(f(0) + f∗(0)).

If f(0) + f∗(0) = +∞ and v > 0, it is enough to note that, in the model in Remark 1.1 with v0 = v,
v1 = 1, a = 0, we have ‖P0 − Q0‖ = 2v and If(P0,Q0) = +∞.

Proof of Proposition 1.2. (i) Our assumption on f implies F(a, a + v1 − v0) = F(a + v1 − v0, a).
Hence, by convexity and positive homogeneity of F,

df(a, v1, v0) = F(1 − a − v0, 1 − a − v1) + F(a + v1 − v0, a) ≥ F(1 + v1 − 2v0, 1 − v1),

and equality holds for a = (1 − v1)/2.

(ii) Our assumption on f implies F(a, a + v1 − v0) = F(a + 2v1 − 2v0, a + v1 − v0), hence

df(a, v1, v0) = F(1 − a − v0, 1 − a − v1) + F(a + 2v1 − 2v0, a + v1 − v0).

The expression on the right is well defined for all real a ≤ 1 − v1, is a convex function of a and, similarly
to the previous case, attains the minimum at a∗ = (1 + v0 − 2v1)/2. This implies that the minimum of
df(a, v1, v0) over a ∈ [0, 1− v1] is attained at a = a∗ if a∗ ≥ 0, and at a = 0 otherwise. The claim follows.

(iii) Our assumption on f implies F(a, a + v1 − v0) = 0, so the claim follows from (2.3).
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