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Abstract—In this paper, we address the problem of estimating a multidimensional density f by
using indirect observations from the statistical model Y = X + ε. Here, ε is a measurement error
independent of the random vector X of interest and having a known density with respect to Lebesgue
measure. Our aim is to obtain optimal accuracy of estimation under Lp-losses when the error ε has
a characteristic function with a polynomial decay. To achieve this goal, we first construct a kernel
estimator of f which is fully data driven. Then, we derive for it an oracle inequality under very mild
assumptions on the characteristic function of the error ε. As a consequence, we get minimax adaptive
upper bounds over a large scale of anisotropic Nikolskii classes and we prove that our estimator
is asymptotically rate optimal when p ∈ [2, +∞]. Furthermore, our estimation procedure adapts
automatically to the possible independence structure of f and this allows us to improve significantly
the accuracy of estimation.
Keywords: density estimation, deconvolution, kernel estimator, oracle inequality, adaptation, inde-
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1. INTRODUCTION

Let Xk =
(
Xk,1, . . . ,Xk,d

)
, k ∈ N

∗, be a sequence of R
d-valued i.i.d. random vectors defined on

a complete probability space (Ω,A, P) and having an unknown density f with respect to Lebesgue
measure. Assume that we have at our disposal indirect observations given by

Yk = Xk + εk, k = 1, . . . , n, (1)

where the errors εk are also i.i.d. d-dimensional random vectors, independent of the Xk’s, with a known
density q.

The goal is to estimate the density f by using observations Y (n) = (Y1, . . . , Yn). By an estimator we
mean any Y (n)-measurable mapping f̃ : (Rd)n → Lp(Rd). The accuracy of an estimator is measured by
its Lp-risk

Rp[f̃ , f ] :=
(
Ef‖f̃ − f‖p

p

) 1
p , p ∈ [1,+∞), R∞[f̃ , f ] := Ef‖f̃ − f‖∞.

Here and in the sequel Ef denotes the expectation with respect to the probability measure Pf of the
observations Y (n) = (Y1, . . . , Yn) and ‖g‖r = (

∫
|g(x)|r dx)1/r is the Lr-norm of g ∈ Lr(Rs), s ∈ N

∗,
r ∈ [1,+∞), with the usual modification for r = ∞. We will also denote by ĝ the Fourier transform of
g ∈ L1(Rs), defined by ĝ(x) =

∫
ei〈t,x〉g(x) dx, where 〈·, ·〉 is the Euclidean scalar product on R

s.

The aforementioned deconvolution model, which is more realistic than the density model (with direct
observations), exists in various fields and is the subject of many theoretical studies. In most of them, the
main interest is to provide estimators which achieve optimal rates of convergence on particular functional
classes in a minimax sense. For instance, the problem of nonparametric estimation in the deconvolution
model with pointwise and L2 risks was investigated by Carroll and Hall [8], Stefanski [38], Stefanski and
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Carroll [39], Fan ([12],[13],[14]), Pensky and Vidakovic [34], Butucea [4], Hall and Meister [20], Meister
[32], Butucea and Tsybakov ([6],[7]), Butucea and Comte [5]. Global density deconvolution was also
considered under a weighted Lp-norm (defined with an integrable weight function) by Fan [13]-[14] and
under the sup-norm loss by Stefanski [38], Bissantz, Dümbgen, Holzmann and Munk [3] and Lounici
and Nickl [28]. Whereas all the works cited above are in the one-dimensional setting, the problem of
deconvolving a multidimensional density under pointwise or L2 loss has been addressed by Masry ([29],
[30]), Youndjé and Wells [41], and Comte and Lacour [9].

Our aim here is twofold. First, we deal with optimal deconvolution of a multivariate density under
Lp and sup-norm losses. Next, as in Lepski [25] (under sup-norm loss) and in Rebelles [36] (under Lp-
losses) for the density model, we also take advantage of the fact that some coordinates of the Xk’s may be
independent from the others, but in a unified way. To analyze the accuracy of our estimation procedures,
we use the minimax criterion.

Minimax estimation. In the framework of the minimax estimation it is assumed that f belongs to a
certain set of functions Σ, and then the accuracy of an estimator f̃ is measured by its maximal risk
over Σ:

Rp[f̃ ,Σ] := sup
f∈Σ

Rp[f̃ , f ].

The objective here is to construct an estimator f̃∗ which achieves asymptotically the minimax risk
(minimax rate of convergence):

Rp[f̃∗,Σ] � inf
f̃n

Rp[f̃ ,Σ] =: ϕn,p(Σ), n → +∞,

where the infimum is taken over all possible estimators. Such an estimator is called minimax on Σ.
In this paper, we focus on the problem of minimax estimation over anisotropic Nikolskii classes of

densities Nr,d(β,L), see the definition in Section 2.2. Whereas the vector β = (β1, . . . , βd) represents
the smoothness of the target density, r = (r1, . . . , rd) represents the index of homogeneity. When p
is finite we assume that both the smoothness of f and the accuracy of estimation are measured in
the same Lp-norm, which means rj = p for j = 1, . . . , d. This restriction permits us to use a global
selection procedure from a family of linear estimators that leads to optimal accuracy in the minimax
sense. Otherwise, this is not possible. In the latter case, the vector r is replaced by p in the notation
of the functional class. If βj = β0, Lj = L0 and rj = r0 for all j = 1, . . . , d, any function belonging to
Nr,d(β,L) is called isotropic function. Let us briefly present some interesting results and the novelties
that we propose in the context described above.

In Comte and Lacour [9] it was shown that

ϕn,2(N2,d(β,L)) � n− τ
2τ+1 , τ :=

[ d∑

j=1

2λj + 1
βj

]−1

, (2)

when the common density q of the errors (which is assumed to be known) satisfies

A1

d∏

j=1

(1 + t2j)
−λj

2 ≤ |q̂(t)| ≤ A2

d∏

j=1

(1 + t2j)
−λj

2 , ∀t ∈ R
d,

for some constants A1,A2, λj > 0, j = 1, . . . , d. Such a density is usually called ordinary smooth of
order λ = (λ1, . . . , λd).

Note that this result was proved in the one-dimensional setting by Fan [13]. However, whereas
Fan [13] provided an estimator whose construction depends on the smoothness parameter β of the
functional class N2,1(β,L) (which is not known in practice), Comte and Lacour [9] proposed an adaptive
strategy. Indeed, they provided a single estimator which is fully data driven and minimax on each class
N2,d(β,L), whatever the nuisance parameter (β,L) in a large range. Such an estimator is called optimal
adaptive over the scale of functional classes {N2,d(β,L)}(β,L).
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Lounici and Nickl [28] considered the problem of adaptive deconvolution of a univariate density under
sup-norm loss and proved that

ϕn,∞(N∞,1(β,L)) �
(

n

log(n)

)− τ
2τ+1

, τ :=
[
2λ + 1

β

]−1

, (3)

when the common density q of the errors is ordinary smooth of order λ > 0. Moreover, they constructed
an optimal adaptive estimator over the scale of Hölder classes {N∞,1(β,L)}(β,L).

It is worth mentioning that Fan [13], Lounici and Nickl [28] and Comte and Lacour [9], as in
most of the aforementioned papers, considered also the case of errors having a common density whose
Fourier transform has exponential decay, usually called super smooth. In the multidimensional setting,
Comte and Lacour [9] showed that, in the presence of super smooth noise, the rates of convergence
on anisotropic Nikolskii classes (considered as classes of ordinary smooth densities) are logarithmic
and achieved by a single kernel estimator which is optimal adaptive and whose construction does not
require any bandwidth selection procedure. Note that Youndjé and Wells [41] considered the problem of
adaptive deconvolution of an isotropic density in the ordinary smooth case, namely the “moderately ill-
posed” case in inverse problems. The results obtained in Comte and Lacour [9] under L2-loss generalize
considerably those of Youndjé and Wells [41].

In the present paper, we deal with the problem of minimax adaptive deconvolution of an anisotropic
density in the ordinary smooth case with Lp-risks, p ∈ [1,∞]. The rates of convergence given in (2)-(3)
are recovered from the results we obtain. Indeed, we provide adaptive kernel estimators which achieve
the following minimax rates of convergence respectively:

ϕn,p(Np,d(β,L)) � n− τ
2τ+1 , ∀p ∈ [2,+∞); (4)

ϕn,∞(Nr,d(β,L)) �
(

n

log(n)

)− Υ
2Υ+1

, Υ−1 := τ−1 + [ωκ]−1, (5)

where τ is given in (2), ω :=
[∑d

j=1
2λj+1
βjrj

]−1
and κ :=

(
1 −
∑d

j=1
1

βjrj

) [∑d
j=1

1
βj

]−1
> 0.

Here, the optimality is a direct consequence of minimax lower bounds recently obtained by Lepski and
Willer [27]. As usual, these lower bounds hold under additional assumptions on the common density of
the errors, see Section 2.4. Moreover, they proved that there is no uniformly consistent estimator on
Nr,d(β,L) under the sup-norm loss if κ ≤ 0 and under the L1-loss. Therefore, we do not consider the
case p = 1. When p ∈ (1, 2), our estimation procedure is adaptive, but does not achieve the minimax
lower bound on Np,d(β,L) found by Lepski and Willer [27].

It is important to emphasize that minimax rates depend heavily on the dimension d. To reduce the
influence of the dimension on the accuracy of estimation (curse of dimensionality), many researchers
have studied the possibility of taking into account not only the smoothness properties of the target
function, but also some structural hypotheses on the statistical model. For instance, see the works
on the composite function structure in Horowitz and Mammen [21], Juditsky et al. [22] and Baraud
and Birgé [1], the works on multi-index structure in Goldenshluger and Lepski [15] and Lepski
and Serdyukova [26], the works on the multiple index model in density estimation in Samarov and
Tsybakov [37] and the works on anisotropic denoising in functional deconvolution model in Benhaddou,
Pensky and Picard [2].

Below, we discuss one of the possibilities of dealing with this problem in the framework of density
estimation. The approach which has been recently proposed in Lepski [25] is to take into account the
independence structure of the target density f , namely its product structure due to the independence
structure of the vector X of interest.
Organization of the paper. In Section 2, we describe assumptions on the densities involved in the
statistical model (1) and we recall the minimax lower bounds obtained in Lepski and Willer [27] and used
in this paper. In Section 3, we introduce the family of kernel estimators we consider for our procedure and
then we describe the selection rule that leads to the construction of our final estimators. In Section 4, we
provide some oracle inequalities and, as consequences, minimax adaptive upper bounds under Lp-losses
over scales of anisotropic Nikolskii classes. Further, we discuss the optimality of our estimators and the
influence of the independence structure of the target density on the accuracy of estimation. Proofs of all
main results are given in Section 5. Proofs of technical results are deferred to the Appendix.
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2. ASSUMPTIONS ON DENSITIES f AND q

2.1. Structural Assumption on the Target Density

Denote by Id the set of all subsets of {1, . . . , d}, except the empty set. Let P be a given set of partitions
of {1, . . . , d}. For all I ∈ Id denote also I = {1, . . . , d} \ I and |I| = card(I). We will use ∅ for {1, . . . , d}.
Finally, for all x ∈ R

d and I ∈ Id put xI := (xj)j∈I and, for any probability density g : R
d → R+,

gI(xI) :=
∫

R|I|
g(x) dxI .

Assume that g∅ ≡ g and that g∅ ≡ 1. Note also that fI and qI are the marginal densities of XI and εI

respectively.

If P ∈ P is such that the vectors XI , I ∈ P, are independent then f(x) =
∏

I∈P fI(xI), ∀x ∈ R
d.

In the sequel, the possible independence structure of the density f will be represented by a partition
belonging to the following set :

P(f) :=
{
P ∈ P : f(x) =

∏

I∈P
fI(xI), ∀x ∈ R

d

}
. (6)

Remark that P(f) is not empty if we consider that ∅ ∈ P, or that P = {P} if the independence structure
of f is known. The possibility of choosing P, instead of considering all partitions of {1, . . . , d}, is
introduced for technical purposes. This is explained in more detail in Lepski [25], Section 2.1, paragraph
“Extra parameters”.

Finally, we endow the set P with the operation “” introduced in Lepski [25]: for any P,P ′ ∈ P

P  P ′ :=
{
I ∩ I ′ �= ∅, I ∈ P, I ′ ∈ P ′}. (7)

The use of this operation for the estimation procedure allows us to construct an estimator which adapts
automatically to the independence structure of the underlying density.

2.2. Smoothness Assumption on the Target Density

In the literature we can find several definitions of the anisotropic Nikolskii class of densities. Let
us recall the one we use in the present paper. Set {e1, . . . , es}, the canonical basis in R

s, s ∈ N
∗.

Definition 1. Set r = (r1, . . . , rs) ∈ [1,+∞]s, β = (β1, . . . , βs) ∈ (0,+∞)s and L = (L1, . . . , Ls) ∈
(0,+∞)s. A probability density g : R

s → R+ belongs to the anisotropic Nikolskii class Nr,s(β,L) if

(i) ‖Dk
j g‖rj ≤ Lj , ∀k = 0, . . . , �βj�, ∀j = 1, . . . , s;

(ii) ‖D	βj

j g(· + zej) − D

	βj

j g(·)‖rj ≤ Lj|z|βj−	βj
, ∀z ∈ R, ∀j = 1, . . . , s.

Here and in the sequel, �a� is the largest integer strictly less than the real number a. Furthermore,
we use the notation Nr,s(β,L) for Nr,s(β,L) when r = (r, . . . , r).

In order to take into account the smoothness of the underlying density and its possible indepen-
dence structure simultaneously, a certain collection of anisotropic Nikolskii classes of densities was
introduced in Lepski [25], Section 3, Definition 2. However, since the adaptation is not necessarily
considered with respect to the set of all partitions of {1, . . . , d}, the condition imposed therein can be
weakened. For instance, if P = {∅} (no independence structure), we want to find again the well-known
results concerning the adaptive estimation over the scale of anisotropic Nikolskii classes of densities{
Nr,d(β,L)

}
, which is not possible with the classes introduced in Lepski [25]. For these reasons, the

following collection
{
Nr,d(β,L,P)

}
P was introduced in Rebelles [35], Section 3.1.
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Definition 2. Let r ∈ [1,+∞]d and (β,L,P) ∈ (0,+∞)d × (0,+∞)d × P be fixed. A probability
density g : R

d → R+ belongs to the class Nr,d(β,L,P) if

g(x) =
∏

I∈P
gI(xI), ∀x ∈ R

d; gI ∈ NrI ,|I|(βI , LI), ∀I ∈ P ′  P ′′, ∀(P ′, P ′′) ∈ P × P. (8)

Note that, if P = {∅}, the class Nr,d(β,L, ∅) coincides with the classical anisotropic Nikolskii class
of densities Nr,d(β,L).

2.3. Noise Assumptions for Upper Bounds

Both the definition of our estimation procedure and the computation of the Lp-risk, p ∈ (1,+∞], lead
us to consider that the density q of the noise random vector ε1 satisfies the following assumptions.

Assumption (N1). Assume that, for any I ∈ P  P ′, (P,P ′) ∈ P × P:

(i) if p = 2, then ‖q̂I‖1 < +∞;

(ii) if p ∈ (2,+∞], then ‖qI‖∞ < +∞.

Assumption (N2). Assume that, for some constants A > 0, λj > 0, j = 1, . . . , d, one has for any
I ∈ P  P ′, (P,P ′) ∈ P × P:

(i) if p = 2, then

|q̂I(t)| ≥ A−1
∏

j∈I

(1 + t2j)
−λj

2 , ∀t ∈ R
d;

(ii) if p ∈ (1,+∞) \ {2}, then q̂I(tI) �= 0, ∀t ∈ R
d, q̂I

−1 ∈ C|I|(R|I|) and
∣
∣∣[DαI q̂I

−1](tI)
∏

j∈I

t
αj

j

∣
∣∣ ≤ A

∏

j∈I

(1 + t2j)
λj
2 , ∀t ∈ R

d, ∀αI = (αj)j∈I ∈ N
|I|,
∑

j∈I

αj ≤ |I|;

(iii) if p = +∞, then q̂I(tI) �= 0, ∀t ∈ R
d, q̂I

−1 ∈ C1(R|I|) and

∣
∣[Dαk

k q̂I
−1](tI)

∣
∣ ≤ A

∏

j∈I

(1 + t2j)
λj
2 , ∀t ∈ R

d, ∀k ∈ I, ∀αk ∈ {0, 1}.

Here and in the sequel, Dαk
k g denotes the αkth order partial derivative of g with respect to the

kth variable, D0
kg ≡ g and, for any multi-index α = (α1, . . . , αs) ∈ N

s, Dαg denotes the derivative
Dα1

1 . . . Dαs
s g of g : R

s → R.

Assumption (N1) is satisfied for many distributions like centered Gaussian, Cauchy, Laplace or
Gamma type multivariate ones. Assumption (N2) is quite restrictive since it does not hold for the clas-
sical Cauchy and Gaussian densities, whose characteristic functions have exponential decay. However,
it holds for the centered Laplace and Gamma type distributions, whose characteristic functions have
polynomial decay. As mentioned in Comte and Lacour [9], the latter case is of great interest in particular
physical contexts; see, for instance, the study of the pile-up model in Comte and Rebafka [10].

In what follows, we assume that q satisfies Assumptions (N1)–(N2).
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2.4. Noise Assumptions for Minimax Lower Bounds

Recently, Lepski and Willer [27] obtained minimax lower bounds for ϕn,p(Nr,d(β,L)),
p ∈ [1,+∞], when the density q of the noise random vector ε satisfies the following assumption.

Assumption (N3). For any multi-index α = (α1, . . . , αd) ∈ {0, 1}d satisfying α1 + . . . + αd ≥ 1,
Dαq̂ exists. Furthermore, there exist constants B > 0 and λj > 0, j = 1, . . . , d, such that

(i) |q̂(t)| ≤ B
d∏

j=1

(1 + t2j)
−λj

2 , ∀t ∈ R
d;

(ii) ‖q̂ −1Dαq̂‖∞ ≤ B, ∀α = (α1, . . . , αd) ∈ {0, 1}d, α1 + . . . + αd ≥ 1.

Note first that Assumption (N3) is also satisfied for centered Laplace or Gamma-type distributions.
Next, if P = {∅} (no independence structure), any density q that satisfies both the condition (i) of
Assumption (N3) and Assumptions (N2) fulfills

A−1
d∏

j=1

(1 + t2j)
−λj

2 ≤ |q̂(t)| ≤ B
d∏

j=1

(1 + t2j)
−λj

2 , ∀t ∈ R
d,

and hence is ordinary smooth of order λ = (λ1, . . . , λd). Furthermore, the condition imposed in the left-
hand side of the latter inequalities, together with condition (ii) of Assumption (N3) (or Condition 1 in
Lounici and Nickl [28] for the one-dimensional setting), implies that condition (iii) of Assumption (N2)
is satisfied.

In the setting of the deconvolution density model, Lepski and Willer [27] provided minimax lower
bounds on Nr,d(β,L,M) = Nr,d(β,L) ∩ {f :

∥
∥f
∥
∥
∞ ≤ M} in four different zones described in terms of

parameters p, r, β and λ, namely the tail zone, the dense zone and the sparse zone which is divided in
two zones.

Since Nr,d(β,L,M) ⊂ Nr,d(β,L), the results below follow from Theorems 2 and 3 in Lepski and
Willer [27] and allow us to assert the optimality of our estimators when P = {∅} (no independence
structure) in some particular cases.

Theorem 1. Let L0 > 0 and p ∈ [2,+∞) be fixed. Suppose that Assumption (N3) is satisfied. Then,
for any (β,L) ∈ (0,∞)d × [L0,∞)d,

lim inf
n→+∞

inf
f̃n

{
ϕ−1

n,p(Np,d(β,L))Rp[f̃n, Np,d(β,L)]
}

> 0,

where the infimum is taken over all possible estimators and ϕn,p(Np,d(β,L)) is given in (4).

Theorem 2. Let L0 > 0 and (β,L, r) ∈ (0,∞)d × [L0,∞)d × [1,∞]d be fixed. Suppose that Assump-
tion (N3) is satisfied. Then,

(i) there is no uniformly consistent estimator over Nr,d(β,L) if 1 −
∑d

j=1
1

βjrj
≤ 0;

(ii) if 1 −
∑d

j=1
1

βjrj
> 0,

lim inf
n→+∞

inf
f̃n

{
ϕ−1

n,∞(Nr,d(β,L))R∞[f̃n, Nr,d(β,L)]
}

> 0,

where the infimum is taken over all possible estimators and ϕn,∞(Nr,d(β,L)) is given in (5).

The settings of Theorems 1 and 2 correspond to particular cases of the dense zone and the sparse zone
respectively. Further, when the problem of minimax estimation under Lp-loss on the class Np,d(β,L) is
considered and p ∈ (1, 2), this corresponds to a particular case of the tail zone.
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3. ESTIMATION PROCEDURE

In this section, we construct an estimator following a scheme of selection rule introduced in Lepski
[25] to take into account the possible independence structure of the underlying density. If P = {∅}, this
scheme coincides with a version of the methodology proposed by Goldenshluger and Lepski [17]. This
methodology, employed in many areas of nonparametric statistics, has been recently used by Comte and
Lacour [9] in the framework of the deconvolution model.

3.1. Kernel-Type Estimators

Let K : R → R be a fixed symmetric kernel (
∫

K = 1) belonging to the well-known Schwartz class
S(R). For instance, K may be a Gaussian kernel. For all I ∈ Id, h ∈ (0, 1]d and x ∈ R

d put

KI(xI) :=
∏

j∈I

K(xj), KhI
(xI) := V −1

hI

∏

j∈I

K(xj/hj), VhI
:=
∏

j∈I

hj .

Therefore, in view of the definition of the kernel K and Assumption (N2) on the errors, one can define the
kernel-type estimator

f̃hI
(xI) := n−1

n∑

k=1

L(hI )(xI − Yk,I), L(hI)(xI) :=
1

(2π)|I|

∫

R|I|
e−i〈tI ,xI〉 K̂hI

(tI)
q̂I(tI)

dtI . (9)

The ideas that led to the introduction of the estimators f̃hI
are explained in Fan [13] in the one-

dimensional setting and in Comte and Lacour [9] in the multivariate context.

Family of estimators. Below we propose a data-driven selection from the family of estimators

F[ P ] :=
{

f̃(h,P)(x) =
∏

I∈P
f̃hI

(xI), x ∈ R
d, (h,P) ∈ Hp[ P ]

}
, (10)

where the set Hp[ P ] of parameters (h,P) is constructed as follows.

For I ∈ Id, consider first the set of multibandwidths

Hp,I :=
{
hI ∈ [h(p)

min, h
(p)
max]

|I| : hj = 2−kj , kj ∈ N
∗, j ∈ I

}
,

h
(p)
min :=

⎧
⎪⎨

⎪⎩

n
−(1∨ p

|I| ), p ∈ (1,+∞),

n−1, p = +∞,

h(p)
max :=

⎧
⎪⎨

⎪⎩

[log(n)]−
p
|I| , p ∈ (1,+∞),

1, p = +∞.

Then define

Hp,I :=
{
hI ∈ Hp,I : (nVhI

)
1
2
∧(1− 1

p
)
∏

j∈I

h
λj

j ≥ cp1{p<∞} +
√

log(n)1{p=+∞}

}
, (11)

cp := 1 ∧
{

p

e

[
1 + λmax

(
2 ∨ p

p − 1

)]}− p[ 1
2
∧(1− 1

p
)+λmax]

, λmax := max
j=1,...,d

λj .

The constant cp is chosen in order to have Hp,I �= ∅, ∀n ≥ 3.

Put finally

Hp[ P ] :=
{
(h,P) ∈ (0, 1]d × P : hI ∈ Hp,I, ∀I ∈ P  P ′, P ′ ∈ P

}
.

The introduction of the estimator f̃(h,P) is based on the following simple observation. If there exists
P ∈ P(f), the idea is to estimate separately each marginal density corresponding to I ∈ P. Since the
estimated density possesses the product structure, we seek its estimator in the same form.
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Auxiliary estimators. We mimic the procedure of Lepski [25] by introducing the following auxiliary
estimators. Consider first the classical kernel auxiliary estimators

f̃hI ,ηI
(xI) := KηI

� f̃hI
(xI), h, η ∈ (0, 1]d, I ∈ Id,

where, here and in the sequel, “�” stands for the standard convolution product on R
s, s ∈ N

∗.

Then put, for h, η ∈ (0, 1]d and P,P ′ ∈ P,

f̃(h,P),(η,P ′)(x) :=
∏

I∈P�P ′

f̃hI ,ηI
(xI),

where the operation “” is defined by (7).

The ideas that led to the introduction of the estimators f̃(h,P),(η,P ′), based on both the operations “�”
and “”, are explained in Lepski [25], Section 2.1, paragraph "Estimation construction ". Note that the
arguments given in that paper do not depend on the norm used in the definition of the risk and remain
valid for estimation under Lp-loss.

3.2. Selection Rule

For I ∈ Id and h ∈ (0, 1]d, define

Up(hI) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n
1
p
−1‖L(hI )‖p, p ∈ (1, 2),

n− 1
2
∏

j∈I h
−λj− 1

2
j , p = 2,

n− 1
2

[
∏

j∈I h
−λj− 1

2
j +

√
log(n)‖L(hI)‖ 2p

p+2

]
, p ∈ (2,+∞),

n− 1
2

√
log(n)

∏
j∈I h

−λj− 1
2

j , p = +∞.

Put also Λp := dγp[ Gp]d(d−1), where d := supP∈P |P|,

Gp := 1 ∨
[
‖K‖d

1 sup
(h,P)∈ Hp[ P ]

sup
P ′∈ P

sup
I∈P�P ′

‖f̃hI
‖p

]

and γp > 0 is a numerical constant whose expression is given in Section 5.1 below.

For h ∈ (0, 1]d and P ∈ P introduce Up(h,P) := supI∈P Up(hI) and

Δ̃p(h,P) := sup
(η,P ′)∈Hp[ P ]

[
‖f̃(h,P),(η,P ′) − f̃(η,P ′)‖p − ΛpUp(η,P ′)

]

+
. (12)

Define finally
(
h̃, P̃

)
satisfying

Δ̃p(h̃, P̃) + ΛpUp(h̃, P̃) = inf
(h,P)∈Hp[ P ]

[
Δ̃p(h,P) + ΛpUp(h,P)

]
. (13)

Our selected estimator is f̃ := f̃
(h̃,P̃)

.

Note first that the existence of the quantities involved in the selection procedure is ensured by both
the finiteness of the set Hp[ P ] and the following result. The first statement given in Proposition 1 is
a simple consequence of Marcinkiewicz Multiplier Theorem; see Theorem 5.2.4 and Corollary 5.2.5 in
Grafakos [19].
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Proposition 1. Assume that Assumption (N2) is satisfied.

(i) If p ∈ (1,∞) \ {2}, for any r ∈ (1, 2) and any I ∈ P  P ′, (P,P ′) ∈ P × P, there exists a
constant Cr,I := Cr,I(|I|,K, q) > 0 such that

‖L(hI )‖r ≤ Cr,I(VhI
)−(1−1/r)

∏

j∈I

h
−λj

j , ∀h ∈ (0, 1]d.

(ii) For any I ∈ P P ′, (P,P ′) ∈ P×P, there exists a constant CI := CI(|I|,K, q) > 0 such that

‖L(hI )‖2 ≤ CI

∏

j∈I

h
−λj− 1

2
j , ‖L(hI)‖∞ ≤ CI

∏

j∈I

h
−λj−1
j , ∀h ∈ (0, 1]d.

The proof of this proposition is postponed to Appendix. It is important to emphasize that the first
bound was not used for the definition of Up(hI) since a dimensional constant is not explicitly done in
Theorem 5.2.4 of Grafakos [19].

Next, we also emphasize that the quantity Up(hI) can be viewed, up to a numerical constant, as a
uniform bound on the Lp-norm of the stochastic error provided by the kernel-type estimator f̃hI

. This is
explained by the following result. For I ∈ Id, h ∈ (0, 1]d and x ∈ R

d, define

ξhI
(xI) := f̃hI

(xI) − E{f̃hI
(xI)}.

Proposition 2. Assume that Assumptions (N1)–(N2) hold. Let I ∈ P  P ′, (P,P ′) ∈ P × P, be
arbitrary fixed. If p ∈ (1,+∞], r ≥ 1 and n ≥ 3 then

{
E sup

hI∈Hp,I

[
‖ξhI

‖p − γp,I(r)Up(hI)
]r
+

} 1
r ≤ cp(r)n− 1

2 , cp(r) > 0. (14)

The constants γp,I(r) and cp(r) do not depend on the sample size n. Their explicit expressions can be
found in the proof of this proposition, which is also postponed to Appendix.

Finally, in view of the assumptions on the kernel K, since Hp[ P ] is a finite set, (h̃, P̃) exists, is in
Hp

[
P
]

and is Y (n)-measurable. It follows that f̃ : (Rd)n → Lp(Rd) is an Y (n)-measurable mapping.

4. MAIN RESULTS

In this section, we first provide oracle inequalities for our estimator f̃ . Then, we discuss adaptive
minimax estimation over scales of anisotropic Nikolskii classes.

4.1. Oracle Inequalities
Note that the construction of the proposed procedure does not require any condition concerning the

density f . However, the following mild assumption will be used for computing its risk:

f ∈ Fp[ P ] :=
{

g ∈ F : sup
P,P ′∈P

sup
I∈P�P ′

‖gI‖p < ∞
}

, (15)

where F denotes the set of all probability densities g : R
d → R+. The considered class of densities is

determined by the choice of P and in particular

Fp[ {∅} ] =
{
g ∈ F : ‖g‖p < ∞

}
, Fp[ {P} ] =

{
g ∈ F : sup

I∈P
‖gI‖p < ∞

}
.

Define, for (h,P) ∈ Hp[ P ] such that P ∈ P(f),

Rp[(h,P), f ] :=
(
Ef sup

P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖p

p

) 1
p
, p ∈ (1,+∞),

R∞[(h,P), f ] := Ef sup
P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖∞.
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If the possible independence structure P of the target density is known, Rp and R∞ can be viewed as

the “Lp-risk” of the estimator f̃(h,P), defined with the loss

l(f̃(h,P), f) := sup
P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖p.

In this case, we see that the effective dimension of estimation is not d, but d(P) := supI∈P |I|. Therefore

the best estimator from the family F[ P ] (the oracle) should be f̃(h∗,P∗) such that

Rp[(h∗,P∗), f ] = inf
(h,P)∈Hp[ P ] : P∈P(f)

Rp[(h,P), f ].

Let us provide the following oracle inequalities for our selected estimator f̃ .

Theorem 3. Suppose that Assumptions (N1)–(N2) are satisfied.

If n ≥ 3 and p ∈ (1,+∞] then: ∀f ∈ Fp [P],

Rp[f̃ , f ] ≤ Cp,1(fp) inf
(h,P)∈Hp[ P ] inf P∈P(f)

{
Rp[(h,P), f ] + γpUp(h,P)

}
+ Cp,2(fp)n− 1

2 , (16)

where fp := 1 ∨ [supP,P ′∈P supI∈P�P ′ ‖fI‖p].

The explicit expression of Cp,1(fp) = Cp,1(d,P,K, q, fp) and Cp,2(fp) = Cp,2(d,P,K, q, fp) is given
in the proof of the theorem. It is worth to note that the maps fp �→ Cp,1(fp) and fp �→ Cp,2(fp) are
bounded on any bounded interval of R+.

If P =
{
∅
}

, we obtain automatically some oracle inequalities for estimation on R
d under Lp-loss

without considering any independence structure. In this case, the result above can be improved. Indeed,
by scrutinizing its proof, one can easily see that the following theorem is true.

Theorem 4. Suppose that P =
{
∅
}

and that Assumptions (N1)–(N2) are satisfied.

If n ≥ 3 and p ∈ (1,+∞] then: ∀f ∈ F,

Rp[f̃ , f ] ≤ inf
h∈H

p,∅

{
(1 + 2‖K‖d

1)Rp[f̃h, f ] + 2γpUp(h)
}

+ 2Cpn
− 1

2 . (17)

The explicit expression of the absolute constant Cp = Cp(d,P,K, q) > 0 is given in the proof of the
theorem.

Note first that the statement of Theorem 4 holds for all probability densities f ∈ F, which is not true
for Theorem 3. Next, the constant 1 + 2‖K‖d

1 is more suitable than Cp,1(fp). Indeed, the prime interest
in the oracle approach is to obtain a constant that does not depend on the target density and close to
one. However, Theorem 3 allows us to consider both the smoothness properties and the independence
structure of the target density and then to reduce the influence of the dimension on the accuracy of
estimation. Indeed, if f has an independence structure P �= ∅ and the smoothness parameter h is fixed
and properly chosen, then our procedure should select the true partition P and the estimator f̃(h,P)

should provide a better accuracy of estimation than the classical kernel-type estimator f̃h. This was
illustrated by a short simulation study in Rebelles [36] for the density model (with direct observations),
under the L2-loss.
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4.2. Lp-Adaptive Minimax Estimation

In what follows, we illustrate the application of Theorems 3 and 4 to adaptive estimation over
anisotropic Nikolskii classes of densities Nr,d(β,L,P) and Nr,d(β,L), respectively. To compute the Lp-
risk of a kernel-type estimator, we first compute its bias. Thus we need to enforce the assumptions
imposed on the kernel K. One of the possibilities is the following, proposed in Kerkyacharian, Lepski and
Picard [23].

For a given integer l ≥ 2 and a given symmetric function u : R → R belonging to the Schwartz
class S(R) and satisfying

∫
R

u(z) dz = 1 set

ul(z) :=
l∑

j=1

(
l

j

)
(−1)j+1 1

j
u

(
z

j

)
, z ∈ R. (18)

Furthermore we use K ≡ ul in the definition of the collection of estimators F[P].
The relation of kernel ul to anisotropic Nikolskii classes is discussed in Kerkyacharian, Lepski and

Picard [23]. In particular, it has been shown that
∫

R

K(z) dz = 1,
∫

R

zkK(z) dz = 0, ∀k = 1, . . . , l − 1. (19)

4.2.1. Minimax adaptive estimation under an Lp-loss

For (β,P) ∈ (0,+∞)d × P define φn,p(β,P) := n
−

[ 12∧(1− 1
p )]τ

τ+[ 12∧(1− 1
p )] , where

τ := τ(β,P) = inf
I∈P

τI , τI :=
[∑

j∈I

[12 ∧ (1 − 1
p)]−1λj + 1

βj

]−1

. (20)

Assume that ∅ ∈ P and consider the estimator f̃ defined by the selection rule (12)–(13) with
p ∈ (1,+∞).

Theorem 5. Let p ∈ (1,+∞) be arbitrary fixed. Suppose that Assumptions (N1)–(N2) are satis-
fied. Then for any (β,L,P) ∈ (0, l]d × (0,∞)d × P one has

lim sup
n→+∞

{
φ−1

n,p(β,P)Rp[f̃ , Np,d(β,L,P)]
}

< ∞.

To get the statement of this theorem we apply Theorem 3. If P = {∅} (no independence structure),
we obtain the following theorem by applying Theorem 4.

Theorem 6. Let p ∈ (1,+∞) be arbitrary fixed. Suppose that P = {∅} and that Assumptions
(N1)–(N2) are satisfied. Then for any (β,L) ∈ (0, l]d × (0,∞)d one has

lim sup
n→+∞

{
φ−1

n,p(β, ∅)Rp[f̃ , Np,d(β,L)]
}

< ∞.

To the best of our knowledge, these results are new. Below, we briefly discuss several consequences
of Theorems 5 and 6.

In view of the assertion of Theorem 1, if p ∈ [2,+∞) and Assumptions (N1)–(N3) on the errors
are satisfied, we deduce from Theorem 6 that φn,p(β, ∅) is the minimax rate of convergence on the
anisotropic Nikolskii class Np,d(β,L) and that a minimax estimator can be selected from the collection of
kernel-type estimators introduced in Section 3.1. Moreover, if P = {∅} (no independence structure), the
quality of estimation of our estimator f̃ is optimal, up to a numerical constant, on each class Np,d(β,L),
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whatever the nuisance parameter (β,L). Thus, in the aforementioned case, f̃ is an optimal adaptive
estimator over the scale {Np,d(β,L)}(β,L).

If p ∈ (1, 2), our estimator does not achieve the minimax lower bound on Np,d (β,L) obtained in
Lepski and Willer [27] under the Lp-loss. We conclude that either our estimator is not minimax on
Np,d (β,L) or the lower bound in Lepski and Willer [27] is not the minimax rate of convergence on the
latter functional class.

Further, our results show that Lp-estimation of an anisotropic density in the deconvolution model
does not necessarily require that the target function is uniformly bounded, as is assumed in all the works
concerning the density model (with direct observations); see, e.g., Goldenshluger and Lepski [17]. See
also the discussion in Lepski and Willer [27] concerning the deconvolution model, Section 3, paragraph
“Deconvolution density model. Bounded case.”.

It is also important to emphasize that both Theorems 5 and 6 allow us to analyze the influence of
the independence structure on the accuracy of estimation under an Lp-loss in the deconvolution model.
Indeed, we see that

φn,p(β, ∅) � φn,p(β,P), P �= ∅,
whatever the independence structure of the common density of the errors. Thus, our estimation
procedure allows us to improve significantly the accuracy of estimation if the target density has an
independence structure P �= ∅. For instance, if p ∈ [2,∞), β = (β, . . . ,β) and P = {{1}, . . . , {d}},
then

n
− β

2β+2(
∑d

j=1
λj )+d = φn,p(β, ∅) � φn,p(β,P) = n

− β
2β+2λmax+1 , λmax := max

j=1,...,d
λj, (21)

and φn,p(β,P) is the minimax rate of convergence in the one-dimensional setting.

Having said that, the question is: Is φn,p(β,P) the minimax rate of convergence on the functional
class Np,d(β,L,P)? For the density model (that corresponds to λj = 0, j = 1, . . . , d), it is asserted in
Rebelles [36] that the answer is positive and that the proof of the corresponding minimax lower bound
coincides with the one of Theorem 3 in Goldenshluger and Lepski [18], up to minor modifications to
take into account the independence structure. Specifically, in the proof of the lower bound for any given
partition P one can perturb only the density of the group of variables corresponding to the index set
I ∈ P with minimal value of βI = [

∑
j∈I 1/βj ]−1. For the deconvolution model, we conjecture that the

answer is also positive if p ∈ [2,+∞) and that a minimax lower bound on Np,d(β,L,P) can be obtained,
up to straightforward modifications, as in Lepski and Willer [27].

4.2.2. Minimax adaptive estimation under sup-norm loss

For (β, r,P) ∈ (0,+∞)d × [1,+∞]d × P define φn,∞(β, r,P) := (n/log(n))−
Υ

2Υ+1 , where

Υ := Υ(β, r,P) = inf
I∈P

ΥI , ΥI :=
(
τ−1
I + [ωIκI ]−1

)−1
,

τI :=
[∑

j∈I

2λj + 1
βj

]−1

, ωI :=
[∑

j∈I

2λj + 1
βjrj

]−1

, κI :=
1 −
∑

j∈I
1

βjrj∑
j∈I

1
βj

. (22)

Assume that ∅ ∈ P and consider the estimator f̃ defined by the selection rule (12)–(13) with
p = +∞. As before, we obtain the following two theorems:

Theorem 7. Suppose that Assumptions (N1)–(N2) are satisfied. Then for any (β,L, r,P) ∈
(0, l]d × (0,∞)d × [1,+∞]d × P satisfying 1 −

∑d
j=1

1
βjrj

> 0 one has

lim sup
n→+∞

{
φ−1

n,∞(β, r,P)R∞[f̃ , Nr,d(β,L,P)]
}

< ∞.
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Theorem 8. Suppose that P = {∅} and that Assumptions (N1)–(N2) are satisfied. Then for any
(β,L, r) ∈ (0, l]d × (0,∞)d × [1,+∞]d satisfying 1 −

∑d
j=1

1
βjrj

> 0 one has

lim sup
n→+∞

{
φ−1

n,∞(β, r, ∅)R∞[f̃ , Nr,d(β,L)]
}

< ∞.

To the best of our knowledge, these results are also new. As before, we briefly discuss several
consequences of Theorems 7 and 8.

If P = {∅} and 1−
∑d

j=1
1

βjrj
> 0, it follows from Theorems 2 and 8 that, in the presence of the noise

satisfying Assumptions (N1)–(N3), φn,∞(β, r, ∅) is the minimax rate of convergence on the anisotropic
class Nr,d(β,L). In this case, our estimator is an optimal adaptive one over the scale

{
Nr,d(β,L), (β,L, r) ∈ (0, l]d × (0,∞)d × [1,+∞]d, 1 −

d∑

j=1

1
βjrj

> 0
}

. (23)

Thus our results generalize considerably those of Lounici and Nickl [28] when the target density has
Hölder-type regularity and the noise is ordinary-smooth.

It is worth to note that our method of estimation can be used for pointwise estimation. Moreover, it
follows from Theorem 8 that our estimator achieves the adaptive rates of convergence found in Comte
and Lacour [9] with a pointwise criterion over the scale of anisotropic Hölder classes {N∞,d(β,L)}(β,L).
Thus, in the case of ordinary smooth density and ordinary smooth noise, we extend their results to
the scale of anisotropic Nikolskii classes given in (23). Note that the logarithmic term in the rates
φn,∞(β, r,P) is known to be an “optimal payment” for adaptation to the regularity of the target density
in the pointwise setting; see, e.g., Butucea and Comte [5].

As before (under Lp-loss), Theorems 7 and 8 allow us to conclude that our procedure leads to a better
accuracy of estimation under sup-norm loss whenever the target density has an independence structure
P �= ∅. In particular, our method of estimation outperforms that of Comte and Lacour [9] in the pointwise
setting when both the estimated density and the noise are ordinary smooth. Another interesting fact
related to the consideration of the eventual independence structure of the target density f is the
following. Suppose that f belongs to the functional class Nr,d(β,L,P) satisfying 1 −

∑d
j=1

1
βjrj

≤ 0

and 1 −
∑d

j∈I
1

βjrj
> 0, ∀I ∈ P, and that P = {P}. Scrutinizing the proof of Theorem 7, one can see

that it is possible to construct a kernel estimator that achieves the rate φn,∞(β, r,P), whereas there is
no uniformly consistent estimator on Nr,d(β,L).

Finally, we conjecture that φn,∞(β, r,P) is the minimax rate of convergence on Nr,d(β,L,P) when
1 −
∑d

j=1
1

βjrj
> 0 and that a proof of the corresponding lower bound can be obtained by a minor

modification of that in Lepski and Willer [27] to take into account the possible independence structure
of the underlying density.

5. PROOFS OF THE MAIN RESULTS

5.1. Quantities and Technical Lemma

For brevity, introduce first

I�
d := {I ∈ P  P ′, (P,P ′) ∈ P × P}, Up := sup

n∈N∗
sup
I∈I�

d

sup
hI∈Hp,I

Up(hI) < ∞.

Note that the finiteness of Up is due both to the definition of the sets of multibandwidths Hp,I and to the
bounds given in Proposition 1.
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Next, define the constant γp involved in the selection rule. For I ∈ I�
d and r ≥ 1, put

γp,I(r) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 +
√

37e−1pr
2−p , p ∈ (1, 2),

(
7CI + 3A(2π)−

|I|
2 ‖K̂IgI‖∞‖q̂I‖ 1

2

)
r, p = 2,

(46c(p)[p∨e]
3e

)
c

1
p
− 1

2
p [1 ∨ CI ](1 ∨ ‖qI‖∞)

3
4 r, p ∈ (2,+∞),

6CI(K, q)(1 ∨ ‖qI‖∞)
1
2

[
93|I| log(|I|) + 69r

]
, p = +∞,

where gI(tI) :=
∏

j∈I(1 + t2j)
λj
2 , CI := A

{
(2π)−

|I|
2 (‖K̂IgI‖2 ∨ ‖K̂IgI‖1)

}
, cp is given in the definition

of Hp,I , c(p) := 15p/ log(p) and

CI(K, q) :=
A

(2π)
|I|
2

{
‖K̂IgI‖2 ∨ ‖K̂IgI‖1 ∨ (max

j∈I
‖D1

j K̂IgI‖1) ∨ ‖K̂IϕI‖2 ∨ ‖K̂IϕI‖1

}
,

with ϕI(tI) := supj∈I |tj|gI(tI). Then, put rk := kp1{p<∞} + k1{p=+∞}, k ≥ 1, and

γp :=

⎧
⎪⎪⎨

⎪⎪⎩

supP,P ′∈P supI∈P�P ′{γp,I(r4)}, P �= {∅},

γ
p,∅(r1), P = {∅}.

Finally, we need the following technical lemma in order to compute our risk bounds. Define

ξp := sup
I∈I�

d

sup
hI∈Hp,I

[ ‖ξhI
‖p − γpUp(hI)]+,

fp := d2‖K‖d
1[Gp]d(d−1)

(
max{Gp, ‖K‖d

1fp}
)d−1

, fp := 1 ∨
[

sup
I∈I�

d

‖fI‖p

]
.

Lemma 1. Assume that P �= {∅}. Set r ∈ {r1, r2, r4}. Under Assumptions (N1)–(N2), if p ∈
(1,+∞] then, for all integer n ≥ 3,

(Ef |ξp|r)
1
r ≤ cp,1(r)n− 1

2 ,
(
Ef |fp|r

) 1
r ≤ cp,2(r, fp), ∀f ∈ Fp[ P ].

The absolute constants cp,1(r) > 0 and cp,2(r, fp) > 0 can be explicitly expressed and the maps
fp �→ cp,2(r, fp) are bounded on any bounded interval of R+; see the proof of Lemma 1, which is
postponed to Appendix.

5.2. Oracle Inequalities: Proof of Theorems 3 and 4

(1) Set p ∈ [1,+∞] and f ∈ Fp[ P ]. Let (h,P) ∈ Hp

[
P
]
, P ∈ P(f), be fixed.

In view of the triangle inequality we have

‖f̃ − f‖p ≤ ‖f̃
(h̃,P̃)

− f̃
(h,P),(h̃,P̃)

‖p + |f̃
(h,P),(h̃,P̃)

− f̃(h,P)‖p + ‖f̃(h,P) − f‖p

≤ Δ̃p(h,P) + ΛpUp(h̃, P̃) + Δ̃p(h̃, P̃) + ΛpUp(h,P) + ‖f̃(h,P) − f‖p.

Here we have used the equality f̃
(h,P),(h̃,P̃)

= f̃
(h̃,P̃),(h,P)

. By definition of (h̃, P̃), we obtain

‖f̃ − f‖p ≤ 2[Δ̃p(h,P) + ΛpUp(h,P)] + ‖f̃(h,P) − f‖p. (24)
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(2) Suppose that P = {I1, . . . , Im}, m ∈ {1, . . . , d}. Since P ∈ P(f), for any x ∈ R
d

|f̃(h,P)(x) − f(x)| =
∣∣
∣∣
∏

I∈P
f̃hI

(xI) −
∏

I∈P
fI(xI)

∣∣
∣∣

≤
m∑

j=1

|f̃hIj
(xIj ) − fIj(xIj )|

( ∏

k=j+1,...,m

|f̃hIk
(xIk

)|
)( ∏

l=1,...,j−1

|fIl
(xIl

)|
)

.

Here we have used the trivial equality: for m ∈ N
∗ and aj, bj ∈ R, j = 1, . . . ,m,

m∏

j=1

aj −
m∏

j=1

bj =
m∑

j=1

(aj − bj)
( ∏

k=j+1,...,m

ak

)( ∏

l=1,...,j−1

bl

)
, (25)

where the product over empty set is assumed to be equal to one.
In view of P ∈ P, the triangle inequality and the Fubini–Tonelli theorem (used in the case p < ∞)

we establish

‖f̃(h,P) − f‖p ≤
m∑

j=1

‖f̃hIj
− fIj‖p

( ∏

k=j+1,...,m

‖f̃hIk
‖p

)( ∏

l=1,...,j−1

‖fIl
‖p

)

≤ m
(
max{Gp, fp}

)m−1 sup
I∈P

‖f̃hI
− fI‖p,

since ‖K‖1 ≥
∫

K = 1. Recall that d = supP∈P |P| and Gp ≥ 1. It follows

‖f̃(h,P) − f‖p ≤ d
(
max{Gp, fp}

)d−1 sup
I∈P

‖f̃hI
− fI‖p. (26)

(3) For any (η,P ′) ∈ Hp[ P ] and any x ∈ R
d

|f̃(h,P),(η,P ′)(x) − f̃(η,P ′)(x)| =
∣
∣∣
∣
∏

I′∈P ′

∏

I∈P : I∩I′ �=∅
KηI∩I′

j
� f̃hI∩I′

j
(xI∩I′) −

∏

I′∈P ′

f̃ηI′ (xI′)
∣
∣∣
∣.

Therefore, by the same method as the one used in step 2, we establish

‖f̃(h,P),(η,P ′) − f̃(η,P ′)‖p ≤ d[ Gp ]d(d−1) sup
I′∈P ′

∥∥
∥∥

∏

I∈P : I∩I′ �=∅
f̃hI∩I′ ,ηI∩I′ − f̃ηI′

∥∥
∥∥

p

. (27)

Here we have used Young’s inequality and the inequalities ‖K‖1 ≥
∫

K = 1 and Gp ≥ 1.

(4) In view of the Fubini theorem and Young’s inequality, for any I ∈ I�
d and any η ∈ (0, 1]d

‖Ef{f̃ηI
(·)}‖p = ‖KηI

� fI‖p ≤ ‖KI‖1‖fI‖p ≤ ‖K‖d
1fp. (28)

Then, by the same method as the one used in step 2 and (28), for any (η,P ′) ∈ Hp[ P ] and any
I ′ ∈ P ′ we get

∥
∥∥
∥

∏

I∈P : I∩I′ �=∅
f̃hI∩I′ ,ηI∩I′ −

∏

I∈P : I∩I′ �=∅
Ef{f̃ηI∩I′ (·)}

∥
∥∥
∥

p

≤ d
(
max{Gp, ‖K‖d

1fp}
)d−1 sup

I∈P : I∩I′ �=∅

∥
∥KηI∩I′ � (f̃hI∩I′ − fI∩I′)

∥
∥

p

≤ d‖K‖d
1

(
max{Gp, ‖K‖d

1fp}
)d−1 sup

I∈P : I∩I′ �=∅
‖f̃hI∩I′ − fI∩I′‖p. (29)
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(5) For η ∈ (0, 1]d and I ′ ∈ Id, since P ∈ P(f), we have for any x ∈ R
d

Ef{f̃ηI′ (xI′)} =
∫

KηI′ (yI′ − xI′)
∏

I∈P : I∩I′ �=∅
fI∩I′(yI∩I′) dyI′ =

∏

I∈P : I∩I′ �=∅
Ef{f̃ηI∩I′ (xI∩I′)}.

Here we have used the product structure of the kernel K and the Fubini theorem.
Thus, in view of the triangle inequality, (27), (29) and the trivial inequality [supi xi − supi yi]+ ≤

supi[xi − yi]+, for any (η,P ′) ∈ Hp[ P ], we get
[
‖f̃(h,P),(η,P ′) − f̃(η,P ′)‖p − ΛpUp(η,P ′)

]
+

≤ d[Gp]d(d−1) sup
I′∈P ′

[∥∥
∥

∏

I∈P : I∩I′ �=∅
f̃hI∩I′ ,ηI∩I′ −

∏

I∈P : I∩I′ �=∅
Ef{f̃ηI∩I′ (·)}

∥∥
∥

p

+ ‖ξηI′‖p − γpUp(ηI′)
]

+

;

[
‖f̃(h,P),(η,P ′) − f̃(η,P ′)‖p − ΛpUp(η,P ′)

]
+
≤ fp sup

P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖p + fpξp,

since fp ≥ d[Gp]d(d−1) ≥ 1. We deduce

Δ̃p(h,P) ≤ fp sup
P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖p + fpξp. (30)

Finally, it follows from (24), (26) and (30)

‖f̃ − f‖p ≤ 3fp

{
sup
P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖p + γpUp(h,P) + ξp

}
. (31)

(6) Consider the random event Bp :=
{
Gp ≥ Cp(fp)

}
, Cp(fp) =

(
1 + γpUp + ‖K‖d

1fp
)
‖K‖d

1 + 1. Put
also

R(r)
p [(h,P), f ] :=

(
Ef sup

P ′∈P

sup
I∈P�P ′

‖f̃hI
− fI‖rp

) 1
r , r ≥ 1.

In view of (28), Lemma 1, Markov’s inequality, (31), and the Cauchy–Schwarz inequality we get

Bp ⊆
{
ξp ≥ 1

}
,
[
Pf (Bp)

] 1
r4 ≤ cp,1(r4)n−1/2 and

(Ef‖f̃ − f‖r1
p 1Bc

p
)

1
r1 ≤ 3d2‖K‖d

1[Cp(fp)]d
2−1

(
R(r1)

p [(h,P), f ] + γpUp(h,P) +
cp,1(r1)√

n

)
,

(Ef‖f̃ − f‖r1
p 1Bp)

1
r1 ≤ 3cp,1(r4)cp,2(r4, fp)

(
R(r2)

p [(h,P), f ] + γpUp + cp,1(r2)
)
n−1/2,

R(r2)
p [(h,P), f ] ≤ cp,1(r2) + γpUp + ‖K‖d

1fp + fp.

Thus we come to the assertion of Theorem 3 with Cp,1(fp) := 3d2‖K‖d
1[Cp(fp)]d

2−1 and

Cp,2(fp) := 3cp,1(r4)cp,2(r4, fp)
(
2γpUp + (1 + ‖K‖d

1)fp + 2cp,1(r2)
)

+3cp,1(r1)d2‖K‖d
1[Cp(fp)]d

2−1,

since R(r1)
p [(h,P), f ] = Rp[(h,P), f ]. The constants cp,1(rk) and cp,2(rk, fp), k = 1, 2, 4, are given in

the proof of Lemma 1.

(7) Particular case: P =
{
∅
}

(no independence structure).

Set f ∈ F and let h ∈ Hp,∅ be arbitrary fixed. By scrutinizing steps (1)–(5) we easily see that

‖f̃ − f‖p ≤ (1 + 2‖K‖d
1)‖f̃h − f‖p + 2γ

p,∅(r1)Up(h) + 2
[
‖ξh‖p − γ

p,∅(r1)Up(h)
]
+
.
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Thus we get from Proposition 2
(
Ef‖f̃ − f‖r1

p

) 1
r1 ≤ (1 + 2‖K‖d

1)(Ef‖f̃h − f‖r1
p )

1
r1 + 2γ

p,∅(r1)Up(h) + 2cp(r1)n−1/2,

where the constants γp,∅(r1) and cp(r1) are given in the proof of Proposition 2.

5.3. Adaptive Minimax Upper Bounds: Proof of Theorems 5–8

(1) Case p ∈ (1,+∞). Let (β,L,P) ∈ (0, l]d × (0,∞)d × P and f ∈ Np,d(β,L,P) ⊂ Fp[ P ] be
arbitrary fixed.

In view of the triangle inequality, ∀h ∈ (0, 1]d,

sup
P ′∈P

sup
J∈P�P ′

‖f̃hJ
− fJ‖p ≤ sup

P ′∈P

sup
J∈P�P ′

‖Ef{f̃hJ
(·)} − fJ‖p + sup

P ′∈P

sup
J∈P�P ′

‖ξhJ
‖p, (32)

where Ef{f̃hJ
(xJ)} = KhJ

� fJ(xJ) and, recall, ξhJ
(xJ ) := f̃hJ

(xJ) − Ef{f̃hJ
(xJ)}.

Note first that, by applying Proposition 3 in Kerkyacharian, Lepski and Picard [23], it is easily
established that, for any h ∈ (0, 1]d, any P ′ ∈ P and any J ∈ P  P ′,

‖KhJ
� fJ − fJ‖p ≤

∑

j∈J

cJ

(
K, |J |, p, l, LJ

)
h

βj

j ≤ c
∑

j∈J

h
βj

j ≤ c sup
I∈P

∑

j∈I

h
βj

j , c > 0. (33)

Next, if (h,P) ∈ Hp[ P ], we easily get from Propositions 1–2

(
Ef sup

P ′∈P

sup
J∈P�P ′

‖ξhJ
‖p

p

) 1
p = O

(
sup
I∈P

[
n
∏

j∈I

h
[ 1
2
∧(1− 1

p
)]−1λj+1

j

]−[ 1
2
∧(1− 1

p
)])

. (34)

Consider now, for all I ∈ P, the system

h
βj

j = hβk
k =

[
n
∏

j∈I

h
[ 1
2
∧(1− 1

p
)]−1λj+1

j

]−[ 1
2
∧(1− 1

p
)]

, j, k ∈ I.

The solution is given by

hj = n
−

[ 12∧(1− 1
p )]τI

τI+[ 12∧(1− 1
p )]

1
βj , j ∈ I, I ∈ P, (35)

where τI is given in (20).

Note that hI ∈ [h(p)
min, h

(p)
max]|I| and n

∏
j∈I h

[ 1
2
∧(1− 1

p
)]−1λj+1

j ≥ 1 for all I ∈ P  P ′, P ′ ∈ P, and n

large enough. Denote by hI the projection of hI on the dyadic grid Hp,I . It is easily checked that
(h,P) ∈ Hp[ P ] for n large enough. Thus it follows from Theorem 3, (32), (33) and (34) that

Rp[f̂ , f ] ≤ C
[

sup
I∈P

∑

j∈I

h
βj

j + sup
I∈P

[
n
∏

j∈I

h
[ 1
2
∧(1− 1

p
)]−1λj+1

j

]−[ 1
2
∧(1− 1

p
)]]

+ C′n−1/2, (36)

for n large enough. Finally, it is easily seen that we get the statement of Theorem 5 from (35) and (36).
Similarly, the statement of Theorem 6 is obtained by applying Theorem 4.

(2) Case p = +∞. Let (β,L, r,P) ∈ (0, l]d × (0,∞)d × [1,+∞]d × P such that 1 −
∑d

j=1
1

βjrj
> 0

and f ∈ Nr,d(β,L,P) be arbitrary fixed. It follows from the definition of the latter functional class and
the embedding theorem for anisotropic Nikolskii classes, see, e.g., Theorem 6.9 in Nikolskii [33], that
Nr,d(β,L,P) ⊂ F∞[ P ], since 1 −

∑
j∈I

1
βjrj

> 0, ∀I ∈ Id.
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Note first that, in view of the arguments given in the proof of Theorem 3 in Lepski [25], it follows from
Lemma 4 in [25] that, for any h ∈ (0, 1]d, any P ′ ∈ P and any J ∈ P  P ′,

‖KhJ
� fJ − fJ‖∞ ≤ c sup

I∈P

∑

j∈I

h
βj(I)
j , c := c(K, d, l, L) > 0, (37)

βj(I) := σ(I)βiσ
−1
j (I), σ(I) := 1 −

∑

k∈I

(βkpk)−1, σj(I) := 1 −
∑

k∈I

(p−1
k − p−1

j )β−1
k .

Next, if (h,P) ∈ H∞[ P ], we easily get from Proposition 2

Ef sup
P ′∈P

sup
J∈P�P ′

‖ξhI
‖∞ = O

(
sup
I∈P

√√√
√ log(n)

n
∏

j∈I h
2λj+1
j

)
. (38)

Consider now, for all I ∈ P, the system

h
βj(I)
j = h

βk(I)
k =

√√
√√ log(n)

n
∏

j∈I h
2λj+1
j

, j, k ∈ I.

The solution is given by

hj =
(

n

log(n)

)− ΥI
2ΥI+1

1
βj(I)

, j ∈ I, I ∈ P, (39)

where ΥI is given in (22).

Note that n
∏

j∈I h
2λj+1
j ≥ log(n) for all I ∈ P  P ′, P ′ ∈ P, and n large enough. Thus, as before,

we get the statement of Theorem 7 from Theorem 3, (37), (38) and (39). Similarly, the statement of
Theorem 8 is obtained by applying Theorem 4.

6. APPENDIX
6.1. Proof of Proposition 1

Assume that Assumption (N2) is satisfied. Let h ∈ (0, 1]d and I ∈ I�
d be arbitrary fixed. Note that

L(hI )(xI) :=
1

(2π)|I|

∫

R|I|
e−i〈tI ,xI〉 K̂I(hI tI)gI(hI tI)

gI(hI tI)q̂I(tI)
dtI , gI(tI) :=

∏

j∈I

(1 + t2j)
λj
2 , (40)

where hItI denotes the coordinate-wise product of the vectors hI and tI .

(1) Proof of assertion (i). Suppose that p ∈ (1,∞) \ {2}. Let r ∈ (1, 2) be arbitrary fixed. Here we
apply the Marcinkiewicz Multiplier Theorem on R

|I|, given in Grafakos [19], p. 363, with

m(tI) = g−1
I (hI tI)q̂I

−1(tI).

In view of Assumption (N2) on q, m is a bounded function defined away from the coordinates axes on
R
|I| and is C|I| on this region. Moreover,

sup
tI∈R|I|

|m(tI)| ≤ A sup
uI∈R|I|

[∏

j∈I

(1 + u2
j)

−λj
2

∏

j∈I

(1 + [uj/hj ]2)
λj
2

]
≤ A

∏

j∈I

h
−λj

j . (41)

Set αI = (αj)j∈I ∈ N
|I| satisfying |αI | :=

∑
j∈I αj ≤ |I|. In view of Leibniz’s rule, one has

[DαI m](tI) =
∑

γI≤αI

(
αI

γI

){∏

j∈I

h
γj

j

}
[DγI g−1

I ](hI tI)[DαI−γI q̂I
−1](tI), ∀t ∈ R

d.

Here, γI ≤ αI means γj ≤ αj , ∀j ∈ I, and
(αI

γI

)
=
∏

j∈I

(αj
γj

)
.
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Let tI be chosen such that tj �= 0 if αj �= 0. In this case, for any multi-index γI ≤ αI ,
{∏

j∈I

h
γj

j

}
[DγIg−1

I ](hI tI)[DαI−γI q̂I
−1](tI)

=
{∏

j∈I

(tjhj)γj

}
[DγI g−1

I ](hI tI)[DαI−γI q̂I
−1](tI)

{∏

j∈I

t
αj−γj

j

}(∏

j∈I

t
−αj

j

)
.

Here we assume that 00 is equal to one.

Since q satisfies Assumption (N2), we obtain similarly to (41)

| [DαI m](tI)| ≤ C(|I|, qI)A
{∏

j∈I

h
−λj

j

}(∏

j∈I

|tj |−αj

)
, (42)

C(|I|, qI) := max
|αI |≤|I|

{ ∑

γI≤αI

(
αI

γI

)
sup

uI∈R|I|

∣
∣∣
∣

{∏

j∈I

u
γj

j

}
[DγI g−1

I ](uI)gI(uI)
∣
∣∣
∣

}
< ∞. (43)

Put ŜI(tI) := K̂I(tI)gI(tI), t ∈ R
d. Since K ∈ S(R), ŜI ∈ S(R|I|) is the Fourier transform of a

function SI ∈ S(R|I|) ⊂ Lp(R|I|). As

L(hI )(xI) :=
1

(2π)|I|

∫

R|I|
e−i〈tI ,xI〉m(tI)ŜI(hI tI) dtI ,

it follows from Corollary 5.2.5 in Grafakos [19], (41) and (42)

‖L(hI)‖r ≤ 2AC|I|C(|I|, qI)max(r, (r − 1)−1)6|I|‖SI‖r(VhI
)−(1−1/r)

∏

j∈I

h
−λj

j ,

where C|I| < ∞ is a dimensional constant which is not explicitly done in the aforementioned result. Thus
assertion (i) of Proposition 1 is proved with

Cr,I := 2A
{
C|I|C(|I|, qI)max(r, (r − 1)−1)6|I|‖SI‖r

}
.

(2) Proof of assertion (ii). Note first that

‖L(hI)‖2 = (2π)−
|I|
2 ‖K̂hI

/q̂I‖2, ‖L(hI )‖∞ ≤ (2π)−|I|‖L(hI )‖1.

In view of Assumption (N2) on the errors,

‖K̂hI
/q̂I‖2

2 ≤ A2

∫

R|I|
|K̂I(hI tI)|2

∏

j∈I

(1 + t2j)
λj dtI

≤ A2

(∫

R|I|
|K̂I(uI)|2

∏

j∈I

(1 + u2
j)

λj duI

)
V −1

hI

∏

j∈I

h
−2λj

j ;

‖K̂hI
/q̂I‖1 ≤ A

(∫

R|I|
|K̂I(uI)|

∏

j∈I

(1 + u2
j)

λj/2 duI

)
V −1

hI

∏

j∈I

h
−λj

j .

Thus assertion (ii) of Proposition 1 is proved with

CI := A
{
(2π)−

|I|
2
(
‖K̂IgI‖2 ∨ ‖K̂IgI‖1

)}
,

where gI is given in (40).
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6.2. Proof of Proposition 2: Case p < ∞
Let I ∈ I�

d be arbitrary fixed. We get the statement of Proposition 2 by applying Theorem 1 and
Corollaries 2 and 3 in Goldenshluger and Lepski [16] with s = p, X = T = R

|I|, ν = τ is the Lebesgue
measure on R

|I|, w(·, ·) = n−1L(hI)(· − ·) and Ms(w) = ‖n−1L(hI )‖p < ∞. Here, the i.i.d. random
vectors are the Yk,I ’s and their common density is fI � qI . By using the continuity property of L(hI )(·), it
is easily proved that Assumption (A1) in the aforementioned paper is fulfilled.

(1) Case p ∈ (1, 2). Let r ≥ 1 and hI ∈ Hp,I be arbitrary fixed.

By application of Corollary 2 in Goldenshluger and Lepski [16], one has

Pf

{
‖ξhI

‖p ≥ Up(hI) + z
}
≤ exp

{
− z2

A2
p(hI)

}
, ∀z > 0, ∀n ≥ 1, (44)

where Up(hI) = 4n
1
p
−1‖L(hI )‖p and A2

p(hI) = 37n−1‖L(hI )‖2
p.

By integration of (44) we easily get, for all integer n ≥ 3,

Ef

[
‖ξhI

‖p − Up(hI) − Ap(hI)
√

r log(n)
]r

+
≤ Γ(r + 1)

[
Up(hI) + Ap(hI)

]r
e−r log(n)

≤ Γ(r + 1)11r sup
hI∈Hp,I

[
n− 1

2 ‖L(hI )‖p

]r
n−r,

where Γ(·) is the well-known Gamma function.
Note that, for all integer n ≥ 3,

Up(hI) + Ap(hI)
√

r log(n) ≤
{

4 +

√
37e−1pr
2 − p

}
n

1
p
−1 ‖L(hI )‖p =: γp,I(r)Up(hI).

Since card(Hp,I) ≤
[(

1 ∨ p
|I|

)
log2(n)

]|I|
, we obtain, for all integer n ≥ 3,

{
Ef sup

hI∈Hp,I

[
‖ξhI

‖p − γp,I(r)Up(hI)
]r
+

} 1
r ≤ cp(r)n− 1

2 ,

cp(r) := 11
[
Γ(r + 1)

] 1
r sup

n∈N∗
sup
I∈I�

d

sup
hI∈Hp,I

{
n

1
p
− 3

2 [2 log2(n)]
|I|
r ‖L(hI )‖p

}
,

which is finite in view of Proposition 1 and the definition of the set Hp,I .

(2) Case p = 2. Let r ≥ 1 and hI ∈ Hp,I be arbitrary fixed. Here we apply Theorem 1 in Goldenshluger
and Lepski [16], but we compute differently the upper bound on the “dual” variance σ2 by using the
arguments given in the proof of Proposition 7 in Comte and Lacour [9]. Indeed, we obtain

σ2 ≤ n−2(2π)−|I|
∥∥
∥∥

K̂hI

q̂I

∥∥
∥∥

2

∞

∫

R|I|
|f̂I(tI)q̂I(tI)| dtI ≤ n−2(2π)−|I|‖q̂I‖1

∥∥
∥∥

K̂hI

q̂I

∥∥
∥∥

2

∞
,

since
∥
∥f̂I

∥
∥
∞ ≤ ‖fI‖1 = 1.

Taking into account the latter inequality, the result of Theorem 1 in Goldenshluger and Lepski [16]
should be: ∀z > 0, ∀n ≥ 1,

Pf

{
‖ξhI

‖p ≥ Up(hI) + z
}
≤ exp

{
− z2

A2
p(hI) + Bp(hI)z

}
, (45)

Up(hI) = n− 1
2 ‖L(hI)‖2,

A2
p(hI) =

6
(2π)|I|

‖q̂I‖1n
−1‖K̂hI

/q̂I‖2
∞ + 24n− 3

2 ‖L(hI )‖2
2, Bp(hI) =

4
3
n−1‖L(hI )‖2.
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By integration of (45) we get, for any integer n ≥ 3,

Ef

[
‖ξhI

‖p − Up(hI) − Ap(hI)
√

r log(n) − Bp(hI)r log(n)
]r

+

≤ Γ(r + 1)
[
Up(hI) + Ap(hI) + Bp(hI)

]r
e−r log(n)

≤ Γ(r + 1)
(
8 ∨ ‖q̂I‖

1
2
1

)r sup
hI∈Hp,I

{
‖K̂hI

/q̂I‖∞ + ‖L(hI )‖2

}r
n− r

2
−r.

Note that, in view of Assumption (N2) on the errors,

‖K̂hI
/q̂I‖∞ ≤ A‖K̂IgI‖∞

∏

j∈I

h
−λj

j , (46)

where gI is given in (40). Thus, in view of Proposition 1, (46) and the definition of Hp,I , for any integer
n ≥ 3,

Up(hI) + Ap(hI)
√

r log(n) + Bp(hI)r log(n)

≤
{

CI

(
1 +

8r
3e

+

√
48r
e

)
+ A‖K̂IgI‖∞

√
6r‖q̂I‖1

(2π)|I|

}
n− 1

2

∏

j∈I

h
−λj− 1

2
j

=: γp,I(r)Up(hI).

Finally, we obtain for any integer n ≥ 3

{
Ef sup

hI∈Hp,I

[
‖ξhI

‖p − γp,I(r)Up(hI)
]r
+

} 1
r

≤ cp(r)n− 1
2 ,

cp(r) := [Γ(r + 1)]
1
r

× sup
n∈N∗

sup
I∈I�

d

sup
hI∈Hp,I

[
(8 ∨ ‖q̂I‖

1
2
1 ){‖K̂hI

/q̂I‖∞ + ‖L(hI )‖2}
[
2 log2(n)

] |I|
r n−1

]
,

which is finite in view of Proposition 1, (46) and the definition of the set Hp,I .

(3) Case p > 2. Let r ≥ 1 and hI ∈ Hp,I be arbitrary fixed.

By application of Corollary 3 in Goldenshluger and Lepski [16], one has: ∀z > 0, ∀n ≥ 1,

Pf

{
‖ξhI

‖p ≥ Up(hI) + z
}
≤ exp

{
− z2

A2
p(hI) + Bp(hI)z

}
, (47)

Up(hI) = 3c(p)‖qI‖
1
2
− 1

p
∞

{
n− 1

2 ‖L(hI)‖2 + n
1
p
−1‖L(hI )‖p

}
,

A2
p(hI) = 16c(p)‖qI‖

3
2∞
{

n−1‖L(hI)‖2
2p

p+2

+ n− 3
2‖L(hI )‖2‖L(hI)‖p + n

1
p
−2‖L(hI )‖2

p

}
,

Bp(hI) =
4
3
c(p)n−1‖L(hI )‖p, c(p) =

15p
log(p)

.

Here we have used the following inequalities, which are consequences of Young’s inequality:

‖fI � qI‖∞ ≤ ‖fI‖1‖qI‖∞ ≤ ‖qI‖∞,

∥∥
√

fI � qI

∥∥
p
≤ ‖fI � qI‖

1
2
− 1

p
∞ ‖fI � qI‖1 ≤ ‖qI‖

1
2
− 1

p
∞ .
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By integration of (47) we get, for any integer n ≥ 3,

Ef

[
‖ξhI

‖p − Up(hI) − Ap(hI)
√

r log(n) − Bp(hI)r log(n)
]r

+

≤ Γ(r + 1)
[
Up(hI) + Ap(hI) + Bp(hI)

]r
e−r log(n)

≤ Γ(r + 1)
{
7c(p)(1 ∨ ‖qI‖∞)

3
4
}r

× sup
hI∈Hp,I

{
‖L(hI )‖2 + ‖L(hI )‖ 2p

p+2
+
√

‖L(hI )‖2‖L(hI )‖p + ‖L(hI)‖p

}r
n− r

2
−r.

In view of Proposition 1, we get

‖L(hI )‖p ≤ ‖L(hI )‖
1− 2

p
∞ ‖L(hI )‖

2
p

2 ≤ CIV
1
p
− 1

2

hI

∏

j∈I

h
−λj− 1

2
j . (48)

Thus, in view of Proposition 1, (48) and the definition of Hp,I , for all integer n ≥ 3,

Up(hI) + Ap(hI)
√

r log(n) + Bp(hI)r log(n)

≤ c
1
p
− 1

2
p (1 ∨ CI)

{
6c(p)‖qI‖

1
2
− 1

p
∞ + 8

√
rc(p)[p ∨ e]

e
‖qI‖

3
4∞ +

4rc(p)[p ∨ e]
3e

}

×n− 1
2

[∏

j∈I

h
−λj− 1

2
j +

√
log(n)‖L(hI)‖ 2p

p+2

]
=: γp,I(r)Up(hI).

Finally, we obtain for any integer n ≥ 3

{
Ef sup

hI∈Hp,I

[
‖ξhI

‖p − γp,I(r)Up(hI)
]r
+

} 1
r

≤ cp(r)n− 1
2 ,

cp(r) := 7c(p)[Γ(r + 1)]
1
r sup

n∈N∗
sup
I∈I�

d

sup
hI∈Hp,I

[ (
1 ∨ ‖qI‖∞

) 3
4

{
‖L(hI )‖2 + ‖L(hI)‖ 2p

p+2

+
√
‖L(hI )‖2‖L(hI )‖p + ‖L(hI )‖p

}
n−1
[(

1 ∨ p

|I|

)
log2(n)

] |I|
r

]
,

which is finite in view of Proposition 1, (48) and the definition of the set Hp,I .

6.3. Proof of Proposition 2: Case p = +∞

Let n ≥ 3, I ∈ I�
d and hI ∈ [1/n, 1]|I| be arbitrary fixed. Assume that n

∏
j∈I h

2λj+1
j ≥ log(n). We

divide this proof into several steps.

(1) Preliminaries. First, since q satisfies Assumption (N2) and the Yk,I ’s are i.i.d. random vectors
with density fI � qI , we get from Proposition 1

sup
xI∈R|I|

sup
yI∈R|I|

|L(hI)(xI − yI)| ≤ ‖L(hI)‖∞ ≤ CI(K, q)
∏

j∈I

h
−λj−1
j < ∞, (49)

CI(K, q) :=
A

(2π)
|I|
2

{
‖K̂IgI‖2 ∨ ‖K̂IgI‖1 ∨ (max

j∈I
‖D1

j K̂IgI‖1) ∨ ‖K̂IϕI‖2 ∨ ‖K̂IϕI‖1

}
,
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where ϕI(tI) := supj∈I |tj|gI(tI) and gI is given in (40);

sup
xI∈R|I|

(
Ef |L(hI )(xI − Y1,I)|2

) 1
2 ≤

√
‖fI � qI‖∞‖L(hI )‖2 ≤

√
‖qI‖∞CI(K, q)

∏

j∈I

h
−λj− 1

2
j . (50)

Next, set xI and xI be arbitrary fixed in R
|I|. For any tI ∈ R

|I|

|e−i〈tI ,xI〉 − e−i〈tI ,xI〉| =
∣∣
∣∣
∏

j∈I

e−itjxj −
∏

j∈I

e−itjxj

∣∣
∣∣

≤ |I| sup
j∈I

|e−itjxj − e−itjxj | ≤ |I| sup
j∈I

|tj | sup
j∈I

|xj − xj|.

Therefore, for any yI ∈ R
|I|

|L(hI )(xI − yI) − L(hI )(xI − yI)| ≤ 1
(2π)|I|

∫

R|I|

∣∣
∣∣
K̂hI

(tI)
q̂I(tI)

∣∣
∣∣|e

−i〈tI ,xI〉 − e−i〈tI ,xI〉| dtI

≤ n|I|CI(K, q)
∏

j∈I

h
−λj−1
j sup

j∈I
|xj − xj|; (51)

(
Ef |L(hI)(xI − Y1,I) − L(hI)(xI − Y1,I)|2

) 1
2

≤
(
‖fI � qI‖∞

(2π)|I|

∫

R|I|

∣
∣∣
∣
K̂hI

(tI)
q̂I(tI)

∣
∣∣
∣

2∣∣e−i〈tI ,xI〉 − e−i〈tI ,xI〉
∣∣2 dtI

) 1
2

≤ n|I|
√

1 ∨ ‖qI‖∞CI(K, q)
∏

j∈I

h
−λj− 1

2
j sup

j∈I
|xj − xj |; (52)

Consider now the normalized empirical process

ξhI
(xI) :=

(
CI(K, q)

√√
√√ 2(1 ∨ ‖qI‖∞)

n
∏

j∈I h
2λj+1
j

)−1

ξhI
(xI).

In view of Bernstein’s inequality, (49), (50), (51) and (52), ∀z > 0,

Pf{|ξhI
(xI)| > z} ≤ 2 exp

{
− z2

A2(xI) + zB(xI)

}
, (53)

Pf

{
|ξhI

(xI) − ξhI
(xI)| > z

}
≤ 2 exp

{
− z2

a2(xI , xI) + zb(xI , xI)

}
, (54)

where A(xI) := 1, B(xI) :=
(
n
∏

j∈I h
2λj+1
j

)− 1
2 ≤ 1 and

a(xI , xI) = b(xI , xI) := 2 ∧
{
n|I| sup

j∈I
|xj − xj|

}
. (55)

It is easily seen that a(·, ·) is a semi-metric on R
|I|.

(2) Supremum-norm over totally bounded sets. In this step we obtain bounds of the supremum-
norm of the normalized empirical process ξhI

(·) over totally bounded sets by applying Proposition 1 in
Lepski [24] with T = R

|I|, S = R, χ = ξhI
and Ψ(·) = | · |. Then we have to check Assumptions 1, 2

and 3 required in the latter Proposition and to match the notation used in the present paper and in
Lepski [24].

MATHEMATICAL METHODS OF STATISTICS Vol. 25 No. 1 2016



STRUCTURAL ADAPTIVE DECONVOLUTION UNDER Lp-LOSSES 49

Note first that, in view of (53), (54) and (55), Assumption 1 is fulfilled with c = 2. Next, consider the
family of closed balls

BR
2
(tI) :=

{
xI ∈ R

|I| : sup
j∈I

|xj − tj | ≤ R/2
}

, R ≥ 1, tI ∈ R
|I|.

In view of the continuity property of the Fourier transforms and the definition of the semi-metrics
a and b, it is obvious that Assumption 2 is also satisfied with Θ = BR

2
(tI), AΘ = 1 and BΘ =

(
n
∏

j∈I h
2λj+1
j

)− 1
2 .

Let s : R → R+ \ {0} be defined by s(z) := (0.01 + z8)−1. Obviously
∑

k≥0 s
(
2k/2
)
≤ 1 and, for any

z > 0,

EΘ,a

(
z(48δ)−1s(δ)

)
≤ |I|

[
log
(

Rn|I|
z(48δ)−1s(δ)

)]

+

, ∀δ > 0, (56)

where EΘ,a(δ), δ > 0, denotes the entropy of Θ measured in a. Then, for any z > 0, there exists δ∗ > 0
small enough such that

e(a)
s (z,Θ) := sup

δ>0
δ−2EΘ,a

(
z(48δ)−1s(δ)

)
= sup

δ>δ∗
δ−2EΘ,a

(
z(48δ)−1s(δ)

)
< ∞,

e(b)
s (z,Θ) := sup

δ>0
δ−1

EΘ,b

(
z(48δ)−1s(δ)

)
= sup

δ>δ∗
δ−1

EΘ,b

(
z(48δ)−1s(δ)

)
< ∞.

Thus Assumption 3 in Lepski [24] is fulfilled and Proposition 1 in that paper can be applied. Let us
compute the quantities which appear in this result.

Choose �s = (s, s), κ = (2AΘ, 2BΘ) and ε =
√

2 − 1. Since AΘ ∨ BΘ ≤ 1 and a(xI , xI) =
b(xI , xI) ≤ 2, ∀xI , xI ∈ R

|I|, we straightforwardly get

e�s(κ,Θ) := e(a)
s (2AΘ,Θ) + e(b)

s (2BΘ,Θ)

≤ sup
δ>0.61

δ−2
EΘ,a

(
2(48δ)−1s(δ)

)
+ sup

δ>0.61
δ−1

EΘ,b

(
2(48δ)−1s(δ)

)

≤ 4.5|I|
[
log(Rn|I|)

]
+

+ 8.5;

U
(ε)
�s (y, κ,Θ) := κ1

√
2[1 + ε−1]2e�s(κ,Θ) + y + κ2

(
2[1 + ε−1]2e�s(κ,Θ) + y

)

≤ 2
√

31|I| log(Rn|I|) + 59 + y +
2(31|I| log(Rn|I|) + 59 + y)

√
n
∏

j∈I h
2λj+1
j

.

Thus it follows from Proposition 1 in Lepski [24] that, for any y ≥ 1 and any r ≥ 1,

Ef

{
sup

xI∈B R
2

(tI )
|ξhI

(xI)| − U
(ε)
�s (y, κ,Θ)

}r

+
≤ 4Γ(r + 1)

[
2y−1U

(ε)
�s (y, κ,Θ)

]r
e−

y
2 . (57)

(3) Supremum-norm over the whole space. Let xI ∈ R
|I| be arbitrary fixed and yI ∈ R

|I| be such
that supj∈I |xj − yj| ≥ n. By integration by parts, we easily get

|L(hI )(xI − yI)| ≤
maxj∈I ‖D1

j (K̂hI
/q̂I)‖1

(2π)|I| supj∈I |xj − yj|
≤ CI(K, q)

n
∏

j∈I h
λj+1
j

≤ CI(K, q)

n
∏

j∈I h
2λj+1
j

, (58)

in view of Assumption (N2) on the errors.
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Consider the collection of closed balls
{
Bn

2
(nj), j ∈ Z

|I|}. Obviously this collection is a countable

cover of R
|I|. Put, for any j ∈ Z

|I|,

fj :=
∫

B(j)
fI � qI(xI) dxI , B(j) :=

⋃

k∈Z|I| : B n
2

(nj)∩B n
2

(nk)�=∅

Bn
2
(nk).

It is easily checked that
∑

j∈Z|I|

fj =
∫

R|I|
fI � qI(xI)

[ ∑

j∈Z|I|

1B(j)(xI)
]
dxI ≤ 4|I|. (59)

Set j ∈ Z
|I| such that fj ≥ n−v, where v ≥ 1 is specified later. If y = 2 log(1/fj) + (r + 1) log(n), we

get from (57)

Ef

{
sup

xI∈B n
2

(nj)
|ξhI

(xI)| − γ
(v)
∞,I(r)

√√
√√ log(n)

n
∏

j∈I h
2λj+1
j

}r

+

≤ 2r+2Γ(r + 1)
[
γ

(v)
∞,I(r)

]rfjn
− r+1

2 ,

where

γ
(v)
∞,I(r) := 4CI(K, q)

√
2(1 ∨ ‖qI‖∞) (93|I| log(|I|) + 60 + 2v + r),

since n
∏

j∈I h
2λj+1
j ≥ log(n).

Thus, in view of (59), we obtain

Ef

{
sup

xI∈Θ1

|ξhI
(xI)| − γ

(v)
∞,I(r)

√√
√√ log(n)

n
∏

j∈I h
2λj+1
j

}r

+

≤ 2r+2+2|I|Γ(r + 1)
[
γ

(v)
∞,I(r)

]r
n− r+1

2 , (60)

where Θ1 := ∪j∈Z|I| : fj≥n−vBn
2
(nj).

Set j ∈ Z
|I| such that fj < n−v and xI ∈ Bn

2
(nj). In view of (49) and (58) we get, for any k = 1, . . . , n,

Ef |L(hI )(xI − Yk,I)| = Ef

{
|L(hI)(xI − Yk,I)|1B(j)(Yk,I)

}

+Ef

{
|L(hI )(xI − Yk,I)|1R|I|\B(j)(Yk,I)

}

≤ Pf{Yk,I ∈ B(j)} CI(K, q)
∏

j∈I h
2λj+1
j

+
CI(K, q)

n
∏

j∈I h
2λj+1
j

≤ 2CI(K, q)

n
∏

j∈I h
2λj+1
j

, (61)

since fj := Pf{Yk,I ∈ B(j)} ≤ n−v, v ≥ 1 and supj∈I |xj − Yk,j| ≥ n when Yk,I ∈ R
|I| \ B(j).

Introduce random events

Dj :=
{ n∑

k=1

1B(j)(Yk,I) ≥ 2
}

, j ∈ Z
|I|, D :=

⋃

j∈Z|I| : fj<n−v

Dj.

Let D be the complementary to D. If D holds then, in view of (49) and (58),

n−1
n∑

k=1

|L(hI )(xI − Yk,I)| ≤
2CI(K, q)

n
∏

j∈I h
2λj+1
j

, ∀xI ∈ Θ2 := R
|I| \ Θ1. (62)
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Since n
∏

j∈I h
2λj+1
j ≥ log(n), we get from (61) and (62)

sup
xI∈Θ2

|ξhI
(xI)|1D ≤ γ

(v)
∞,I(r)

√√√
√ log(n)

n
∏

j∈I h
2λj+1
j

and, taking into account that supxI∈Θ2
|ξhI

(xI)| ≤ 2CI(K,q)n,

Ef

{
sup

xI∈Θ2

|ξhI
(xI)| − γ

(v)
∞,I(r)

√√√
√ log(n)

n
∏

j∈I h
2λj+1
j

}r

+

≤ [2CI(K,q)]rnr
Pf (D). (63)

Let j ∈ Z
|I| satisfying fj < n−v be arbitrary fixed. In view of Markov’s inequality one has for any z > 0

Pf (Dj) ≤ e−2z
[
Ef{ez1B(j)(Y1,I )}

]n ≤ exp{−2z + n(ez − 1)fj},
since the Yk,I ’s are i.i.d. random vectors. Minimizing the right-hand side in z > 0 we obtain

Pf (Dj) ≤ (e/2)2(nfj)2 ≤ 2fjn
2−v. (64)

Thus, choosing v = 1.5r + 2.5, it follows from (59), (60), (63) and (64)

Ef

{
‖ξhI

‖∞ − γ∞,I(r)

√√
√√ log(n)

n
∏

j∈I h
2λj+1
j

}r

+

≤ 2r+3+2|I|Γ(r + 1)[γ∞,I(r)]rn− r+1
2 , (65)

where γ∞,I(r) := γ
(1.5r+2.5)
∞,I (r).

Finally, in view of the definition of H∞,I ,
{

Ef sup
hI∈H∞,I

[
‖ξhI

‖∞ − γ∞,I(r)U∞(hI)
]r
+

} 1
r ≤ c∞(r)n− 1

2 , (66)

c∞(r) := [Γ(r + 1)]
1
r sup

n∈N∗
sup
I∈I�

d

{
γ∞,I(r)[2r+3+2|I|]

1
r [log2(n)]

|I|
r n− 1

2r

}
< ∞.

6.4. Proof of Lemma 1
Assume that P �=

{
∅
}

. Set f ∈ Fp[ P ] and let r ∈ {r1, r2, r4} be arbitrary fixed. We obtain Lemma 1
by applying Proposition 2. We divide this proof into two steps.

(1) Note that

ξp ≤
∑

I∈I�
d

sup
hI∈Hp,I

[
‖ξhI

‖p − γp,I(r)Up(hI)
]
+
,

since γp,I(r) increase with r. In view of Proposition 2, if p ∈ (1,+∞] and n ≥ 3,
(
Ef |ξp|r

) 1
r ≤ cp,1(r)n− 1

2 , cp,1(r) := d|P|2cp(r).

(2) For any p ≥ 1

Gp ≤ 1 + ‖K‖d
1 sup

I∈I�
d

sup
hI∈Hp,I

{[
‖ξhI

‖p − γpUp(hI)
]
+

+ γpUp(hI) + ‖Ef{f̃hI
}‖p

}

≤ 1 + ‖K‖d
1

(
ξp + γpUp + ‖K‖d

1fp
)
,

γp := sup
I∈I�

d

γp,I(r4d
2), ξp := sup

I∈I�
d

sup
hI∈Hp,I

[
‖ξhI

‖p − γp,I(r4d
2)Up(hI)

]
+
;

fp ≤ d
2‖K‖d

1

[
Gp + ‖K‖d

1fp
]d2−1

≤ d
2‖K‖d

1

[
1 + ‖K‖d

1

(
ξp + γpUp + ‖K‖d

1fp + fp
) ]d2

.
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Below we use the following trivial equality: for any random variable Y

(
Ef |Y d2 |r

) 1
r =

[(
Ef |Y |rd2) 1

rd2
]d2

. (67)

In view of Proposition 2, if p ∈ (1,+∞] and n ≥ 3, (Ef |fp|r)
1
r ≤ cp,2(r, fp) with

cp,2(r, fp) := d
2‖K‖d

1

[
1 + ‖K‖d

1

(
d|P|2cp(rd2) + γpUp + ‖K‖d

1fp + fp
)]d2

.

Thus, we finish the proof of Lemma 1.
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