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Abstract—New goodness-of-fit tests for exponentiality based on a particular property of exponen-
tial law are constructed. Test statistics are functionals of U-empirical processes. The first of these
statistics is of integral type, the second one is a Kolmogorov type statistic. We show that the kernels
corresponding to our statistics are nondegenerate. The limiting distributions and large deviations
of new statistics under the null hypothesis are described. Their local Bahadur efficiency for various
parametric alternatives is calculated and is compared with simulated powers of new tests. Conditions
of local optimality of new statistics in Bahadur sense are discussed and examples of “most favorable”
alternatives are given. New tests are applied to reject the hypothesis of exponentiality for the length
of reigns of Roman emperors which was intensively discussed in recent years.
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1. INTRODUCTION

The general problem of exponentiality testing is stated as follows. Let X1, . . . ,Xn be nonnegative
independent observations having a continuous distribution function (df) F and a density f . We wish to
test the composite null-hypothesis H0 : F (x) is the df of an exponential law with density f(x) = λe−λx,
x ≥ 0, where λ > 0 is an unknown scale parameter, against the following alternative: F is the df of a
nonexponential law.

There exist numerous tests of exponentiality based on various ideas [2], [4], [6], [8], [13], [29]. Among
them a good few tests are based on characterizations. This is a relatively fresh idea which manifests
growing popularity in goodness-of-fit testing, and in particular, in exponentiality testing, see, e.g., [3],
[7], [12], [16], [18], [27], [31], [37], [40], [42].

Recently Noughabi and Arghami [40] proved and used in Theorem 1 the following “characterization”
of exponential law for testing exponentiality:

Let X1, X2 be two independent identically distributed nonnegative rv’s having a continuous
df F . Then Y = X1/X2 has the df F(2,2) if and only if F is exponential. Here F(2,2) is the df of the
Fisher distribution with 2 and 2 degrees of freedom, so that

F(2,2)(y) =
y

1 + y
, y ≥ 0.

In fact this property is not a proper characterization of exponential law. This is known since the
paper of Kotlarski [23] which was preceded by the work of Mauldon [26]. In particular, Kotlarski gave
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three examples of non-exponential densities for X1 and X2 under which the distribution of Y is still
F(2,2). These three densities are

λx−2 exp(−λx−1)1{x > 0}, (1 + x2)−
3
21{x > 0}, and x(1 + x2)−

3
21{x > 0}.

Presumably Noughabi and Arghami got the erroneous result because of inaccurate application of the
characterization result of Kotz and Steutel [24]. The same concerns item (iii) of their Theorem 1 in [40].

However one can build the statistical tests based on properties of distributions which are not the
proper characterizations as well. Of course, this will lead to inconsistency of such tests against certain
alternatives. But many famous tests well known in statistical practice are inconsistent against certain
special alternatives, for instance, the chi-square test, the Wilcoxon test (and many other rank tests),
the Gini test, and even the likelihood ratio test.

Moreover, according to the usual concepts of testing statistical hypotheses, the evidence can be
sufficient only for the rejection of the null-hypothesis H0. On the contrary, its definitive acceptance is
hardly possible but any new test “failing to reject” H0 gradually brings the statistician to the perception
of the validity of H0.

The aim of the present paper is to test the hypothesis H0 using the same property of exponential
law as used in [40] and formulated above. We will construct two test statistics which turn out to be
quite sensitive and efficient. We justify it by calculation of their local Bahadur efficiency against common
alternatives and by simulation of their power.

Consider instead of the standard empirical df

Fn(t) = n−1
n∑

i=1

1{Xi < t}, t ≥ 0,

the U-empirical df

Hn(t) =
1

n(n − 1)

∑

1≤i<j≤n

(
1
{

Xi

Xj
< t

}
+ 1

{
Xj

Xi
< t

})
.

It is known that the properties of U-empirical df’s are similar to the properties of usual empirical df’s,
see [11], [15]. Hence for large n and under H0 the df Hn should be close to Fisher’s df F(2,2), and we can
measure their closeness using some test statistics.

We suggest two scale-invariant statistics

Wn =
∫ ∞

0

(
t

1 + t
− Hn(t)

)
μe−μtdt, μ > 0, (1)

Dn = sup
t≥0

∣∣∣∣
t

1 + t
− Hn(t)

∣∣∣∣, (2)

assuming that their large absolute values are critical. We have inserted the exponential weight with some
indefinite value of μ > 0 under the integral sign in order to guarantee its convergence but for brevity we
omit μ in the notation of statistic.

We discuss the limiting distributions of these statistics under the null hypothesis and calculate their
efficiencies against common alternatives. We use the notion of local exact Bahadur efficiency (BE) [5],
[30], as the statistic Dn has the nonnormal limiting distribution, and hence the Pitman approach to the
calculation of efficiency is not applicable. However, it is known that the local BE and the limiting Pitman
efficiency usually coincide, see [43], [30].

The large deviation asymptotics is the key tool for the evaluation of the exact BE, and we address this
question using the results of [34] and [32]. Finally, we study the conditions of local optimality of our tests
and describe the “most favorable” alternatives for them.

We present the simulated powers of new tests and enlarge the paper by the example of application to
real data. Namely, as an application of new exponentiality tests, we examine the interesting question on
the durations of reigns for Roman emperors discussed by Khmaladze and his coauthors [19], [20]. Our
tests firmly reject the hypothesis of exponentiality, and this contradicts the findings of Khmaladze and
his team, see also [9] and [38].
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We stress that usually in the papers on testing based on characterizations one uses the equality in
distribution of two statistics T1 and T2:

T1(X1, . . . ,Xk)
d= T2(X1, . . . ,Xm)

which characterizes the family of distributions or some specific property, e.g., symmetry of distribution.
But in our paper we use a different relation when a certain statistic has the prescribed distribution,
and this characterizes or strongly restraints the distribution of the sample. It seems probable that other
tests of fit can be built on the ground of this apparently new approach.

2. INTEGRAL STATISTIC Wn

2.1. Limiting Properties of Statistic Wn

The statistic Wn is exactly the U-statistic of degree 2 with the centered kernel

Φ(X,Y ) = 1 − μeμE1(μ) − 1
2
e−μX

Y − 1
2
e−μ Y

X , (3)

where

E1(μ) = Ei(1, μ) =
∫ ∞

1
e−μtt−1 dt, Re μ > 0, (4)

is the exponential integral, see [1], Chapter 5.
Let X,Y be independent rv’s from the standard exponential distribution. To prove that the kernel

Φ(X,Y ) is nondegenerate, let us calculate its projection φμ(s). For a fixed X = s, s ≥ 0, we have:

φμ(s) := E
(
Φ(X,Y ) | X = s

)
= 1 − μeμE1(μ) − 1

2
Ee−μ s

Y − 1
2
Ee−μY

s . (5)

After some computations we find that the projection φμ(s) is equal to

φμ(s) = 1 − μeμE1(μ) −√
μsK1(2

√
μs) − s

2(μ + s)
, (6)

where K1(y) is the modified Bessel function of the second kind.
The mean of this projection is equal to zero. Its variance under H0 and for arbitrary value of μ > 0

equals Δ2
W (μ) = Eφ2

μ(X). It is positive and can be obtained using numerical methods (see Fig. 1),
according to the formula

Δ2
W (μ) =

∫ ∞

0
φ2

μ(s)e−s ds.

Therefore the kernel Φ is centered and nondegenerate. We can apply Hoeffding’s theorem on
asymptotic normality of U-statistics, see [14], [22], which implies the following result:

Theorem 1. Under the null hypothesis, as n → ∞, the statistic
√

nWn is asymptotically normal
so that

√
nWn

d−→ N (0, 4Δ2
W (μ)).

The (logarithmic) large deviation asymptotics of the sequence of statistics Wn under H0 follows from
the following result. It was derived using the theorem on large deviations (see again [34], [32]), applied
to the centered, bounded and nondegenerate kernel Φ.

Theorem 2. For a > 0 under H0 one has

lim
n→∞

n−1 log P(Wn > a) = −fW (a),

where the function fW is continuous for sufficiently small a > 0, and

fW (a) =
a2

8Δ2
W (μ)

(1 + o(1)) as a → 0.
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Fig. 1. Plot of the function Δ2
W (μ)

2.2. Some Notions from Bahadur Theory

Suppose that under the alternative H1 the observations have the df G(·, θ) and the density g(·, θ),
θ ≥ 0, such that G(·, 0) is the exponential df with some scale parameter. The measure of Bahadur
efficiency (BE) for any sequence {Tn} of test statistics is the exact slope cT (θ) describing the rate of
exponential decrease for the attained level under the alternative df G(·, θ). According to the Bahadur
theory [5], [30] the exact slopes may be found by using the following Proposition.

Proposition. Suppose that the following two conditions hold:

(a) Tn
Pθ−→ b(θ), θ > 0,

where −∞ < b(θ) < ∞, and
Pθ−→ denotes convergence in probability under G(·; θ).

(b) lim
n→∞

n−1 log PH0(Tn ≥ t) = −fT (t)

for any t in an open interval I, on which fT is continuous and {b(θ), θ > 0} ⊂ I. Then

cT (θ) = 2 fT (b(θ)).

We have already found the large deviation asymptotics necessary for (b). In order to evaluate the
exact slope it remains to verify condition (a) of this Proposition which represents some form of the Law
of Large Numbers under the alternative.

Note that the exact slopes for any θ satisfy the inequality (see [5], [30])

cT (θ) ≤ 2KL(θ), (7)

where KL(θ) is the Kullback–Leibler “distance” between the alternative and the null-hypothesis H0. In
our case H0 is composite, hence for any alternative density gj(x, θ) one has

KLj(θ) = inf
λ>0

∫ ∞

0
log

[
gj(x, θ)/λ exp(−λx)

]
gj(x, θ) dx. (8)

This quantity can be easily calculated as θ → 0 for particular alternatives. According to (7), the local BE
of the sequence of statistics Tn is defined as

eB(T ) = lim
θ→0

cT (θ)
2KL(θ)

.
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2.3. Local Bahadur Efficiency of Wn

Notation 1. Denote by G the class of densities g(·, θ) with df’s G(·, θ), θ ≥ 0, which satisfy the regularity
conditions from [30], Chapter 6, with possibility to differentiate with respect to θ under the integral sign
in all appearing integrals.

We present the following alternatives against exponentiality which will be considered for both tests in
this paper:

(i) Weibull distribution with the density

g1(x, θ) = (1 + θ)xθ exp(−x1+θ), θ ≥ 0, x ≥ 0;

(ii) Gamma distribution with the density

g2(x, θ) =
xθ

Γ(θ + 1)
e−x, θ ≥ 0, x ≥ 0;

(iii) exponential mixture with negative weights (EMNW(β)), see [17],

g3(x) = (1 + θ)e−x − θβe−βx, θ ∈
[
0,

1
β − 1

]
, β > 1, x ≥ 0;

(iv) exponential distribution with the resilience parameter, or the Verhulst distribution (see [25],
p. 333) with the density

g4(x, θ) = (1 + θ) exp(−x)(1 − exp(−x))θ, θ ≥ 0, x ≥ 0.

From (8) one can find the Kullback–Leibler “distance” for each alternative as θ → 0:

KL1(θ) ∼ π2

12
θ2; KL2(θ) ∼

(
π2

12
− 1

2

)
θ2;

KL3(θ) ∼ (β − 1)4

2β2(2β − 1)
θ2; KL4(θ) ∼

(
π2

6
− π4

72

)
θ2.

(9)

For statistic Wn we can derive the following asymptotics as θ → 0 from [33].

Lemma 1. For a given alternative density g(x, θ) from the classG (see Notation 1) under condition∫ ∞
0 |g′′θθ(x, 0)| dx < ∞ we get

bW (θ) ∼ 2θ
∫ ∞

0
φμ(x)h(x) dx, where h(x) = g′θ(x, 0).

We take μ = 2 for definiteness in the exponential weight μe−μt, so for this case the variance is
Δ2

W (2) = 0.0028. Using (9) we gather in Table 1 the values of function bW (θ), local exact slopes as
θ → 0 and local BE for statistics Wn. In the case of the third alternative EMNW we take the value
β = 3 as in the recent paper [27]. All this was obtained using the MAPLE package. We observe here
remarkably high values of local BE for common alternatives.

In Table 2 we present the simulated powers for our alternatives when μ = 2. The simulations have
been performed for n = 100 with 10,000 replicates for the appropriate significance level α.

Note that there is no theoretical reasons for closeness of local efficiencies to the powers. However,
if we take, for instance, the “realistic” values θ = 0.5 and α = 0.05, then the ordering of tests is similar
under both criteria. At the same time, the local BE under Weibull and Gamma alternatives has been
calculated for many tests of exponentiality, see, e.g., [31], [35], [37], [38], [39], [36], [27]. It can be
supposed that our test statistic Wn is probably more efficient than the tests considered in these papers.
So we may hope that the new test based on Wn is able to reject the exponentiality hypothesis when the
other tests are unfit for it. See Section 4 below for partial confirmation of this.
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Table 1. Local Bahadur efficiency for Wn, μ = 2 with Δ2
W (μ) = 0.0028

Alternative bW (θ) cW (θ) Efficiency

Weibull 0.123 θ 1.357 θ2 0.825

Gamma 0.081 θ 0.590 θ2 0.915

EMNW (β = 3) 0.056 θ 0.284 θ2 0.800

Verhulst 0.078 θ 0.541 θ2 0.927

Table 2. Simulated powers for statistic |Wn|, μ = 2

Alternative θ α = 0.1 α = 0.05 α = 0.01

Weibull 0.5 0.999 0.997 0.985

0.25 0.822 0.717 0.499

Gamma 0.5 0.922 0.856 0.669

0.25 0.506 0.366 0.186

EMNV (β = 3) 0.5 0.997 0.992 0.959

0.25 0.513 0.378 0.193

Verhulst 0.5 0.890 0.804 0.600

0.25 0.467 0.333 0.161

3. KOLMOGOROV-TYPE STATISTIC Dn

Now we consider the Kolmogorov type statistic (2). For fixed t the difference t
1+t − Hn(t) is a family

of U-statistics with the kernel Ξ depending on t ≥ 0:

Ξ(Xi,Xj ; t) =
t

1 + t
− 1

2
1
{Xi

Xj
< t

}
− 1

2
1
{Xj

Xi
< t

}
.

Let X, Y be independent rv’s with standard exponential distribution. The projection of this kernel
ξ(s; t) for fixed t ≥ 0 has the form:

ξ(s; t) := E
(
Ξ(X,Y ; t) | X = s

)
=

t

1 + t
− 1

2
P

( s

Y
< t

)
− 1

2
P

(Y

s
< t

)
.

After simple calculations we get the expression for the family of projections:

ξ(s; t) =
t

1 + t
− 1

2
e−

s
t +

1
2
e−st − 1

2
. (10)

It is easy to see that E(ξ(X; t)) = 0. The variance of this projection δ2(t) = Eξ2(X; t) under H0 is
given by

δ2(t) =
t(t − 1)2(t2 + 3t + 1)

4(t + 1)2(t + 2)(t3 + (t + 1)3)

(see Fig. 2). Hence,

δ2 = sup
t≥0

δ2(t) ≈ 0.00954.

This value will be important in the sequel when calculating the large deviation asymptotics.
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Fig. 2. Plot of the function δ2(t)

The limiting distribution of Dn is unknown. Using the methods of [41], one can show that the U-
empirical process

ηn(t) =
√

n

(
t

1 + t
− Hn(t)

)
, t ≥ 0,

weakly converges in D(0,∞) as n → ∞ to a certain centered Gaussian process η(t) with calculable
covariance. Then the sequence of statistics

√
nDn converges in distribution to supt≥0 |η(t)|. Currently

we are not able to find explicitly its distribution. Hence it is reasonable to determine the critical values
for statistics Dn by simulation.

Table 3 shows the critical values of the null distribution of Dn for significance levels α = 0.1, 0.05, 0.01
and specific sample sizes n. Each entry is obtained by using the Monte-Carlo simulation methods with
10,000 replications.

Table 3. Critical values for the statistic Dn

n 0.1 0.05 0.01

10 0.14 0.16 0.20

20 0.09 0.10 0.13

30 0.07 0.08 0.10

40 0.06 0.07 0.09

50 0.05 0.06 0.07

100 0.04 0.04 0.05

Now we obtain the logarithmic large deviation asymptotics of the sequence of statistics Dn under H0.
The family of kernels {Ξ(X,Y ; t), t ≥ 0} is not only centered but also bounded. Using the results from
[32] on large deviations for the supremum of nondegenerate U-statistics, we obtain the following result.

Theorem 3. For a > 0 under H0

lim
n→∞

n−1 log P(Dn > a) = −fD(a),
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where the function fD is continuous for sufficiently small a > 0, moreover

fD(a) =
a2

8δ2
(1 + o(1)) ∼ 13.103a2 as a → 0.

3.1. Local Bahadur Efficiency of Dn

Lemma 2. For a given alternative density g(x, θ) from the class G (see Notation 1) we have

bD(t, θ) ∼ 2θ
∫ ∞

0
ξ(x; t)h(x) dx, where h(x) = g′θ(x, 0).

Proof. By the Glivenko–Cantelli theorem for U-statistics [15] the limit in probability under the
alternative for statistics Dn is equal to

bD(t, θ) =
t

1 + t
− Pθ

(X

Y
< t

)
.

Then as θ → 0

bD(t, θ) =
t

1 + t
−

∫ ∞

0
g(y, θ) dy

∫ yt

0
g(x, θ) dx ∼ bD(t, 0) + b′D(t, 0) · θ.

It is easily seen that, with f(x) = e−x, x ≥ 0,

bD(t, 0) = 0,

b′D(t, 0) = −
∫ ∞

0
h(y) dy

∫ yt

0
f(x) dx −

∫ ∞

0
f(y) dy

∫ yt

0
h(x) dx.

Changing the order of integration in the second integral we see that:

b′D(t, 0) = −
∫ ∞

0
F (yt)h(y) dy −

∫ ∞

0
h(x) dx

∫ ∞

x/t
f(y) dy

= −
∫ ∞

0
h(y)

(
F (yt) + 1 − F (y/t)

)
dy

= 2
∫ ∞

0
ξ(x; t)h(x) dx.

Therefore

bD(θ) := sup
t≥0

|bD(t, θ)| ∼ sup
t≥0

∣∣∣∣2θ
∫ ∞

0
ξ(x; t)h(x) dx

∣∣∣∣.

We can find the asymptotics of bD(θ) for each alternative as θ → 0 (see Figs. 3–5):

b1
D(θ) := sup

t≥0

∣∣∣∣ −
t log(t)
(t + 1)2

θ

∣∣∣∣ ∼ 0.2239θ,

b2
D(θ) := sup

t≥0

∣∣∣∣
(t − 1) log(t + 1) − t log(t)

(t + 1)
θ

∣∣∣∣ ∼ 0.1468θ,

b3
D(θ) := sup

t≥0

∣∣∣∣
(β − 1)2t(t − 1)

(t + 1)(β + t)(tβ + 1)
θ

∣∣∣∣

= sup
t≥0

∣∣∣∣
4t(1 − t)

(t + 1)(t + 3)(3t + 1))
θ

∣∣∣∣ = 0.1056 · θ under β = 3,

b4
D(θ) ∼ 0.1406θ.
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Fig. 3. Plot of the function b1
D(t, θ) Fig. 4. Plot of the function b2

D(t, θ) Fig. 5. Plot of the function b4
D(t, θ)

We cannot find the explicit formula for b4
D(t, θ), and are forced to evaluate the maximal value of the

b4
D(θ) by using the numerical methods with MAPLE package.

Again using (9) we present in Table 4 the values of exact slopes when θ → 0 and the local Bahadur
efficiencies against our four alternatives for statistics Dn.

Table 4. Local Bahadur efficiency for Dn

Alternative cD(θ) Efficiency

Weibull 1.313 θ2 0.798

Gamma 0.564 θ2 0.875

EMNW (β = 3) 0.292 θ2 0.821

Verhulst 0.518 θ2 0.886

We see that the efficiency is reasonably high in all four examples. Moreover, it is much higher than
usual values of efficiency for Kolmogorov test. In Table 5 we present the simulated powers for our four
alternatives. Again the simulations have been performed for n = 100 with 10,000 replicates.

Table 5. Simulated powers for statistic Dn

Alternative θ α = 0.1 α = 0.05 α = 0.01

Weibull 0.5 0.999 0.997 0.976

0.25 0.809 0.712 0.452

Gamma 0.5 0.914 0.845 0.622

0.25 0.489 0.361 0.155

EMNV(β = 3) 0.5 0.996 0.991 0.941

0.25 0.504 0.382 0.171

Verhulst 0.5 0.883 0.797 0.552

0.25 0.454 0.330 0.136

4. APPLICATION TO REAL DATA

In this section we apply our tests to an interesting real data example. We examine the data on the
lengths of rule for Western Roman Emperors by chronology of Kienast [21] as the most precise. We
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consider two periods of this chronology: the period historians call “decline and fall”, taken conditionally
from Nerva (reign: 96–98 AD) to Theodosius I (reign: 379–395 AD) with n = 53 and full period in data
extending back to the first Roman Emperor, Augustus (reign: 27 BC–14 AD), to Theodosius I with
n = 76. The chronology shows the dates of ascent and abdication (or death). In the cases where there
exist no specific day of month we select mid-points as it was done in [20] and[19].

In these papers the authors came to the surprising agreement of data with the exponential distribu-
tion. However, they used only one test for exponentiality of Kolmogorov type proposed by Haywood and
Khmaladze [10], [19], [20]. This test is probably not sensitive enough, and the single agreement with
the exponentiality stated by these authors does not convince us in the validity of H0. First evidence that
exponentiality fails for this data appeared in [38].

It is interesting to apply our new tests of exponentiality to this challenging problem. We were based
on 10,000 simulations of exponential data and calculated the p-values of new statistics Wn with μ = 2
and Dn understanding them as the probability, under the assumption of exponentiality hypothesis H0,
of obtaining a result equal to or more extreme than what was actually observed when calculating the
test statistics. We got that for n = 76 all p-values are less than 10−4, and in case of n = 53 we got the
following p-values:

n = 53 n = 76

test |Wn|, μ = 2 Dn |Wn|, μ = 2 Dn

value 0.048 0.095 0.050 0.096

p-value 0.0011 0.0019 < 10−4 < 10−4

The smaller is the p-value, the more compelling is the evidence that the alternative should be accepted.
Therefore we conclude that all our tests strongly reject the exponentiality of this data with the attained
significance level less than α = 0.002.

In the recent paper by El-Barmi and McKeague [9] the authors used for the sample of durations of
reigns of Roman Emperors their new test on the ordering of distributions of several independent samples.
Let say that the rv X1 with df F1 is stochastically larger than the rv X2 with df F2 if F1(x) ≥ F2(x)
for all x. It is denoted as F1 � F2. The authors of [9] supposed that the three periods of history of
Roman Empire which usually are called the Principate (27 BC–235 AD), the Crisis of III century
(235 AD–284 AD) and the Dominate (285 AD–395 AD) consist of independent but non-identically
distributed periods of reign with df’s F1, F2 and F3, which are probably non-exponential. Actually their
test witnesses in favor of the hypothesis: Dominate � Principate � Crisis, or equivalently F3 � F1 � F2

and most probably does not support the hypothesis of exponentiality.
We tried also other tests of exponentiality. The hypothesis is steadily rejected for the full sample of

76 Emperors in virtue of the Moran [28], chi-square, Gini and Lilliefors [36] tests. In the case of smaller
sample n = 53, which corresponds to the “decline and fall” of the Roman Empire, the agreement with
exponentiality appears more often. However, the Moran test still rejects the exponentiality, and our two
tests proposed above also append their contribution to rejection of the hypothesis under discussion.

5. CONDITIONS OF LOCAL ASYMPTOTIC OPTIMALITY
In this section we are interested in conditions of local asymptotic optimality (LAO) in Bahadur sense

for both sequences of statistics Wn and Dn. This means to describe the local structure of the alternatives
for which the given statistic has maximal potential local efficiency so that the relation

cT (θ) ∼ 2KL(θ) as θ → 0

holds (see [5], [30], [35], [33]). Such alternatives form the so-called domain of LAO for the given sequence
of statistics {Tn}.

Let us consider again the densities g(·, θ) with the df’s G(·, θ) from the class G (see Notation 1).
Define the functions

H(x) =
∂

∂θ
G(x, θ)

∣∣∣
θ=0

, h(x) =
∂

∂θ
g(x, θ)

∣∣∣
θ=0

.

MATHEMATICAL METHODS OF STATISTICS Vol. 25 No. 1 2016



64 NIKITIN, VOLKOVA

Suppose also that for G from G the following regularity conditions hold:

h(x) = H ′(x), x ≥ 0,
∫ ∞

0
h2(x)ex dx < ∞,

∂

∂θ

∫ ∞

0
xg(x, θ) dx

∣∣∣
θ=0

=
∫ ∞

0
xh(x) dx.

It is easy to show, see also [35], that under these conditions

2KL(θ) ∼
[ ∫ ∞

0
h2(x)ex dx −

(∫ ∞

0
xh(x) dx

)2
]
θ2 as θ → 0.

5.1. LAO Conditions for Wn

Now consider the integral statistic Wn with the kernel Φ(X,Y ) and its projection φμ(x) given by
(3)–(6). Let us introduce the auxiliary function

h0(x) = h(x) − (x − 1) exp(−x)
∫ ∞

0
uh(u) du. (11)

Simple calculations show that
∫ ∞

0
h2(x)ex dx −

(∫ ∞

0
xh(x) dx

)2
=

∫ ∞

0
h2

0(x)ex dx, (12)
∫ ∞

0
φμ(x)h(x) dx =

∫ ∞

0
φμ(x)h0(x) dx. (13)

Using the asymptotics from Lemma 1, we get that the local BE takes the form

eB(W ) = lim
θ→0

(
bW (θ)

)2

8Δ2
W (μ)KL(θ)

=
(∫ ∞

0
φμ(x)h0(x)dx

)2
/
( ∫ ∞

0
φ2

μ(x)e−x dx ·
∫ ∞

0
h2

0(x)ex dx
)
.

Therefore the distributions with h(x) = e−x(C1φμ(x) + C2(x − 1)) for some constants C1 > 0
and C2 form the LAO domain in the class G.

The simplest example of such alternative density is

g(x, θ) = e−x
[
1 + θ

(
1 − μeμE1(μ) −√

μxK1(
√

μx) − x

2(μ + x)

)]

for small θ > 0.

5.2. LAO Conditions for Dn

Now let us consider the Kolmogorov type statistic Dn with the family of kernels Ξ and their
projections ξ(x; t) from (10). After simple calculations we get

∫ ∞

0
ξ(x; t)h(x) dx =

∫ ∞

0
ξ(x; t)h0(x) dx ∀t ∈ [0,∞).

For h0(x) defined in (11), using the asymptotics for bD(t, θ) from Lemma 2 and from (12), the
efficiency is equal to

eB(D) = lim
θ→0

(bD(θ))2

supt≥0(8δ2(t))KL(θ)

= sup
t≥0

( ∫ ∞

0
ξ(x; t)h0(x) dx

)2/
sup
t≥0

(∫ ∞

0
ξ2(x; t)e−x dx ·

∫ ∞

0
h2

0e
x dx

)
.
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From the Cauchy–Schwarz inequality we obtain that the efficiency is equal to 1 if h(x) =
e−x

(
C1ξ(x; t0) + C2(x − 1)

)
for t0 = argmaxt≥0δ

2(t) and some constants C1 > 0 and C2. The alterna-
tive densities having such function h(x) form the domain of LAO in the corresponding class.

The simplest example is

g(x, θ) = e−x
[
1 + θ ·

( t0
1 + t0

− 1
2
e
− x

t0 +
1
2
e−xt0 − 1

2

)]
,

where

t0 = argmax
t≥0

(
t(t − 1)(t3 + 2t2 − 2t − 1)

4(t + 1)2(t + 2)(t3 + (t + 1)3)

)
≈

[
0.1963,
5.0949.

6. CONCLUSION

We have proposed in this paper two new tests of exponentiality which use a particular property of the
exponential law but are not consistent against any alternative. At the same time they are rather sen-
sitive against the deviations from exponentiality. This is sustained by their high local Bahadur efficiency
and considerable power under common alternatives. Our tests were able to reject the exponentiality of
the sample of reigns of Roman emperors which was claimed by Khmaladze and his coauthors in [10], [19],
[20]. We hope that our tests will be useful in other delicate cases when one has to confirm the rejection
of exponentiality hypothesis. Finally we have described the structure of “most favorable” alternatives to
exponentiality under which our tests become locally optimal in Bahadur sense.
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