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Abstract—Let T (λ1, . . . , λn) be the lifetime of a parallel system consisting of exponential compo-
nents with hazard rates λ1, . . . , λn, respectively. For systems with only two components, Dykstra
et. al. (1997) showed that if (λ1, λ2) majorizes (γ1, γ2), then, T (λ1, λ2) is larger than T (γ1, γ2) in
likelihood ratio order. In this paper, we extend this theorem to general parallel systems. We introduce
a new partial order, the so-called d-larger order, and show that if (λ1, . . . , λn) is d-larger than
(γ1, . . . , γn), then T (λ1, . . . , λn) is larger than T (γ1, . . . , γn) in likelihood ratio order.
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1. INTRODUCTION

Order statistics play an important role in statistical inference, reliability theory, operations research,
and many other areas. For i = 1, . . . , n, let Xi be the lifetime of ith component in a parallel system, then
the largest of X1, . . . ,Xn is the lifetime of the parallel system.

Since exponential distribution has nice mathematical form and is commonly-used in survival anal-
ysis, reliability analysis, and many other fields, so in this paper, we focus on exponential components.
An exponential component means its lifetime follows an exponential distribution. Specifically, assume,
for i = 1, . . . , n, that Xi follows the exponential distribution with hazard rate λi, then we denote
by T (λ1, . . . , λn) = max{X1, . . . ,Xn} as the lifetime of the parallel system consisting of compo-
nents whose lifetimes are X1, . . . ,Xn respectively. By symmetry, we assume the hazard rate vector
(λ1, . . . , λn) is in increasing order, that is, 0 < λ1 ≤ · · · ≤ λn.

So far, there is an extensive literature on stochastic comparison between two parallel systems with
lifetimes T (λ1, . . . , λn) and T (γ1, . . . , γn). For example, Pledger and Proschan (1971) showed that

(λ1, . . . , λn)
m
� (γ1, . . . , γn) implies T (λ1, . . . , λn) ≥st T (γ1, . . . , γn). Dykstra et. al. (1997) enhanced

the above result to reversed hazard rate order. Recently, Misra and Misra (2013) further extended

the result to weak majorization. Here and in the sequel,
m
� stands for majorization order;

w
� for weak

majorization order; ≥st for the usual stochastic order; ≥hr for hazard rate order; ≥rh for reversed hazard
rate order; and ≥lr for likelihood ratio order. For more details on these majorization-type orders and
various stochastic orders, see Shaked and Shanthikumar (2007) and Marshall et al. (2011).

As we know, the likelihood ratio order implies other stochastic orders. Hence the likelihood ratio order
is the most interesting order in stochastic comparison. However, due to technical cumbersomeness, the
results about likelihood ratio order between T (λ1, . . . , λn) and T (γ1, . . . , γn) are relatively few.

In the case of n = 2, Dykstra et. al. (1997) showed that if (λ1, λ2)
m
� (γ1, γ2), then T (λ1, λ2) ≥lr

T (γ1, γ2). We refer to this result as DKR theorem. Wang and Laniado (2015) extended this result to: If
(γ1, γ2) − (λ1, λ2) = a(1,−1) + b(1, 1

2), where a, b ≥ 0, then T (λ1, λ2) ≥lr T (γ1, γ2).
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It is well known that the DKR theorem cannot be extended directly to the cases of n ≥ 3 (see Boland
et al. (1994)). Under what condition T (λ1, . . . , λn) ≥lr T (γ1, . . . , γn) can hold is a problem that has
not been well solved yet. Up to now, only a few results for special situations are available. Among them,
Kochar and Xu (2015) showed that T (λ1, . . . , λn) ≥lr T (λ̄, . . . , λ̄), where λ̄ is the average of λ1, . . . , λn,

and Torrado and Kochar (2015) showed that if (λ1, . . . , λ1, λ2, . . . , λ2)
m
� (γ1, . . . , γ1, γ2, . . . , γ2), then

T (λ1, . . . , λ1, λ2, . . . , λ2) ≥lr T (γ1, . . . , γ1, γ2, . . . , γ2).
The DKR theorem indicates that the reliability of a parallel system (with two components) is stochas-

tically increasing (in terms of likelihood ratio order) by unbalancing its components. So, T (λ1, λ2) ≥lr

T (λ1 + δ, λ2 − δ) (with symmetry condition λ1 + δ ≤ λ2 − δ). We thus say that the reliability of a parallel
system is decreasing in the direction (1,−1). As we can verify, when the best components in two parallel
systems are identical, there is no likelihood ratio order between the systems. This fact indicates that the
reliability of a parallel system is not decreasing in the direction (0, 1), or (1,∞). However, by intuition,
if the quality of the best component along with other components becomes better, the reliability of the
system should improve. Hence the reliability of a parallel system should be decreasing in the direction
(1, a), a < ∞. Wang and Laniado (2015) proved this is true for a = 1/2. Thus the reliability of a parallel
system (with two components) is decreasing in the directions (1,−1), (1, 1

2), and their combinations.
In this paper, we extend such a result to general parallel systems. We introduce a new partial order,

the so-called d-larger order among the hazard rate vectors (denote as
d
�), and show that

(λ1, . . . , λn)
d
� (γ1, . . . , γn) =⇒ T (λ1, . . . , λn) ≥lr T (γ1, . . . , γn).

The paper is organized as follows. In Section 2, we give some notation, definitions, and lemmas.
Section 3 provides the proofs of the main results. The paper ends with a short discussion in Section 4.
The proofs of the lemmas are moved to the Appendix.

2. NOTATION, DEFINITIONS, AND LEMMAS
Let X be a nonnegative continuous random variable with distribution function FX , survival function

F̄X = 1 − FX , and density function fX . The hazard function and the reversed hazard function of X
are defined as λX = fX/F̄X and rX = fX/FX , respectively. For two nonnegative continuous random
variables X and Y , we say that X is larger than Y in the usual stochastic order (denoted by X ≥st Y )
if F̄X(t) ≥ F̄Y (t); X is larger than Y in hazard rate order (denoted by X ≥hr Y ) if λX(t) ≤ λY (t); X is
larger than Y in reversed hazard rate order (denoted by X ≥rh Y ) if rX(t) ≥ rY (t); X is larger than Y
in likelihood ratio order (denoted by X ≥lr Y ) if the ratio fX(t)/fY (t) is increasing in t. It is well known
that the likelihood ratio order implies both the hazard rate order and reversed hazard rate order, while
these two orders imply the usual stochastic order.

Given two vectors a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) with elements in increasing order,

the vector a is said to majorize the vector b (denoted as a
m
� b) if and only if

∑n
i=1 ai =

∑n
i=1 bi and

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, . . . , n − 1. If

∑k
i=1 ai ≤

∑k
i=1 bi for all k = 1, . . . , n, then the vector a is

said to weakly majorize the vector b (denoted as a
w
� b).

For two vectors a and b, we say a = b if there is a positive number k such that a = kb. For given
vectors v1, . . . ,vm, we say that vector u is a combination of v1, . . . ,vm if u = a1v1 + · · · + amvm, with
ai ≥ 0 for i = 1, . . . ,m. For k = 2, . . . , n, let εk be the vector whose first element is 1 and the kth element
is −1, while all others are 0; and let δk be the vector whose first element is 1 and kth element is 1/2, while
all others are 0. For two vectors a and b, if b− a is a combination of εk, δj (k, j = 2, . . . , n), then we say

a is d-larger than b and denote it by a
d
� b.

Lemma 2.1. For vectors λ = (λ1, . . . , λn) and γ = (γ1, . . . , γn), if λ
d
� γ, then λ

w
� γ.

Lemma 2.2. Let b(x) = x/(1 − e−x), c(x) = xe−x/(1 − e−x). Then, if x > 0, b(x) is increasing, c(x)
is decreasing, c′(x) is increasing, and b′(x)c(x) is decreasing.

Lemma 2.3. Let b(x) = x/(1 − e−x), c(x) = xe−x/(1 − e−x). Then, for any x1, x2 > 0,

2b′(x1)c(x1) + c′(x2)[b(x2) − b(x1)] > 0.

MATHEMATICAL METHODS OF STATISTICS Vol. 25 No. 2 2016



ON LIKELIHOOD RATIO ORDERING OF PARALLEL SYSTEMS 147

3. MAIN RESULTS AND PROOFS

Theorem 3.1. Consider two parallel systems with components whose lifetimes are X1, . . . ,Xn

and Y1, . . . , Yn, respectively. Assume, for i = 1, . . . , n, that Xi follows an exponential distribution
with hazard rate λi and Yi follows an exponential distribution with hazard rate γi. Then,

(λ1, . . . , λn)
d
� (γ1, . . . , γn) =⇒ T (λ1, . . . , λn) ≥lr T (γ1, . . . , γn).

Proof. Let U = T (λ1, . . . , λn) and V = T (γ1, . . . , γn). By Lemma 2.2, λ
w
� γ. By the result of Misra

and Misra (2013), U ≥rh V . From Theorem 1.C.4 (b) of Shaked and Shanthikumar (2007), it is enough
to show that the ratio of the reversed hazard rate function of U over that of V is increasing in t > 0.
Denote the reversed hazard rate function of U = T (λ1, . . . , λn) by rλ(t), and that of V by rγ(t). We
have,

ψ(t) =
rλ(t)
rγ(t)

=

∑n
i=1

λie
−λit

1 − e−λit

∑n
i=1

γie
−γit

1 − e−γit

def=
ϕ(λ; t)
ϕ(γ; t)

.

For convenience, we denote A
sgn
= B if A and B are of the same sign. So,

ψ′(t)
sgn
= ϕ′

t(λ; t)ϕ(γ; t) − ϕ(λ; t)ϕ′
t(γ; t)

sgn
=

ϕ′
t(λ; t)

ϕ(λ; t)
− ϕ′

t(γ; t)
ϕ(γ; t)

,

where

ϕ′
t(λ; t)

ϕ(λ; t)
= −

∑n
i=1

λ2
i e

−λit

(1 − e−λit)2

∑n
i=1

λie
−λit

1 − e−λit

,

and similarly for ϕ′
t(γ; t)/ϕ(γ; t).

Consider the function

Φ(x1, . . . , xn) =

∑n
i=1

x2
i e

−xi

(1 − e−xi)2

∑n
i=1

xie
−xi

1 − e−xi

, 0 < x1 ≤ x2 ≤ · · · ≤ xn.

Denote the numerator part of Φ(x1, . . . , xn) by N , and the denominator part by D. Let b(x) =
x/(1 − e−x), c(x) = xe−x/(1 − e−x), and d(x) = b(x)c(x). In terms of these functions,

N =
n∑

i=1

d(xi), D =
n∑

i=1

c(xi),
∂Φ
∂xi

sgn
=

∂N

∂xi
D − N

∂D

∂xi
= d′(xi)D − c′(xi)N.

By Lemma 2.1, for x > 0, c(x) is decreasing, c′(x) is increasing, b(x) is increasing, and the function
b′(x)c(x) is decreasing. Hence,

�εk
Φ =

∂Φ
∂x1

− ∂Φ
∂xk

=
[
d′(x1) − d′(xk)

] n∑

j=1

c(xj) −
[
c′(x1) − c′(xk)

] n∑

j=1

b(xj)c(xj)

≥
{[

d′(x1) − d′(xk)
]
−

[
c′(x1) − c′(xk)

]
b(x1)

} n∑

j=1

c(xj)

sgn
=

[
d′(x1) − d′(xk)

]
−

[
c′(x1) − c′(xk)

]
b(x1)

= b′(x1)c(x1) + b(x1)c′(x1) − b′(xk)c(xk) − b(xk)c′(xk) − c′(x1)b(x1) + c′(xk)b(x1)
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= b′(x1)c(x1) − b′(xk)c(xk) − b(xk)c′(xk) + c′(xk)b(x1)

= b′(x1)c(x1) − b′(xk)c(xk) − c′(xk)[b(xk) − b(x1)]

≥ b′(x1)c(x1) − b′(xk)c(xk) ≥ 0.

For �δk
Φ, we have,

�δk
Φ =

∂Φ
∂x1

+
1
2

∂Φ
∂xk

=
[
d′(x1) +

1
2
d′(xk)

] n∑

j=1

c(xj) −
[
c′(x1) +

1
2
c′(xk)

] n∑

j=1

b(xj)c(xj)

≥
{[

d′(x1) +
1
2
d′(xk)

]
−

[
c′(x1) +

1
2
c′(xk)

]
b(x1)

} n∑

j=1

c(xj)

sgn
=

[
d′(x1) +

1
2
d′(xk)

]
−

[
c′(x1) +

1
2
c′(xk)

]
b(x1)

= b′(x1)c(x1) + b(x1)c′(x1) +
1
2
b′(xk)c(xk) +

1
2
b(xk)c′(xk) − c′(x1)b(x1) −

1
2
c′(xk)b(x1)

= b′(x1)c(x1) +
1
2
b′(xk)c(xk) +

1
2
c′(xk)

[
b(xk) − b(x1)

]

≥ b′(x1)c(x1) +
1
2
c′(xk)

[
b(xk) − b(x1)

]

sgn
= 2b′(x1)c(x1) + c′(xk)

[
b(xk) − b(x1)

]
≥ 0,

where the last inequality comes from Lemma 2.3.

By Lemma 2.1, λ
d
� γ implies v = γ − λ =

∑
aiεi +

∑
bjδj , with ai, bj ≥ 0. Thus, �vΦ =∑

ai �εi Φ +
∑

bj �δj
Φ ≥ 0. Hence, in the direction v = γ − λ, the function Φ(x1, . . . , xn) is

increasing. Therefore,

ψ′(t)
sgn
=

ϕ′
t(λ; t)

ϕ(λ; t)
− ϕ′

t(γ; t)
ϕ(γ; t)

= −

∑n
i=1

λ2
i t

2e−λit

(1 − e−λit)2

∑n
i=1

λite
−λit

1 − e−λit

+

∑n
i=1

γ2
i t2e−γit

(1 − e−γit)2

∑n
i=1

γite
−γit

1 − e−γit

= Φ(γ1t, . . . , γnt) − Φ(λ1t, . . . , λnt) ≥ 0.

This shows that ψ′(t) ≥ 0, and thus T (λ1, . . . , λn) ≥lr T (γ1, . . . , γn).

Remark 3.2. For n = 2, (λ1, λ2)
m
� (γ1, γ2) is equivalent to (λ1, λ2) = (γ1, γ2), or, γ2 − λ2 = −(γ1 −

λ1) < 0. Excluding the trivial condition (λ1, λ2) = (γ1, γ2), the majorization order (λ1, λ2)
m
� (γ1, γ2) is

equivalent to (γ1, γ2) − (λ1, λ2) = (1,−1). Hence, Theorem 3.1 generalizes and extends the classical
DKR theorem to the case of n ≥ 2.

Remark 3.3. By Theorem 1.C.8. in Shaked and Shanthikumar (2007), the likelihood ratio order is
closed under increasing transformations. It is self-evident that an increasing transformation keeps the
maximum order. Hence, Theorem 3.1 can be readily extended to the case of the proportional hazard rate
(PHR) models and the case of Weibull distributed variables.

4. DISCUSSION

For a parallel system with two exponential components, the DKR theorem shows that the reliability
of the system (in terms of likelihood ratio order) is decreasing in the direction (1,−1). Wang and Laniado
(2015) proved that the reliability of the system is decreasing in the directions (1,−1), (1, 1

2 ), and their
combinations. As pointed out by Boland et al. (1994), the DKR theorem cannot be extended directly
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to the cases of n ≥ 3. In this paper, we find a way to extend the result of Wang and Laniado (2015) to
general n, and incidentally, extend the DKR theorem to general n.

Based on the result of Wang and Laniado (2015), the reliability of the system is decreasing in the
direction (1, a), −1 ≤ a ≤ 1/2. As we have mentioned, the reliability of the system is not decreasing in
the direction (1,∞). It is an interesting question, what is the maximum value of a such that the reliability
of the system is decreasing in the direction (1, a). Further investigation is needed for this question.

APPENDIX: PROOFS OF THE LEMMAS

Proof of Lemma 2.1. Denote v = γ − λ = (v1, v2, . . . , vn). Clearly, λ
w
� γ if and only if

∑k
i=1 vi ≥ 0

for any k = 1, . . . , n. When λ
d
� γ, it is a combination of those εk and δj . The lemma is self-evident now.

Proof of Lemma 2.2. We just establish that the function b′(x)c(x) is decreasing in x > 0. Denote
p(x) = 1 − e−x − xe−x. Then, b′(x)c(x) = [p(x)xe−x]/(1 − e−x)3. We have,

[b′(x)c(x)]′ = [p(x)xe−x]′(1 − e−x)−3 − 3(1 − e−x)−4[p(x)xe−x]
sgn
= [p(x)xe−x]′(1 − e−x) − 3e−x[p(x)xe−x]
sgn
= [x2e−x + p(x)(1 − x)](1 − e−x) − 3xp(x)e−x

= 1 − x − 2e−x − 2xe−x + 2x2e−x + e−2x + 3xe−2x + x2e−2x

def= I(x).

Easily,

I ′(x) = −1 + 6xe−x − 2x2e−x + e−2x − 4xe−2x − 2x2e−2x

sgn
= −e2x + 6xex − 2x2ex + 1 − 4x − 2x2

def= −J(x).

We have,

J ′(x)
sgn
= e2x − 3ex − xex + x2ex + 2 + 2x,

J ′′(x) = 2e2x − 4ex + xex + x2ex + 2

≥ 2e2x − 4ex + 2 ≥ 0.

So, J ′(x) ≥ J ′(0) = 0 and thus, J(x) ≥ J(x) = 0. Hence, I ′(x) ≤ 0, which indicates that the function
b′(x)c(x) is decreasing in x > 0.

Proof of Lemma 2.3. It is clear that the conclusion is valid when x1 > x2 > 0, since the function b(x)
is increasing. Consider the function f(x) = 2b′(x1)c(x1) + b(x1)c(x) − b(x)c(x), x > x1 > 0. Clearly,
f(x1) = f(∞) > 0, so this function has an extreme value at a point x0 ∈ (x1,∞). We have,

f ′(x) = b(x1)c′(x) − [b(x)c(x)]′

= b(x1)c′(x) − b′(x)c(x) − b(x)c′(x)

= b(x1)[b′(x)e−x − c(x)] − b′(x)c(x) − b(x)[b′(x)e−x − c(x)]

= b(x1)b′(x)e−x − b(x1)c(x) − 2b′(x)c(x) + b(x)c(x).

So, x0 satisfies

b(x1)b′(x0)e−x0 − b(x1)c(x0) − 2b′(x0)c(x0) + b(x0)c(x0) = 0.

Thus,

fmin = f(x0) = 2b′(x1)c(x1) + b(x1)c(x0) − b(x0)c(x0)

MATHEMATICAL METHODS OF STATISTICS Vol. 25 No. 2 2016



150 WANG, ZHAO

= 2b′(x1)c(x1) + b(x1)c(x0) + b(x1)b′(x0)e−x0 − b(x1)c(x0) − 2b′(x0)c(x0)

= 2b′(x1)c(x1) + b(x1)b′(x0)e−x0 − 2b′(x0)c(x0)

> 2b′(x1)c(x1) − 2b′(x0)c(x0) > 0.

This completes the proof of the lemma.
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