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1. INTRODUCTION

Moment inequalities for quadratic forms constitute a powerful tool in time series analysis and the
random matrix theory. In particular, they are used in the study of consistency and optimality properties
of spectral density estimates (see, e.g., Section V.4 in Hannan [9]) as well as provide low-level conditions
under which the limiting spectral distribution of a random matrix can be derived (see, e.g., Chapter 19 in
Pastur and Shcherbina [19]).

When the random variables {Xi}n
i=1 are independent, the moment inequalities for quadratic forms∑n

i,j=1 aijXiXj are well studied (see, e.g., Lemma B.26 in Bai and Silverstein [2] and Chen [5]). In
the time series context, similar inequalities were obtained by many authors in connection with spectral
density estimation and long-run variance estimation (see, e.g., Chapter VI in White [21], Sections 6
and 7 in Wu and Xiao [22] and the references therein). In particular, high-order moment inequalities for
causal time series were obtained by Wu and Xiao [22].

In this paper we study variance inequalities for quadratic forms
∑n

i,j=1 aijXiXj of weakly dependent
random variables {Xi}n

i=1 with bounded fourth moments. Our assumptions deal with covariances of
Xi’s products up to the fourth order only and are closely related to the classical fourth-order cumulant
condition for a stationary time series (see Theorem V.4 in Hannan [9] and Assumption A in Andrews [1]).
These assumptions can be easily verified under standard weak dependence conditions (e.g., strong
mixing). We also demonstrate how our results can be applied in the random matrix theory and time
series analysis.

The paper is structured as follows. The main results are given in Section 2. Section 3 is devoted to
applications. Section 4 contains the proofs.

2. MAIN RESULTS

Let {Xk}∞k=1 be a sequence of centered random variables and let {ϕk}∞k=1 be a nonincreasing
sequence of nonnegative numbers such that, for all i < j < k < l,

|Cov(Xi,XjXkXl)| ≤ ϕj−i, |Cov(XiXjXk,Xl)| ≤ ϕl−k, (1)

|Cov(XiXj,XkXl)| ≤ ϕk−j, and |Cov(Xi,Xj)| ≤ ϕj−i. (2)
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Assumptions of this kind go back to Révész [20] and were studied by Komlós and Révész [13],
Gaposhkin [7], and Longecker and Serfling [14] (see also Móricz [16], Sections 4.3 and 4.4 in Doukhan
et al. (2007)).

For simplicity, we will further assume that EX2
k ≤ 1, k ≥ 1. Define xp = (X1, . . . ,Xp) for p ≥ 1,

Φ0 = sup{EX4
1 , EX4

2 , . . .}, and Φ1 =
∞∑

k=1

kϕk.

Theorem 2.1. There is a universal constant C > 0 such that, for any a ∈ R
p and all p× p matrices

A with zero diagonal,

E(x�
p a)4 ≤ C(Φ0 + Φ1)(a�a)2 and Var(x�

p Axp) ≤ C(Φ0 + Φ1) tr(AA�).

A version of the first inequality in Theorem 2.1 is proved by Komlós and Révész [13], Gaposhkin [7],
and Longecker and Serfling [14]. The second inequality is new.

Let now φk, k ≥ 1, satisfy

Cov(X2
i ,X2

j ) ≤ φj−i for all i < j. (3)

Define

Φ2 =
∞∑

k=1

φk.

Theorem 2.2. There is a universal constant C > 0 such that, for all p × p matrices A,

Var(x�
p Axp) ≤ C(Φ0 + Φ1 + Φ2) tr(AA�).

Let us give two examples of {Xk}∞k=1 that satisfy (1), (2), and (3).

Example 1. Let {Xk}∞k=1 be a martingale difference sequence with bounded 4th moments. Then (1)
and (2) hold for ϕk = 0, k ≥ 1, and Φ1 = 0. However, in general, there are no such φk, k ≥ 1, that (3)
holds and Φ2 < ∞. This explains why we introduce two sets of coefficients {ϕk}∞k=1 and {φk}∞k=1. If,
in addition, {X2

k − EX2
k}∞k=1 is a martingale difference sequence, then, of course, φk = 0, k ≥ 1, and

Φ2 = 0.

Example 2. Let {Xk}∞k=1 be strongly mixing random variables with mixing coefficients (αk)∞k=1, zero

mean, and bounded moments of order 4δ for some δ > 1. Then (1)–(3) hold for ϕk = φk = Cα
(δ−1)/δ
k

and large enough C > 0 (see, e.g., Corollary A.2 in Hall and Heyde [8]). One can give similar bounds for
other weak dependence conditions.

Remark 2.3. We believe that higher-order moment inequalities for quadratic forms x�
p Axp can be

derived under similar conditions on Cov(Xi1 . . . Xik ,Xik+1
. . . Xip) for i1 < . . . < ip, k = 1, . . . , p − 1,

and p > 4. However the proofs are quite technical even in the case of the second-order inequalities and
we leave this question for future research.

Consider the special case when Xk, k ≥ 1, are centered orthonormal random variables. In this
case, (1) and (2) reduce to

|EXiXjXkXl| ≤ min{ϕj−i, ϕk−j, ϕl−k}, i < j < k < l.

Let yp = (Y1, . . . , Yp), where each Yj can be written as
∑∞

k=1 akXk in L2 for some ak ∈ R, k ≥ 1, with
∑∞

k=1 a2
k < ∞.

Corollary 2.4. Let Σp = Eypy�
p . Then there is C > 0 such that, for any p × p matrix A,

Var(y�
p Ayp) ≤ C(Φ0 + Φ1 + Φ2) tr(ΣpAΣpA

�).

If {Xk}∞k=1 are independent standard normal variables and A is a p × p symmetric matrix, then
Var(y�

p Ayp) = 2 tr((ΣpA)2) (see, e.g., Lemma 2.3 in Magnus [15]). Thus, Corollary 2.4 delivers an
optimal estimate of the variance up to the factor C(Φ0 + Φ1 + Φ2).
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3. APPLICATIONS

In this section we discuss two applications of the obtained inequalities.
Our first application will be in the random matrix theory. For each p, n ≥ 1, let Ypn be a p× n random

matrix whose columns are independent copies of yp, where yp is given either in Corollary 2.4, or yp = xp

for xp in Theorem 2.2.

Theorem 3.1. Let Φ0,Φ1,Φ2 < ∞. If the following conditions hold

(1) p = p(n) is such that p/n → c for some c > 0,

(2) the spectral norm of Σp = Eypy�
p is bounded over p,

(3) the empirical spectral distribution of Σp’s eigenvalues has a weak limit P (dλ),

then, with probability one, the empirical spectral distribution of n−1YpnY�
pn’s eigenvalues has a

weak limit whose Stieltjes transform m = m(z) satisfies

m(z) =
∫ ∞

0

P (dλ)
λ(1 − c − czm(z)) − z

, z ∈ C, �(z) > 0.

The next application concerns the long-run variance estimation. First, let us recall the generic form
of the central limit theorem for a weakly stationary time series (Xt)∞t=−∞:

√
n(Xn − μ) d→ N (0, σ2), n → ∞,

where Xn = n−1
∑n

t=1 Xt, EXt = μ, and σ2 is the long-run variance of (Xt)∞t=−∞, i.e.,

σ2 =
∞∑

j=−∞
Cov(Xt,Xt+j).

This theorem can be proved under various weak dependence assumptions (see, e.g., the books by
Doukhan et al. [6] and Bulinski and Shashkin [4]). In statistical applications, this theorem takes the
form

√
n(Xn − μ)

σ̂n

d→ N (0, 1), n → ∞,

where σ̂2
n is a consistent estimator of σ2. Recall also that σ2 can be written as σ2 = 2πf(0), where

f = f(x), x ∈ [−π, π), is the spectral density of (Xt)∞t=−∞. Therefore long-run variance estimation is
closely related to spectral density estimation.

There are a number of papers that study consistency and optimality properties of long-run variance
estimators (see, e.g., Andrews [1], Hansen [10], de Jong and Davidson [12], and Jansson [11] among
others). When μ = 0, a typical estimator has the form

σ̂2
n =

1
n

n∑

s,t=1

K

(
|s − t|

m

)

XsXt, (4)

where K = K(x), x ≥ 0, is a kernel function. Standard assumptions on K = K(x) include
(a) K(0) = 1, K is continuous at x = 0, and supx≥0 |K(x)| < ∞,

(b)
∫ ∞
0 K̄2(x) dx < ∞ for K̄(x) = supy≥x |K(y)|,

(c) kq = limx→0+ x−q(K(x) − 1) exists for some q > 0.
Assumptions (a)–(b) are inspired by Assumption 3 of Jansson [11]. However, (b) is weaker than

Assumption 3 (ii) in [11], where the integrability of K̄ is assumed. To our knowledge, the weakest
alternative to (b) considered in the literature is the integrability of K2. However, as discussed in
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Jansson [11], many previous results (Andrews [1], Hansen [10], among others) are incorrect as they
stated and need stronger alternatives to the integrability of K2. Assumption (c) is classical and goes
back to Parzen [18] (see also Andrews [1]).

Let further (Xt)∞t=−∞ be a centered weakly stationary time series that satisfies conditions from
Section 2 (in particular, EX2

t ≤ 1). Our first result is the consistency of σ̂2
n.

Theorem 3.2. Let K = K(x) satisfy (a)–(b). If Φ0, Φ1, Φ2 are finite, then σ̂2
n → σ2 in the mean

square as m,n → ∞ and m = o(n).

The dependence m = o(n) is optimal. This can be seen by taking a Gaussian white noise (Xt)∞t=−∞
and showing that Var(σ̂2) � 0 when m/n � 0 due to the variance formula for Gaussian quadratic forms
given at the end of Section 2. Andrews [1] following Hannan [9] proved consistency of σ̂2

n under the
cumulant condition

∞∑

j,k,l=1

sup
t≥1

|κ(Xt,Xt+j ,Xt+k,Xt+l)| < ∞. (5)

Here κ(Xi,Xj ,Xk,Xl) is the fourth-order cumulant that is equal to

EXiXjXkXl − EXiXjEXkXl − EXiXkEXjXl − EXiXlEXkEXj

when each Xt has zero mean. By Lemma 1 of Andrews [1], (5) holds when (Xt)∞t=−∞ is a strongly mixing
sequence with mixing coefficients (αk)∞k=1 satisfying

∞∑

k=1

k2α
(δ−1)/δ
k < ∞

and bounded moments of order 4δ for some δ > 1. By Example 2, our Theorem 3.2 is applicable whenever
∑∞

k=1 kα
(δ−1)/δ
k < ∞.

The cumulant condition allows us to calculate the limit of the mean squared error (MSE) of σ̂2
n

explicitly. We cannot do it under our assumptions. However, we can give an upper bound for MSE,
which is very similar to the exact limit (see Proposition 1 in Andrews [1]).

Theorem 3.3. Under the conditions of Theorem 3.2, let (c) hold for some q > 0 and

the series Γq =
∞∑

j=1

jq Cov(Xt,Xt+j) converges absolutely.

Then there is an absolute constant C > 0 such that, as m,n → ∞,

E|σ̂2
n − σ2|2 ≤ C(Φ0 + Φ1 + Φ2)

m

n

∫ ∞

0
K̄2(x) dx +

4(kqΓq)2

m2q
+ o(m−2q) + O(n−1).

4. PROOFS

Below we assume that Φ0,Φ1,Φ2 are finite otherwise all bounds become trivial.

Proof of Theorem 2.1. To prove the first inequality, we reproduce the proof given in Gaposhkin [7] with
the only difference that we derive explicit constants in his inequality. Note first that, as EXi = 0 for all
i ≥ 1, it follows from (1) that

|EXiXjXkXl| ≤ min{ϕj−i, ϕl−k}, i < j < k < l. (6)

Write a = (a1, . . . , ap). Using Lemma 1 in Moricz [16] with p = 2 and r = 4, we get

|(x�
p a)4 − 24T | ≤ C0(S4 + |x�

p a|3S),
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where C0 > 0 is a universal constant,

T =
∑

i<j<k<l

aiajakalXiXjXkXl, S =
( p∑

i=1

a2
i X

2
i

)1/2
,

here and in what follows, i, j, k, l are any numbers in {1, . . . , p}. By Hölder’s inequality,

E(x�
p a)4 ≤ 24ET + C0

(
ES4 + (ES4)1/4(E|x�

p a|4)3/4
)
.

By (6),

|ET | ≤
∑

i<j<k<l

|aiajakal|min{ϕj−i, ϕl−k} ≤ 1
4

∑

i<j<k<l

(a2
i + a2

j)(a
2
k + a2

l )min{ϕj−i, ϕl−k}.

We estimate only the term

J =
∑

i<j<k<l

a2
i a

2
k min{ϕj−i, ϕl−k}.

Other terms with a2
ja

2
k, a2

i a
2
l , and a2

ja
2
l instead of a2

i a
2
k can be estimated similarly. We have

J ≤
∑

i<k

a2
i a

2
k

∞∑

q,r=1

min{ϕq, ϕr}

and
∞∑

q,r=1

min{ϕq, ϕr} ≤
∞∑

q=1

(
qϕq +

∞∑

r=q+1

ϕr

)
= Φ1 +

∞∑

r=2

r−1∑

q=1

ϕr ≤ 2Φ1. (7)

As a result,

J ≤ 2Φ1

∑

i<k

a2
i a

2
k ≤ Φ1

( p∑

i=1

a2
i

)2
and |ET | ≤ Φ1‖a‖4.

Let us also note that

ES4 =
p∑

i,j=1

a2
i a

2
jEX2

i X2
j ≤ Φ0‖a‖4.

Combining the above inequalities, we infer that

E(x�
p a)4 ≤ (24 + C0)(Φ0 + Φ1)‖a‖4 + C0[(Φ0 + Φ1)‖a‖4]1/4[E(x�

p a)4]3/4.

Put R = [E(x�
p a)4/(Φ0 + Φ1)]1/4/‖a‖. Then R4 ≤ 24 + C0 + C0R

3. Therefore, R ≤ R0, where R0 > 0
is the largest positive root of the equation x4 = 24 + C0 + C0x

3. Finally, we obtain

E|x�
p a|4 ≤ R4

0(Φ0 + Φ1)‖a‖4.

We now verify the second inequality. First, note that, for i < j, |Cov(Xi,Xj)| = |EXiXj | ≤√
EX2

i EX2
j ≤ 1. In addition, for i < j < k < l,

|Cov(XiXj ,XkXl)| ≤ 2min{ϕj−i, ϕk−j , ϕl−k} and I ≤ 2min{ϕj−i, ϕl−k}, (8)

where I is equal to |Cov(XiXk,XjXl)| or |Cov(XiXl,XjXk)|. Indeed, by (2) and (6),

|Cov(XiXj ,XkXl)| ≤ min
{
ϕk−j, |EXiXjXkXl| + |EXiXjEXkXl|

}

≤ min
{
ϕk−j, 2min{ϕj−i, ϕl−k}

}

≤ 2min{ϕj−i, ϕk−j , ϕl−k},
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and, by the monotonicity of ϕk,

|Cov(XiXk,XjXl)| ≤ |EXiXkEXjXl| + |EXiXjXkXl|
≤ min{ϕk−i, ϕl−j} + min{ϕj−i, ϕl−k}
≤ 2min{ϕj−i, ϕl−k}.

A similar bound holds for Cov(XiXl,XjXk).

Let A = (aij)
p
i,j=1 and aii = 0, 1 ≤ i ≤ p. Set B = (A� + A)/2. Then x�

p Axp = x�
p Bxp and

tr(BB�) =
p∑

i,j=1

(aij + aji

2

)2
≤

p∑

i,j=1

a2
ij + a2

ji

2
=

p∑

i,j=1

a2
ij = tr(AA�). (9)

Hence we may assume w.l.o.g. that A = A�. Then

Var(x�
p Axp) = 4Var

( p−1∑

i=1

Xi

p∑

k=i+1

aikXk

)

= 4
p−1∑

i=1

Var
(
Xi

p∑

k=i+1

aikXk

)
+ 8

∑

i<j

Cov
(
Xi

p∑

k=i+1

aikXk,Xj

p∑

k=j+1

ajkXk

)

= 4I1 + 8I2 + 8I3 + 8I4,

where

I1 =
p−1∑

i=1

Var
(
Xi

p∑

k=i+1

aikXk

)
,

I2 =
∑

i<j

Cov
(
Xi

j−1∑

k=i+1

aikXk,Xj

p∑

k=j+1

ajkXk

)
,

I3 =
∑

i<j

aij Cov
(
XiXj,Xj

p∑

k=j+1

ajkXk

)
,

I4 =
∑

i<j

Cov
(
Xi

p∑

k=j+1

aikXk,Xj

p∑

k=j+1

ajkXk

)
,

and the sums over the empty set are zeros.

Control of I1. By the Cauchy–Schwarz inequality and the first inequality in Theorem 2.1,

I1 ≤
p−1∑

i=1

√
EX4

i

(
E

∣
∣
∣

p∑

k=i+1

aikXk

∣
∣
∣
4)1/2

≤ C(Φ0 + Φ1)
p−1∑

i=1

p∑

k=i+1

a2
ik = C(Φ0 + Φ1)

tr(A2)
2

.

Control of I2. By the Cauchy–Schwarz inequality and (8),

I2 ≤
∑

i<k<j<l

|aikajl| |Cov(XiXk,XjXl)|

≤ 2
∑

i<k<j<l

|aikajl|min{ϕk−i, ϕj−k, ϕl−j} ≤ I5 + I6,
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where

I5 =
∑

i<k<j<l

a2
ik min{ϕj−k, ϕl−j}, I6 =

∑

i<k<j<l

a2
jl min{ϕk−i, ϕj−k}.

Additionally, by (7),

I5 ≤
∑

i<k

a2
ik

∞∑

q,r=1

min{ϕq, ϕr} ≤ tr(A2)
2

(2Φ1) = tr(A2)Φ1.

We similarly derive that I6 ≤ tr(A2)Φ1. Hence I2 ≤ 2 tr(A2)Φ1.

Control of I3. By the Cauchy–Schwarz inequality and the first inequality in Theorem 2.1,

I3 =
p−1∑

j=2

Cov
(
Xj

j−1∑

i=1

aijXi,Xj

p∑

k=j+1

ajkXk

)

≤
p−1∑

j=2

(
EX2

j

∣
∣
∣

j−1∑

i=1

aijXi

∣
∣
∣
2)1/2(

EX2
j

∣
∣
∣

p∑

k=j+1

ajkXk

∣
∣
∣
2)1/2

≤
p−1∑

j=2

√
EX4

j

[

E

( j−1∑

i=1

aijXi

)4
E

( p∑

k=j+1

ajkXk

)4
]1/4

≤
√

C(Φ0 + Φ1)(I7 + I8)/2,

where

I7 =
p−1∑

j=2

[

E

( j−1∑

i=1

aijXi

)4
]1/2

, I8 =
p−1∑

j=2

[

E

( p∑

k=j+1

ajkXk

)4
]1/2

.

By the first inequality in Theorem 2.1,

I7 ≤ K

p−1∑

j=2

j−1∑

i=1

a2
ij ≤

K tr(A2)
2

, I8 ≤ K

p−1∑

j=2

p∑

k=j+1

a2
jk ≤ K tr(A2)

2
,

where K =
√

C(Φ0 + Φ1). As a result, I3 ≤ C(Φ0 + Φ1) tr(A2)/2.

Control of I4. We have I4 = I9 + I10 + I11, where

I9 =
∑

i<j<k

Cov(aikXiXk, ajkXjXk), I10 =
∑

i<j<k<l

aikajl Cov(XiXk,XjXl),

I11 =
∑

i<j<k<l

ailajk Cov(XiXl,XjXk).

By the first inequality in Theorem 2.1,

I9 =
1
2

p∑

k=3

Var
(
Xk

k−1∑

i=1

aikXi

)
− 1

2

p∑

k=3

k−1∑

i=1

Var(aikXiXk)

≤ 1
2

p∑

k=3

[

EX4
kE

( k−1∑

i=1

aikXi

)4
]1/2

≤ C(Φ0 + Φ1)
p∑

k=3

k−1∑

i=1

a2
ik

2

≤ C(Φ0 + Φ1)
tr(A2)

4
.
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Let us now estimate I10 and I11. By (8),

I10 ≤ 2
∑

i<j<k<l

|aikajl|min{ϕj−i, ϕl−k} and I11 ≤ 2
∑

i<j<k<l

|ailajk|min{ϕj−i, ϕl−k}.

By the Cauchy–Schwarz inequality, I10 ≤ I12 + I13 and I11 ≤ I14 + I15 with

I12 =
∑

i<j<k<l

a2
ik min{ϕj−i, ϕl−k}, I13 =

∑

i<j<k<l

a2
jl min{ϕj−i, ϕl−k},

I14 =
∑

i<j<k<l

a2
il min{ϕj−i, ϕl−k}, I15 =

∑

i<j<k<l

a2
jk min{ϕj−i, ϕl−k}.

As before, we have

I12 ≤
∑

i<k

a2
ik

∞∑

q,r=1

min{ϕq, ϕr} ≤ tr(A2)Φ1.

By the same arguments, I13, I14, and I15 can be bounded from above by tr(A2)Φ1. Thus, we conclude
that I10 + I11 ≤ 4 tr(A2)Φ1.

Combining the above inequalities, we get Var(x�
p Axp) ≤ C(Φ0 + Φ1) tr(A2) for a universal constant

C > 0.

Proof of Theorem 2.2. Let A = (aij)
p
i,j=1 and D be the p × p diagonal matrix with diagonal entries

a11, . . . , app. By Theorem 2.1,

Var(x�
p (A − D)xp) ≤ C(Φ0 + Φ1) tr((A − D)(A − D)�).

In addition,

Var(x�
p Axp) ≤ 2Var(x�

p Dxp) + 2Var(x�
p (A − D)xp).

Noting that

tr(AA�) = tr
(
(A − D)(A − D)�

)
+ tr(D2),

we only need to bound Var(x�
p Dxp) from above by tr(D2) up to a constant factor. Write D = D1 − D2,

where Di are diagonal matrices with nonnegative diagonal entries and tr(D2) = tr(D2
1) + tr(D2

2). By
the Cauchy–Schwarz inequality,

Var(x�
p Dxp) ≤ 2

2∑

i=1

Var(x�
p Dixp).

Hence we may assume w.l.o.g. that diagonal elements of D are nonnegative.
We see that

Var(x�
p Dxp) = Var

( p∑

i=1

aiiX
2
i

)

=
p∑

i=1

a2
ii Var(X2

i ) +
∑

i�=j

aiiajj Cov(X2
i ,X2

j )

≤ Φ0

n∑

i=1

a2
ii +

∑

i�=j

aiiajjφ|i−j|

and, as a result,

Var(x�
p Dxp) ≤ Φ0 tr(D2) +

∑

i�=j

a2
ii + a2

jj

2
φ|i−j|
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≤ Φ0 tr(D2) +
p∑

i=1

a2
ii

∑

j:j �=i

φ|i−j|

≤ 2 tr(D2)
(
Φ0 +

∞∑

k=1

φk

)

= 2(Φ0 + Φ2) tr(D2).

Combining the above bounds, we get the desired inequality.

Proof of Corollary 2.4. By the definition of yp, Γnxn → yp in probability and in the mean square as
n → ∞ for some p× n matrices Γn and xn = (X1, . . . ,Xn). Since Xk, k ≥ 1, are orthonormal, we have

ΓnΓ�
n = E(Γnxn)(Γnxn)� → Eypy�

p = Σp,

x�
n (Γ�

n AΓn)xn = (Γnxn)�A(Γnxn) → y�
p Ayp in probability,

and

Ex�
n (Γ�

n AΓn)xn = tr(Γ�
n AΓn)

= tr(ΓnΓ�
n A) → tr(ΣpA) = Ey�

p Ayp

as n → ∞. We need the following version of Fatou’s lemma:

if ξn → ξ in probability, then E|ξ| ≤ lim inf
n→∞

E|ξn|.

By this lemma and Theorem 2.2,

E|y�
p Ayp − tr(ΣpA)|2 ≤ lim inf

n→∞
E|x�

n (Γ�
n AΓn)xn − tr(Γ�

n AΓn)|2

≤ lim inf
n→∞

C(Φ0 + Φ1 + Φ2) tr(Γ�
n AΓnΓ�

n A�Γn).

Note that

tr(Γ�
n AΓnΓ�

n A�Γn) = tr(ΓnΓ�
n AΓnΓ�

n A�) → tr(ΣpAΣpA
�).

Proof of Theorem 3.1. Denote the spectral norm of a matrix A by ‖A‖. Recall that ‖A‖ =
√

‖AA�‖ =
√

‖A�A‖. In addition, let A1/2 be the principal square root of a square positive semi-definite matrix A.
By Theorem 1.1 in Bai and Zhou [3], we will prove the theorem by checking that Var(y�

p Apyp) = o(p2)
as p → ∞ for any sequence (Ap)∞p=1 with ‖Ap‖ = O(1), where Ap is a p × p matrix.

First, let yp be as in Corollary 2.4. Then

tr(ΣpApΣpA
�
p ) = tr(Σ1/2

p ApΣpA
�
p Σ1/2

p ) = tr(QΣpQ
�)

with Q = Σ1/2
p Ap. If Ip is the p × p identity matrix, then ‖Σp‖Ip − Σp is positive semi-definite and, as a

result, Q(‖Σp‖Ip − Σp)Q� is positive semi-definite for any Q. Hence

tr(Q�ΣpQ) ≤ ‖Σp‖ tr(QQ�) = ‖Σp‖ tr(Q�Q)

= ‖Σp‖ tr(A�
p ΣpAp) ≤ ‖Σp‖2 tr(A�

p Ap)

and tr(A�
p Ap) ≤ ‖Ap‖2p. Therefore, by Corollary 2.4,

Var(y�
p Apyp) ≤ C(Φ0 + Φ1 + Φ2)‖Ap‖2‖Σp‖2p = o(p2)

whenever ‖Ap‖ = O(1). The case yp = xp with xp as in Theorem 2.2 can be considered along the same
lines due to the inequality tr(ApA

�
p ) ≤ ‖Ap‖2p.
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Proof of Theorem 3.2. Since Φ1 < ∞, we have
∞∑

j=1

j|C(j)| < ∞ (10)

and σ2 is well defined, where C(j) = Cov(Xt,Xt+j), j ∈ Z. We also have the bias-variance decomposi-
tion

E(σ̂2 − σ2)2 = Var(σ̂2) + (Eσ̂2 − σ2)2.

First, let us estimate the bias term Eσ̂2 − σ2. Using K(0) = 1, and C(j) = C(−j), j ∈ Z, we get

Eσ̂2 − σ2 =
n∑

j=−n

(

1 − |j|
n

)

K
( |j|

m

)
C(j) −

∞∑

j=−∞
C(j)

= 2
n∑

j=1

(

K
( j

m

)
− 1

)

C(j) − 2
n

n∑

j=1

K
( j

m

)
jC(j) − 2

∑

j>n

C(j).

Now, setting M = supx≥0 |K(x)|,
∣
∣
∣

n∑

j=1

K
( j

m

)
jC(j)

∣
∣
∣ ≤ M

∞∑

j=1

j|C(j)| = O(1).

Additionally,
∣
∣
∣
∑

j>n

C(j)
∣
∣
∣ ≤

1
n

∑

j>n

j|C(j)| = o(1/n).

Combining these relations yields

Eσ̂2 − σ2 = 2
n∑

j=1

(
K

( j

m

)
− 1

)
C(j) + O(1/n) = o(1), (11)

where the last equality follows from (a) and (10).

Now, consider the variance term Var(σ̂2). By Theorem 2.2,

Var(σ̂2) ≤ C0

n2

n∑

s,t=1

K2

(
|s − t|

m

)

,

where C0 = C(Φ0 + Φ1 + Φ2) with C given in Theorem 2.2. Using that K̄(x) = supy≥x |K(y)| is a
nondecreasing function in L2(R), we derive

1
mn

n∑

s,t=1

K2

(
|s − t|

m

)

≤ 1
m

+
2
m

n∑

j=1

K̄2
( j

m

)

≤ 1
m

+ 2
∫ ∞

0
K̄2(x) dx.

As a result,

Var(σ̂2) ≤ C0

n
+

2C0m

n

∫ ∞

0
K̄2(x) dx (12)

and Var(σ̂2) = o(1) whenever m,n → ∞ and m/n → 0.

Combining the above bounds for the bias and variance, we finish the proof.
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Proof of Theorem 3.3. The proof follows the same lines as the proof of Theorem 3.2. We only need to
note the following. If (c) holds for some q > 0, then, by (c) and the boundedness of K, x−q(K(x) − 1) is
bounded on R+. Therefore, by (a), (c), and the absolute convergence of

∑
j≥1 jqC(j),

mq
n∑

j=1

(
K

( j

m

)
− 1

)
C(j) =

n∑

j=1

K(j/m) − 1
(j/m)q

jqC(j)

= kq

∞∑

j=1

jqC(j) + o(1).

By (11) and (12), this relation yields the desired bound.
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