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Abstract—Surveys usually consist of a list of direct questions. However respondents reluctantly
provide direct information on sensitive topics such as socially undesired behavior (e.g., social fraud,
discrimination, tax evasion), income or political preferences. For this reason, the diagonal technique
(DT), an indirect questioning procedure has been proposed in the literature. In this paper, we
consider multiple categorical target variables where all or some of the variables are gathered by the
DT. The maximum likelihood (ML) estimator for the joint distribution depends on the setup of the
survey procedure, i.e., on certain parameters to adjust. We conduct a decision-theoretic analysis and
derive risk-optimal ML estimators. The special point of our investigation is the incorporation of the
degree of privacy protection (DPP). In particular, in the class of ML estimators corresponding to a
given DPP, we detect an estimator with the lowest risk, i.e., with the highest quality.
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1. INTRODUCTION

Statistical surveys are usually based on direct questions, that is, the respondents are instructed to
tell their values for the variables involved in the survey. However, it may occur that some variables are
difficult to gather by direct questioning. For instance, for the characteristic income, which is frequently
relevant in social surveys on living conditions and market research surveys, answer refusal often occurs.
In addition to answer refusal, untruthful answer can be expected. Possible reasons for these problems
are that people with large income may be afraid of envy and that people with small income may be
embarrassed. As another example, assume that a study on social fraud, especially the economic loss
through moonlighting, is intended to be conducted. Then, a direct question on, for example, a person’s
average monthly revenues from undeclared work is very critical and will cause answer refusal and socially
desired answers. The same problems with the data quality exist also for other sensitive topics (e.g., tax
evasion, insurance fraud, political preferences, cheating in exams, discrimination) if direct questioning
is applied.

These troubles motivate the application of indirect questioning procedures, which safeguard the
respondents’ privacy, but deliver data that allow inference for the variables of interest (e.g., Fox and Tracy
(1986), Chaudhuri and Christofides (2013) as well as Tian and Tang (2014) give overviews). One such
method that has recently been published is the diagonal technique (DT), see Groenitz (2014a, 2014b).
We review the DT in Section 2. Groenitz (2014a, 2014b) considers only one attribute of interest. In
this paper, we now address multiple variables X1, . . . ,Xv. In the first part of the article (Section 3), we
assume that each variable is gathered by the DT. In the second part (Section 4), we address surveys that
involve direct questions and questions according to the DT. In both parts, we consider the maximum
likelihood (ML) estimator for the joint distribution of the v variables and its asymptotic variance. The
ML estimator depends on the setup or configuration of the survey procedure. A setup means certain
parameters that must be determined. We conduct a decision-theoretic analysis and derive risk-optimal
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134 GROENITZ

ML estimators, or equivalently, optimal setups for the survey procedure. The special feature of our
decision-theoretic investigation is to involve the degree of privacy protection (DPP) offered by a setup of
the survey procedure. In detail, for the class of ML estimators corresponding to a given DPP, we search
the one with the lowest risk, that is, with the best accuracy.

2. INDIRECT INFORMATION BY DIAGONAL TECHNIQUE

Groenitz (2014a) proposes a questioning technique for surveys, namely the diagonal technique, to
obtain indirect information on a categorical variable X1. The DT is beneficial when X1 is a sensitive
variable, which is difficult to gather by a direct question. For example, X1 may describe the preferred
political party (i.e., political preferences), income, the number how often a person has conducted
insurance fraud or the earnings from undeclared work (in each case, recorded in classes). The idea of
the DT is that the interviewees do not tell the X1 value, but give an indirect answer A1, which does
not imply the X1 value and, thus, protects the respondent’s privacy. The following definition fixes more
details on the DT.

Definition 1. Let X1 and W1 be characteristics with possible values 1, . . . , k1. Set

A1 = [(W1 − X1) mod k1] + 1, (1)

define the vector c1 = (c11, . . . , c1,k1) =
(
P(W1 = 1), . . . , P(W1 = k1)

)
and the matrix C1 = [P(A1 =

p | X1 = q)]p,q=1,...,k1 . A questioning procedure for a survey in which each respondent is instructed to
give the response A1 and not to reveal the values of X1 and W1 is called “diagonal technique with setup
c1” or “diagonal technique with coupling matrix C1” if:

– X1 and W1 are independent.

– W1 possesses a known distribution.

– The matrix C1 is invertible.

For the DT with coupling matrix C1, each row of the matrix C1 is a left-cyclic shift of the row above
and the first row of C1 equals c1. The matrix C1 couples the distributions of A1 and X1, in particular,

we have
(
P(A1 = 1), . . . , P(A1 = k1)

)� = C ·
(
P(X1 = 1), . . . , P(X1 = k1)

)�. This explains the name
coupling matrix.

We give an example for the DT: Let X1 describe the monthly earnings from undeclared work, where
X1 = 1, X1 = 2, X1 = 3, and X1 = 4 represent earnings in the amount of 0, 1–50, 51–200, and more
than 200 Euro, respectively. Furthermore, let W1 be based on the number formed by the last three
digits of the interviewee’s telephone number. If this number is ≤ 624, 625–749, 750–874, 875–999,
we set W1 = 1, W1 = 2, W1 = 3, W1 = 4, respectively. For instance, telephone number 9478648 results
in number 648 and W1 = 2. It is reasonable to assume that X1 and W1 are independent and that the
distribution of W1 is given by

(
P(W1 = 1), . . . , P(W1 = 4)

)
= (0.625, 0.125, 0.125, 0.125). Moreover,

let us assume that each respondent is instructed to provide an indirect answer A1 according to Table 1.

Table 1. Table of the required indirect answer A1

X1\W1 W1 = 1 W1 = 2 W1 = 3 W1 = 4

X1 = 1 1 2 3 4

X1 = 2 4 1 2 3

X1 = 3 3 4 1 2

X1 = 4 2 3 4 1
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Then, we have

C1 =

⎛

⎜⎜
⎜
⎜⎜
⎜
⎝

0.625 0.125 0.125 0.125

0.125 0.125 0.125 0.625

0.125 0.125 0.625 0.125

0.125 0.625 0.125 0.125

⎞

⎟⎟
⎟
⎟⎟
⎟
⎠

and the questioning procedure is a DT with coupling matrix C1. Table 1 illustrates that for every
scrambled response A1, all X1 values are still possible, that is, a participant does not reveal the outcome
of X1 and his or her privacy is protected. Thus, for sensitive X1, we can expect a higher cooperation of the
interviewees compared to direct questions on X1. In this context, higher cooperation means less answer
refusal and less untruthful answers. Based on the indirect answers A1 of many persons in a sample, we
can estimate the distribution of X1 as shown in Groenitz (2014a, 2014b).

3. THE ITERATIVE DIAGONAL TECHNIQUE

3.1. Definition of Iterative Diagonal Technique

We consider v categorical attributes X1, . . . ,Xv and assume that indirect data on each attribute are
gathered by the DT from Section 2. That is, the DT is applied iteratively. This motivates the term iterative
diagonal technique as specified in the following definition.

Definition 2. Let X1, . . . ,Xv be characteristics, where Xi has the possible values 1, . . . , ki (i =
1, . . . , v). Let W1, . . . ,Wv be further characteristics, where Wi also has the possible values 1, . . . , ki,
set Ai = [(Wi − Xi) mod ki] + 1, define ci = (ci1, . . . , ci,ki

) =
(
P(Wi = 1), . . . , P(Wi = ki)

)
and Ci =

[P(Ai = p | Xi = q)]p,q=1,...,ki
(i = 1, . . . , v). A questioning procedure for a survey in which each re-

spondent is instructed to give one of the responses A1, . . . , Av and not to reveal the values of X1, . . . ,Xv

and W1, . . . ,Wv is called “iterative diagonal technique with setup c1, . . . , cv” or “iterative diagonal
technique with coupling matrices C1, . . . , Cv” if:

– The two vectors (W1, . . . ,Wv) and (X1, . . . ,Xv) are independent.

– The v characteristics W1, . . . ,Wv are independent.

– Wi possesses a known distribution (i = 1, . . . , v).

– The matrix Ci is invertible (i = 1, . . . , v).

3.2. Maximum Likelihood Estimators

In this subsection, we address the ML estimation for the joint distribution of v attributes X1, . . . ,Xv

gathered by the iterative DT. We define for i1 = 1, . . . , k1,. . . ,iv = 1, . . . , kv

πi1,...,iv = P(X1 = i1, . . . ,Xv = iv) and λi1,...,iv = P(A1 = i1, . . . , Av = iv).

Let π be the vector of length k =
∏v

j=1 kj whose entries are the πi1,...,iv (i1 = 1, . . . , k1, . . . , iv =
1, . . . , kv), where the entries are sorted first by index i1, then by index i2 and so on. Similarly to π, we
define λ, which contains the entries λi1,...,iv . For instance, for k1 = k2 = 2, k3 = 3, we have

π =
(
π1,1,1, π1,1,2, π1,1,3, π1,2,1, π1,2,2, π1,2,3, π2,1,1, π2,1,2, π2,1,3, π2,2,1, π2,2,2, π2,2,3

)�
.
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136 GROENITZ

In the sequel, we need the Kronecker matrix product, denoted by the symbol ⊗. The Kronecker product
of two matrices R ∈ R

r1×r2 and S ∈ R
s1×s2 is given by

R ⊗ S =

⎛

⎜⎜
⎜⎜
⎜
⎜
⎝

R11 R12 · · · R1,r2

R21 R22 · · · R2,r2

...
...

...

Rr1,1 Rr1,2 · · · Rr1,r2

⎞

⎟⎟
⎟⎟
⎟
⎟
⎠

⊗ S =

⎛

⎜⎜
⎜⎜
⎜
⎜
⎝

R11 · S R12 · S · · · R1,r2 · S

R21 · S R22 · S · · · R2,r2 · S
...

...
...

Rr1,1 · S Rr1,2 · S · · · Rr1,r2 · S

⎞

⎟⎟
⎟⎟
⎟
⎟
⎠

,

that is, R⊗S is a matrix of size r1s1 × r2s2. With this, we have the following coupling of the distributions
of (A1, . . . , Av) and (X1, . . . ,Xv) for an iterative DT.

Theorem 1. For an iterative DT with coupling matrices C1, . . . , Cv, we introduce the matrix
C = C1 ⊗ C2 ⊗ . . . ⊗ Cv and have

λ = C · π. (2)

Proof. For l = 1, . . . , v, the characteristic Al is a function of Xl and Wl. In particular, Al = fl(Xl,Wl)
with fl(x,w) = [(w − x) mod kl] + 1 for x,w ∈ {1, . . . , kl} holds. Then, we have

P(A1 = a1, . . . , Av = av) =
∑

i1,...,iv

P

( v⋂

l=1

{Al = al} |
v⋂

m=1

{Xm = im}
)
· πi1,...,iv

=
∑

i1,...,iv

P

( v⋂

l=1

{fl(Xl,Wl) = al} |
v⋂

m=1

{Xm = im}
)
· πi1,...,iv

=
∑

i1,...,iv

P

( v⋂

l=1

{fl(il,Wl) = al} |
v⋂

m=1

{Xm = im}
)
· πi1,...,iv

=
∑

i1,...,iv

P

( v⋂

l=1

{fl(il,Wl) = al}
)
· πi1,...,iv

=
∑

i1,...,iv

v∏

l=1

P
(
fl(il,Wl) = al

)
· πi1,...,iv

=
∑

i1,...,iv

v∏

l=1

P
(
fl(Xl,Wl) = al | Xl = il

)
· πi1,...,iv

=
∑

i1,...,iv

v∏

l=1

P
(
Al = al | Xl = il

)
· πi1,...,iv

=
∑

i1,...,iv

v∏

l=1

Cl(al, il) · πi1,...,iv

=
∑

i1,...,iv

C1(a1, i1) · · ·Cv(av , iv) · πi1,...,iv ,

where Cl(p, q) is the entry (p, q) of the matrix Cl = [P(Al = p | Xl = q)]p,q=1,...,kl
. The last equation

implies (2).

Theorem 1 is the starting point for estimates for the joint distribution given by π. Let us consider a
sample of n respondents drawn by simple random sampling with replacement (SRSWR), let ni1,...,iv
be the number of persons in the sample giving answers A1 = i1, . . . , Av = iv, and collect these
numbers in a column vector ñ where the entries are sorted first by i1, second by i2 and so on. Set
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RISK-OPTIMAL ESTIMATORS FOR SURVEY PROCEDURES 137

λ̂i1,...,iv = ni1,...,iv/n, that is, λ̂i1,...,iv is the relative frequency of persons in the sample responding
A1 = i1, . . . , Av = iv. Further, set λ̂ = ñ/n, i.e., λ̂ is arranged similarly to λ.

Theorem 2. (a) The estimator

π̃ = C−1 · λ̂ = (C1 ⊗ C2 ⊗ . . . ⊗ Cv)−1 · λ̂ = (C−1
1 ⊗ C−1

2 ⊗ . . . ⊗ C−1
v ) · λ̂

is unbiased for π.

(b) If π̃ has all components in [0, 1], it is equal to an ML estimator.

Proof. (a) We clearly have E(π̃) = C−1 · n−1 · E(ñ) = C−1 · n−1 · n · λ = π.

(b) Define the set

Dk = {(x1, . . . , xk)� : xi ∈ [0, 1] and x1 + · · · + xk = 1} (3)

and the functions u(x) = C · x (x ∈ Dk) and v(y) = ñ� · log(y) (y ∈ Dk). Here, log is applied compo-
nentwise. Notice that the function v possesses the maximum at ñ/n = λ̂. The log-likelihood function
for π is given by l(π) = v(u(π)) for π ∈ Dk. Let us assume that π̃ ∈ Dk holds, i.e., π̃ has all components
in [0, 1]. For an arbitrary π′ ∈ Dk, we then have

l(π′) = v(u(π′)) ≤ v(λ̂) = v(C · C−1 · λ̂) = v(u(C−1 · λ̂)) = l(π̃).

Remark 1. It may occur that π̃ possesses components outside [0,1]. Then, the maximization of the
log-likelihood for π is typically conducted by iterative methods.

The next theorem addresses the asymptotic distribution of the ML estimator for our target quantity π,
especially its asymptotic variance.

Theorem 3. Let each component of π be in the open interval (0, 1). For the ML estimator π̂ for π,
we then have the asymptotic normality

√
n · (π̂ − π) d−→ N(0, C−1 · (diag(λ) − λλ�) · C−1) for n → ∞.

Proof. Due to (2), λ and π are coupled by a matrix C = C1 ⊗ . . . ⊗ Cv. In this proof, it is convenient
to reindex the components of π, λ and ñ by counting from 1, . . . , k with k =

∏v
i=1 ki. That is, e.g.,

π = (π1, . . . , πk)� and ñ = (n1, . . . , nk)� hold. For π̃ from Theorem 2 as well as Dk from (3), we first
show

P(π̃ /∈ Dk) −→ 0 (n → ∞). (4)

The weak law of large numbers implies the stochastic convergence λ̂ = ñ/n
P−→ λ. It follows that

π̃ = C−1λ̂
P−→ C−1λ = π. For ε > 0, we set

Uε

(
(π1, . . . , πk−1)�

)
= {(x1, . . . , xk−1)� ∈ R

k−1 : ‖(x1, . . . , xk−1)� − (π1, . . . , πk−1)�‖ < ε}.
We now choose some ε > 0 with

Uε

(
(π1, . . . , πk−1)�

)
⊂ {(x1, . . . , xk−1)� ∈ R

k−1 : xi ∈ (0, 1), x1 + · · · + xk−1 < 1}.

Finding such an ε is possible, because we have assumed that each component of π is in (0, 1). Then,

P(π̃ /∈ Dk) = P

(
(π̃1, . . . , π̃k−1)� /∈ {(x1, . . . , xk−1)� ∈ R

k−1 : xi ∈ [0, 1], x1 + · · · + xk−1 ≤ 1}
)

≤ P

(
(π̃1, . . . , π̃k−1)� /∈ Uε((π1, . . . , πk−1)�)

)

= P

(
‖(π̃1, . . . , π̃k−1)� − (π1, . . . , πk−1)�‖ ≥ ε

)
−→ 0 (n → ∞)
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138 GROENITZ

holds due to the convergence of π̃ to π in probability. That is, we have (4). By a multivariate central

limit theorem (see, for instance, Borovkov (2013, p. 214, Corollary 8.6.1)), we obtain
√

n · (λ̂ − λ) d−→
N

(
0,diag(λ) − λλ�)

. By a continuous mapping theorem,

C−1 ·
√

n · (λ̂ − λ) =
√

n · (π̃ − π)
d−→ C−1 · N(0,diag(λ) − λλ�) = N(0, C−1 · (diag(λ) − λλ�) · C−1)

follows. We now demonstrate that
√

n · (π̂ − π) −√
n · (π̃ − π) converges in probability to 0. For every

ε > 0, it is true that

P

(
‖
√

n · (π̂ − π) −
√

n · (π̃ − π)‖ ≥ ε
)

= P

(
‖
√

n · (π̂ − π̃)‖ ≥ ε
)
≤ P(π̃ /∈ Dk) −→ 0 (n → ∞)

according to Theorems 2(b) and (4). Since
√

n · (π̃ − π) d−→ N
(
0, C−1 · (diag(λ) − λλ�) · C−1

)
and

√
n · (π̂ − π) −

√
n(π̃ − π) P−→ 0, we also have

√
n · (π̂ − π) d−→ N(0, C−1 · (diag(λ) − λλ�) · C−1).

3.3. Risk-Optimal Estimators for Iterative Diagonal Technique
In this subsection, we derive optimal ML estimators, or equivalently optimal setups, for the iterative

DT by a decision-theoretic analysis. As already stated in Definition 2, a setup is given by the v
vectors c1, . . . , cv with ci = (ci1, . . . , ci,ki

) = (P(Wi = 1), . . . , P(Wi = ki)), i.e., by the distributions of
the auxiliary characteristics W1, . . . ,Wv. The special feature of our decision-theoretic analysis will be
the incorporation of the degree of privacy protection (DPP) provided by a setup of the iterative DT. In the
class of ML estimators corresponding to a fixed DPP, we search an estimator with the lowest risk, i.e.,
with the highest quality. We measure the DPP as follows.

Definition 3. Let us consider the iterative DT with setup c1, . . . , cv . The DPP for the ith question
(i = 1, . . . , v) is quantified by the empirical standard deviation of the vector ci = (ci1, . . . , ci,ki

) given by

σi = σ(ci) = std(ci) =
√

(c2
i1 + · · · + c2

i,ki
)/(ki − 1) − [(ki − 1) · ki]−1 ∈ [0,

√
1/ki].

The overall DPP is then measured by the vector (σ1, . . . , σv).

A small σi indicates that the distribution of the auxiliary attribute Wi is close to a uniform distribution.
In this case, the privacy is protected much, because for a uniformly distributed Wi, Xi and Ai are
independent. A large value of σi indicates that the distribution of Wi is close to a degenerate distribution,
i.e., Wi is nearly constant. In this case, the privacy is protected sparsely, because for a constant Wi, the
answer Ai implies the Xi value.

The ML estimator π̂ for π indeed depends on the setup of the iterative DT, thus we write π̂(c1, . . . , cv)
instead of π̂ on occasion. With the loss function

(π, π̂) �→ tr
(
(π̂ − π)(π̂ − π)�

)
,

the risk of the ML estimator would be

E
(
tr((π̂(c1, . . . , cv) − π) · (π̂(c1, . . . , cv) − π)�)

)
= tr

(
MSE(π̂(c1, . . . , cv))

)
.

Since we have not derived a general explicit form of the ML estimator (cf. Theorem 2 and Remark 1), it
is more convenient to work with the asymptotic risk motivated by Theorem 3:

Rπ̂(c1,...,cv)(π) := tr
(
n−1 · C−1 · (diag(λ) − λλ�) · C−1

)
. (5)

In the class {π̂(c1, . . . , cv) : std(c1) = σ1, . . . , std(cv) = σv}, where σ1, . . . , σv are given, that is, in the
class of ML estimators corresponding to a certain DPP, we now search an estimator with the smallest
asymptotic risk (5). According to the following theorem, the asymptotic risk has a lower bound that
depends on the DPP (σ1, . . . , σv).
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Theorem 4. We have the inequality

n · Rπ̂(c1,...,cv)(π) ≥
v∏

i=1

(
(ki − 1)(k−1

i − σ2
i )

kiσ2
i

+ 1
)
− tr(ππ�). (6)

Proof. Define Di = C−1
i (i = 1, . . . , v) and D = C−1. We have D = D1 ⊗ · · · ⊗ Dv . Since each row of

Ci is a left-cyclic shift of the row above, each row of Di is also a left-cyclic shift of the row above. Let
(di1, . . . , di,ki

) be the first row of Di and let (d1, . . . , dk) be the first row of D. It is true that

C−1 ·
(
diag(λ) − λλ�)

· C−1 = D · diag(λ) · D − ππ�.

Each row of D contains the same entries (the order of the entries differs from row to row). The entries
are the products d1,j1 · · · dv,jv (j1 = 1, . . . , k1; . . . ; jv = 1, . . . , kv). Consequently,

tr
(
D · diag(λ) · D

)
= d2

1 + · · · + d2
k

follows. Now, define αi1, . . . , αi,ki
to be the eigenvalues of Ci and ψ1, . . . , ψk the eigenvalues of C.

Furthermore, let ‖ · ‖F be the Frobenius norm of a matrix. It is true that

d2
1 + · · · + d2

k = k−1 · ‖D‖2
F = k−1 · (ψ−2

1 + · · · + ψ−2
k ) = k−1 ·

v∏

i=1

(α−2
i1 + · · · + α−2

i,ki
),

where the last equality holds since the eigenvalues of the Kronecker product C1 ⊗ · · · ⊗ Cv are given by
the products α1,i1 · · ·αv,iv (i1 = 1, . . . , k1, . . . , iv = 1, . . . , kv). It follows that

n · Rπ̂(c1,...,cv)(π) = k−1 ·
v∏

i=1

(α−2
i1 + · · · + α−2

i,ki
) − tr(ππ�). (7)

We further have for i = 1, . . . , v the identities

σ2
i = (ki − 1)−1 · k−1

i · [ki · (c2
i1 + · · · + c2

i,ki
) − 1]

= (ki − 1)−1 · k−1
i · [‖Ci‖2

F − 1] = (ki − 1)−1 · k−1
i · [α2

i1 + · · · + α2
i,ki

− 1]. (8)

Note, that 1 is an eigenvalue of Ci (with eigenvector (1, . . . , 1)�), say αi,ki
= 1. We set qi = ki − 1. To

prove (6), we have to minimize the function

f(α11, . . . , α1,q1 , . . . , αv1, . . . , αv,qv) =
v∏

i=1

k−1
i (α−2

i,1 + · · · + α−2
i,qi

+ 1)

=:
v∏

i=1

k−1
i · gi(αi1, . . . , αi,qi)

under the v restrictions

ri(αi1, . . . , αi,qi) = (ki − 1)−1 · k−1
i · [α2

i1 + · · · + α2
i,qi

] − σ2
1 = 0 (i = 1, . . . , v).

This is a separated minimization problem, that is, it suffices to minimize each gi under

ri(αi1, . . . , αi,qi) = 0.

Each single minimization can be conducted with Lagrange multipliers. We obtain

f(α11, . . . , α1,q1 , . . . , αv1, . . . , αv,qv ) ≥
v∏

i=1

(
(ki − 1)(k−1

i − σ2
i )

kiσ2
i

+ 1
)

.

Consequently, (6) holds.

The next theorem shows how to find a setup of iterative DT that leads to a given DPP and to the
lower bound of Theorem 4.

MATHEMATICAL METHODS OF STATISTICS Vol. 25 No. 2 2016



140 GROENITZ

Theorem 5. Let (σ1, . . . , σv) be a chosen DPP and set for i = 1, . . . , v

ci1 = k−1
i + (ki − 1)/ki ·

√
ki · σ2

i , ci2 = · · · = ci,ki
= k−1

i − k−1
i ·

√
ki · σ2

i . (9)

Then, std(ci) = σi holds for every i = 1, . . . , v and n · Rπ̂(c1,...,cv)(π) equals the right side of (6).

Proof. The rows of C2
i arise by right-cyclic shift of the row above, i.e., C2

i is a circulant matrix. Say,
the first row of C2

i is (xi1, . . . , xi,ki
). By some calculation, we can show xi1 = k−1

i (1 + (ki − 1)kiσ
2
i )

and xi2 = · · · = xi,ki
= k−1

i (1 − kiσ
2
i ). Since C2

i is a circulant matrix, its eigenvalues can be computed
by discrete Fourier transform of (xi1, . . . , xi,ki

), see Gray (2006, Chapter 3). That is, to obtain the

eigenvalues of C2
i , we can calculate

∑ki
m=1 exp(−2πi · (l−1)(m−1)

ki
) · xim for l = 1, . . . , ki. We obtain

eigenvalue 1 and eigenvalue kiσ
2
i (with multiplicity ki − 1). The application of (7) and (8) completes

the proof.

Due to the Theorems 4 and 5, the ML estimator corresponding to the setup (9) possesses the lowest
asymptotic risk among the estimators in the class {π̂(c1, . . . , cv) : std(c1) = σ1, . . . , std(cv) = σv}.
Thus, for a given DPP (σ1, . . . , σv), the setup (9) is an optimal setup of the iterative DT. In other words,
for the given DPP (σ1, . . . , σv), the choice of the configuration (9) is the best decision.

Figure 1 illustrates the findings of this subsection graphically. For this figure, we set k1 = 3, k2 = 4
and fix a certain π. For the left part of this figure, we then randomly select a large number of vectors c1

and c2 such that these vectors are preferably uniformly scattered. For each pair c1 and c2, we compute
the corresponding DPP (σ1, σ2) and n ·Rπ̂(c1,...,cv)(π). This results in the shown point cloud. This point
cloud has a lower bound depending on (σ1, σ2). The lower bound is depicted in the right part of Fig. 1.
Moreover, each bold point in the right part of Fig.1 belongs to an optimal setup c1, c2 according to (9)
for a given DPP (σ1, σ2). These bold points are located exactly on the lower bound of the point cloud of
the randomly drawn vectors.

Fig. 1. Illustration of optimal and nonoptimal setups for the iterative DT
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4. COMBINATIONS OF DIRECT QUESTIONS AND DT

We consider v categorical characteristics X1, . . . ,Xv, where Xi should have the possible values
1, . . . , ki. That is, there are overall k = k1 · · · kv categories. Among the v characteristics, the first v′

attributes X1, . . . ,Xv′ are assumed to be gathered by ordinary direct questioning, while the remaining
attributes Xv′+1, . . . ,Xv are assumed to be gathered by the DT. In practice, X1, . . . ,Xv′ will be non-
sensitive characteristics (e.g., age, gender) and the Xv′+1, . . . ,Xv will concern sensitive stigmatizing
characteristics (e.g., tax evasion, social fraud, income). Let Ai be the ith response of an interviewee
(i = 1, . . . , v). Then, for i = 1, . . . , v′, Ai = Xi holds. For i = v′ + 1, . . . , v, the answer Ai is a function
of Xi and an auxiliary attribute Wi, namely Ai = [(Wi − Xi) mod ki] + 1.

4.1. Assumptions and Maximum Likelihood Estimation

In this section, we make the following assumptions:

− The two vectors (Wv′+1, . . . ,Wv) and (X1, . . . ,Xv) are independent. (10)

− The v − v′ attributes Wv′+1, . . . ,Wv are independent. (11)

− The characteristic Wi has a known distribution (i = v′ + 1, . . . , v). (12)

− The matrix Ci = [P(Ai = p | Xi = q)]p,q=1,...,ki
is invertible (i = v′ + 1, . . . , v). (13)

We define π and λ similarly to Section 3 and denote the l× l identity matrix by Il. For our combination
of direct questions and the DT, the coupling between the vectors λ and π is presented in the following
theorem.

Theorem 6. Under the assumptions (10) and (11), we have

λ =
(
Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv

)
· π. (14)

Proof. The claim can be proved by steps similar to the proof of Theorem 1.

For the estimation, assume again that n persons are selected by SRSWR. We define ni1,...,iv and
λ̂i1,...,iv as well as the vectors ñ and λ̂ similarly to Section 3. For example, ni1,...,iv is the number of sample
units giving answers A1 = i1, . . . , Av = iv. The next theorem shows an important representation of the
log-likelihood corresponding to our current situation.

Theorem 7. For our combination of v′ times direct questioning and v − v′ times questioning
according to the DT, the log-likelihood is given by

l(π) = ñ� · log
[(

Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv

)
· π

]

= n∗� · log
[
Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv) · π

]
, (15)

where n∗ = (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv) · ñ and Sl is an l × l matrix whose entry (p, q) is

equal to 1 if p = q = 1 or p + q = l + 2 and equal to 0 otherwise.

Proof. The first equality follows directly from the definition of the log-likelihood and (14). For the second
equality, notice that multiplying a column vector from the left with the matrix Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1

⊗
· · · ⊗ Ikv causes a permutation of the column vector’s elements. With this and a computation rule for
Kronecker products, we can write

l(π) = [Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv · ñ]�

× log
[
(Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1

⊗ · · · ⊗ Ikv) · (Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv) · π
]

= n∗� · log
[
(Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv) · π

]
.
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Remark 2. The function (15) from Theorem 7 equals the log-likelihood function corresponding to the
iterative DT with coupling matrices Sk1 , . . . , Skv′ , Cv′+1, . . . , Cv according to Definition 2 and observed
absolute answer frequencies n∗.

According to this Remark 2, the ML estimation for the combination of direct questions and the DT
can be traced back to the ML estimation for the iterative DT from Section 3. We now come to the
asymptotic normality of the ML estimator for the combination of direct questions and the DT.

Theorem 8. Consider our combination of v′ times direct questioning and v − v′ times questioning
according to the DT and let each component of π be located in the open interval (0, 1). For the ML
estimator π̂ for π, we then have for n → ∞ the asymptotic normality

√
n · (π̂ − π) d−→ N(0, ν) with

ν = (Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1 · (diag(λ) − λλ�)

× (Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1 (16)

= (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1 · (diag(λ∗) − λ∗λ∗�)

×
(
Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv

)−1 (17)

with matrices Sl as in Theorem 7 and λ∗ =
(
Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1

⊗ · · · ⊗ Ikv

)
· λ.

Proof. The asymptotic normality with the variance representation (16) can be established with compu-
tations similarly to the proof of Theorem 3. For formula (17), note that the product (Sk1 ⊗ · · · ⊗ Skv′ ⊗
Ikv′+1

⊗ · · · ⊗ Ikv) · (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv) equals the identity matrix. Further, note that

multiplying a diagonal matrix first from the left with Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv and then from

the right with Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv yields a permutation of the diagonal elements of the

diagonal matrix. Then,

ν = (Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1

× (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv) · (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1

⊗ · · · ⊗ Ikv)

× (diag(λ) − λλ�)
× (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1

⊗ · · · ⊗ Ikv) · (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv)

× (Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1

= (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1

× [(Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv) · diag(λ)

× (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Ikv′+1
⊗ · · · ⊗ Ikv) − λ∗λ∗� ]

× (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1

= (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1 · [diag(λ∗) − λ∗λ∗� ]

× (Sk1 ⊗ · · · ⊗ Skv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv)−1

holds. This is exactly the claim.

Remark 3. The asymptotic variance of the ML estimator for the combination of v′ times direct
questioning and v − v′ questioning according to the DT equals the asymptotic variance of the ML
estimator for the iterative DT with coupling matrices Sk1, . . . , Skv′ , Cv′+1, . . . , Cv.
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4.2. Risk-Optimal Estimators for Combinations of Direct Questioning and Diagonal Technique

We now establish optimal ML estimators or optimal setups for the combination of direct ques-
tions and the DT by decision-theoretic considerations similar to Subsection 3.3. The specifications
to adjust are the distributions of Wv′+1, . . . ,Wv, i.e., the probability masses ci = (ci1, . . . , ci,ki

) =
(P(Wi = 1), . . . , P(Wi = ki)) for i = v′ + 1, . . . , v. Therefore, a setup is now given by the vectors
cv′+1, . . . , cv. We measure the DPP for gathering Xi (i = v′ + 1, . . . , v) again by the empirical standard
deviation σi = std(ci). The overall DPP is now the vector (σv′+1, . . . , σv). As (asymptotic) risk of an ML
estimator, we use the trace of its asymptotic variance, that is, according to Theorem 8, we use

Rπ̂(cv′+1,...,cv)(π) = tr
[
n−1 ·

(
Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv

)−1

×
(
diag(λ) − λλ�)

·
(
Ik1 ⊗ · · · ⊗ Ikv′ ⊗ Cv′+1 ⊗ · · · ⊗ Cv

)−1
]
. (18)

In the class of ML estimators corresponding to a prefixed DPP (σv′+1, . . . , σv), i.e., in {π̂(cv′+1, . . . , cv):
std(cv′+1) = σv′+1, . . . , std(cv) = σv}, we would like to find the one with the lowest risk (18). For this,
we present Theorems 9 and 10.

Theorem 9. For our combination of v′ times direct questioning and v − v′ times DT questioning,
we have

n · Rπ̂(cv′+1,...,cv)(π) ≥
v∏

i=v′+1

(
(ki − 1)(k−1

i − σ2
i )

kiσ
2
i

+ 1
)
− tr(ππ�). (19)

Proof. The asymptotic variance of the ML estimator for our combination of direct questioning and DT
questioning equals the asymptotic variance of the ML estimator for the iterative DT with coupling
matrices Sk1, . . . , Skv′ , Cv′+1, . . . , Cv due to Remark 3. For this iterative DT, we obtain a DPP for

question i (i = 1, . . . , v′) equal to
√

1/ki. Due to Theorem 4,

n · Rπ̂(cv′+1,...,cv)(π) ≥
v′∏

i=1

(0 + 1) ·
v∏

i=v′+1

(
(ki − 1)(k−1

i − σ2
i )

kiσ
2
i

+ 1
)
− tr(ππ�).

Theorem 10. Consider a combination of v′ times direct questioning and v − v′ times DT question-
ing. Let (σv′+1, . . . , σv) be chosen. Define for i = v′ + 1, . . . , v

ci1 = k−1
i + (ki − 1)/ki ·

√
ki · σ2

i , ci2 = · · · = ci,ki
= k−1

i − k−1
i ·

√
ki · σ2

i . (20)

It follows that std(ci) = σi for every i = v′ + 1, . . . , v and that

n · Rπ̂(cv′+1,...,cv)(π) =
v∏

i=v′+1

(
(ki − 1)(k−1

i − σ2
i )

kiσ2
i

+ 1
)
− tr(ππ�). (21)

Proof. The asymptotic variance of the ML estimator for the survey procedure of Theorem 10
equals the asymptotic variance of the ML estimator of the iterative DT with coupling matrices
Sk1, . . . , Skv′ , Cv′+1, . . . , Cv, where Ci (i = v′ + 1, . . . , v) has the first row ci = (ci1, . . . , ci,ki

) from (20).
For i = 1, . . . , v′, Ski

has the first row (1, 0, 0, . . . , 0). Theorem 5 implies then that std(ci) = σi

(i = v′ + 1, . . . , v) and that (21) holds.

Theorems 9 and 10 imply that the ML estimator for the setup (20) is risk-optimal among the
ML estimators corresponding to a given DPP (σv′+1, . . . , σv). In other words, the survey setup given
through (20) is the best setup for this DPP.
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5. SUMMARY AND CONCLUDING REMARKS

In this article, we have addressed the estimation of the joint distribution of categorical variables based
on survey data when the diagonal technique is involved in the survey. First, we have considered the case
that data on each characteristic are collected by the DT. Second, we treated combinations of ordinary
direct questions and the DT. The second case is probably of more practical meaning than asking only
DT questions throughout. The reason is that surveys will typically comprise nonsensitive and sensitive
characteristics rather than unexceptional sensitive attributes. For both cases, we have derived optimal
ML estimators by decision-theoretic arguments involving the DPP and the asymptotic risk of the
estimator. For this point, which is clearly advantageous in comparison with the existing literature on
indirect survey procedures, properties of, e.g., circulant matrices, the Frobenius norm, the Kronecker
product, and permutation matrices were used. Our optimality results motivate the following strategy
for a survey agency: First, select a DPP. Second, select an optimal ML estimator for this DPP via
Theorem 5 or Theorem 10. This is equivalent to choosing an optimal setup for the survey procedure.
Third, adapt concrete auxiliary characteristics on the optimal setup, e.g., based on birthday periods,
telephone numbers, or house numbers.
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