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Abstract—This article addresses the problem of frequentist and Bayesian estimation of the param-
eters of the generalized Rayleigh distribution using lower record values. The explicit expressions for
single and product moments of lower record values from this distribution are given. The maximum
likelihood and Bayes estimates based on lower records are derived for the parameters of the
distribution. We consider the Bayes estimators of the parameters under the assumption of Gamma
priors with respect to the shape and scale parameters. The Bayes estimators are inaccessible in
explicit form. We analyze them with reference to both symmetric and asymmetric loss functions. We
also derive the Bayes interval of this distribution. We carry out Monte Carlo simulations to compare
the performance of the proposed methods.
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1. INTRODUCTION

Surles and Padgett (2001) introduced the two-parameter Burr Type X distribution and correctly
named it as the generalized Rayleigh distribution. Note that the two-parameter generalized Rayleigh
distribution is a particular member of the generalized Weibull distribution.

Let XL(1),XL(2), . . . ,XL(n) be the first n lower record values from generalized Rayleigh distribution
(GR) with pdf

f(x;α, β) = 2αβ2x e−(βx)2
(
1 − e−(βx)2

)α−1
, x > 0, α, β > 0, (1.1)

and the corresponding cdf is

F (x;α, β) =
(
1 − e−(βx)2

)α
, x > 0, α, β > 0. (1.2)

The survival function is

S(x;α, β) = 1 −
(
1 − e−(βx)2

)α
, x > 0, α, β > 0, (1.3)

and the hazard function

h(x;α, β) =
2αβ2x e−(βx)2

(
1 − e−(βx)2

)α−1

1 −
(
1 − e−(βx)2

)α . (1.4)

Here α and β are the shape and scale parameters respectively. The GR distribution with shape parameter
α and scale parameter β will be denoted by GR(α, β). An extensive study on the properties of the GR
distribution was carried out by Surles and Padgett (2004). Due to its practicality, the two-parameter GR
distribution can be used quite effectively in modeling strength data and general lifetime data. The various
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methods of estimation of this distribution have been studied by Kundu and Raqab (2005). The GR
distribution has a decreasing survival function and right skewed unimodal density function for α ≤ 1/2
and α > 1/2 respectively. The hazard function of the GR distribution can never be constant. It is either
bathtub type or an increasing function, depending on the shape parameter α. For α ≤ 1/2, the hazard
function of GR(α, β) is bathtub type and for α > 1/2, it has an increasing hazard function. Plotted
below are the probability density function (Fig. 1) and Cumulative Distribution Function (Fig. 2), for
α = 1, 2, 3 and β = 1, 2, 3, and the hazard functions (Fig. 3) and Survival Function (Fig. 4) for GR
distribution when α = 0.2, 0.25, 0.3 and β = 0.2, 0.25, 0.3.

Fig. 1. GRD Density Function

Fig. 2. GRD Cumulative Distribution Function

For α ≥ 1, the kth moments of the GR distribution are given by

μk =
α

βk

∞∑

p=0

(−1)p
Γ(p)Γ[(k/2) + 1]

p!Γ(α − p)(p + 1)(r/2)+1
.

In the context of order statistics model and reliability theory, the life length of the r−out-of−n system
is the (n − r + 1)th order statistic in a sample of size n. Another related model is the model of record
statistics defined by Chandler (1952) as a model for successive extremes in a sequence of independent
and identically distributed (iid) random variables. This model takes a certain dependence structure into
consideration. That is, the life-length distribution of the components in the system may change after
each failure of the components. For this type of model, we consider the lower record statistics. If various
voltages of equipment are considered, only the voltages less than the previous one can be recorded. These
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Fig. 3. GRD Hazard Function

Fig. 4. GRD Survival Function

recorded voltages are the lower record value sequence. Record values are found in many situations of
daily life as well as in many statistical applications. Often we are interested in observing new records and
in recording them, for example, Olympic records or world records in sport. Record values are also used
in reliability theory. Moreover, these statistics are closely connected with the occurrence times of some
corresponding nonhomogeneous Poisson process used in shock models.

The study of record values and associated statistics is of great significance in many real life situations
such as meteorology, seismology, athletic events, economics, and life testing. Theory of record values
and its distributional properties have been extensively studied in the literature, Ahsanullah (1995),
Balakrishnan and Ahsanullah (1994, 1995), Grudzien and Szynal (1997) and Arnold et al. (1992, 1998).
Kumar and Kulshrestha (2013) have established recurrence relations for moments of record values from
generalized Pareto distribution.

Let {Xn, n ≥ 1} be a sequence of independent identically distributed (iid) random variables with
cumulative distribution function (cdf) F (x) and probability density function (pdf) f(x). The jth order
statistic of the sample (X1,X2, . . . ,Xn) is denoted by Xj:n. For a fixed k ≥ 1, we define the sequence
{L(k)(n), n ≥ 1} of kth lower record times of X1,X2, . . . as follows:

L(k)(1) = 1,

L(k)(n + 1) = min{j > L(k)(n) : Xk:L(k)(n)+k−1 > Xk:j+k−1}.

The sequence {Z(k)
n , n ≥ 1} with Z

(k)
n = Xk:L(k)(n)+k−1, n = 1, 2, . . ., is called the sequence of kth
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lower record values of {Xn, n ≥ 1}. For convenience, we shall also take Z
(k)
0 = 0. Note that for k = 1

we have Y
(1)
n = XL(n), n ≥ 1, i.e., record values of {Xn, n ≥ 1}.

The joint pdf of kth lower record values Z
(k)
1 , . . . , Z

(k)
n can be obtained as the joint pdf of kth upper

record values of {−Xn, n ≥ 1} and is given by (Pawlas and Szynal (1998))

f
z
(k)
1 ,...,z

(k)
n

(z1, . . . , zn) = kn

(
n−1∏

i=1

f(zi)
F (zi)

)

[F (zn)]k−1f(zn), z1 > z2 > . . . > zn.

In view of the above equation, the marginal pdf of X
(k)
L(n), n ≥ 1, is given by

f
X

(k)
L(n)

(x) =
kn

Γ(n)
[− log(F (x))]n−1[F (x)]k−1f(x), n ≥ 1, (1.5)

and the joint pdf of X
(k)
L(m) and X

(k)
L(n), 1 ≤ m < n, n > 2, is given by

f
X

(k)
L(m)

,X
(k)
L(n)

(x, y) =
kn

Γ(m)Γ(n − m)
[− log(F (x))]m−1[− log(F (y)) + log(F (x))]n−m−1

× [F (y)]k−1 f(x)
F (x)

f(y), x > y, 1 ≤ m < n, n ≥ 2, (1.6)

where Γ(x) is the gamma function. When x is a positive integer, Γ(x) = (x − 1)!.
Let X1,X2, . . . ,Xn be a random sample of the GR distribution with pdf and cdf as in (1.1) and (1.2)

respectively, and let XL(1),XL(2), . . . ,XL(n) be the first n lower record values obtained from this sample.

Let us denote the single moments E
((

X
(k)
L(n)

)r) by μ
(r)
L(n):k, r, n = 1, 2, . . ., and the product moments

E
((

X
(k)
L(m)

)r
,
(
X

(k)
L(n)

)s) by μ
(r,s)
L(m,n):k for 1 ≤ m ≤ n− 1. For convenience, let us also use μL(n) for μ

(1)
L(n).

The presentation of the content of this work is as follows. In Section 2, we obtain explicit expressions
for single and product moments of lower record values from GR distribution. In Section 3, we character-
ize this distribution by conditional expectation of record values. We use maximum likelihood estimators
(MLEs) as a part of frequentist methodology for parameter estimation in Section 4. The asymptotic
confidence intervals based on the observed Fisher’s information matrix are also discussed here. Next, we
consider Bayesian estimation of the unknown parameters in Section 5. The Bayesian inference mainly
depends on two features: choice of prior distribution of the parameters and the loss function to be used for
Bayesian computations. In this article, we use Gamma priors for both scale and shape parameters and
they are assumed to be independent of each other. For Bayesian inference, we use a general entropy
loss function. The main idea behind using this loss function is that with particular choices of the
parameter involved in the form of loss function this method produces estimates under several well-
known loss functions, which are both symmetric and asymmetric in nature. A brief discussion of this
loss function is presented later in this article in Section 6. The joint posterior distribution is complicated
and thus the posterior sampling is not straightforward to implement. Here we propose a Markov Chain
Monte Carlo technique which involves Metropolis-Hasting algorithm for posterior sampling. Besides
Bayes estimates, we also obtain a two-sided Bayes probability intervals as a Bayesian counterpart of
the asymptotic confidence intervals in Section 6. Bayes estimation heavily depends on the choice of
hyperparameters involved in the prior distributions, which is quite sensitive for the Bayesian inference.
An alternative way to avoid this issue is to use an empirical Bayes estimation procedure for parameter
estimation; Section 7 introduces this procedure for the aforementioned distribution.

Another important problem in life-testing experiments involving record value is the prediction
of unknown observation based on currently available samples, sometimes referred to as informative
samples. The prediction of future record value based on given records is a useful research component
involved in many applications. Section 8 introduces both frequentist and Bayesian prediction procedures
for future record value given the informative records. Besides estimating the future record, we also
obtain predictive interval, which is quite effective in statistical applications. Section 8 contains a brief
conclusion.
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2. RELATIONS FOR MOMENTS

In this section we will derive the explicit expressions for single and product moments of the kth lower
record values from the GR distribution.

For the GR distribution as given in (1.2), the rth moments E(X(k)
L(n))

r are given as

μ
(r)
L(n):k =

kn

Γ(n)

∫ ∞

0
xr[F (x)]k−1[− log(F (x))]n−1f(x) dx. (2.1)

By setting z = [F (x)]1/α in (2.1), and the fact that − log(1 − z) =
∑∞

p=1
zp

p , we get

μ
(r)
L(n):k =

(αk)n

βr

∞∑

p=0

φp(r/2)
[αk + p + (r/2)]n

, (2.2)

and hence for lower records

μ
(r)
L(n) =

αn

βr

∞∑

p=0

φp(r/2)
[α + p + (r/2)]n

. (2.3)

As a special case of (2.3), the first single moment (mean) and the second single moment are, respectively

μL(n) =
αn

β

∞∑

p=1

1
p(α + p)n

(2.4)

and

μ
(2)
L(n) =

αn

β2

∞∑

p=1

∞∑

q=1

1
pq(α + p + q)n

. (2.5)

Next, the rth and sth product moments are

μ
(r,s)
L(m,n):k =

kn

Γ(m)Γ(n − m)

∫ ∞

0
xr[− log(F (x))]m−1 f(x)

F (x)
G(x) dx, (2.6)

where

G(x) =
∫ x

0
ys[− log(F (y)) + log(F (x))]n−m−1[F (y)]k−1f(y) dy, (2.7)

which upon making the transformation z = [F (y)]1/α in (2.7) and using (2.6) yields

μ
(r,s)
L(m,n):k =

(αk)n

βr+s

∞∑

p=0

∞∑

q=0

φp(s/2)φq(r/2)
[αk + p + (s/2)]m−n[αk + p + q + (r + s)/2]m

(2.8)

and hence for lower records

μ
(r,s)
L(m,n) =

αn

βr+s

∞∑

p=0

∞∑

q=0

φp(s/2)φq(r/2)
[α + p + (s/2)]m−n[α + p + q + (r + s)/2]m

. (2.9)

For r = s = 1 then

μL(m,n) =
αn

β2

∞∑

p=1

∞∑

q=1

1
pq(α + p)m−n(α + p + q)m

. (2.10)

Making use of (2.4), (2.5) and (2.10) we can evaluate the means μL(n), variances σ2
L(n) = μ

(2)
L(n) − μ2

L(n),
1 ≤ m < n − 1, and covariances σL(m,n) = μL(m,n) − μL(m)μL(n) of record statistics, respectively.

The explicit expressions for the first single moments of record statistics given in (2.4) allow us to
evaluate the means of all record statistics. Table 1 presents the means of XL(n), n = 1(1)5, for β = 1(1)4
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Table 1. Means of record Statistics

n β = 1 β = 2

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 0.9941520 1.4883338 1.8158910 0.4970760 0.7441690 0.9079455

2 0.3550489 0.7100641 0.9817132 0.1775244 0.3550321 0.4908566

3 0.1530090 0.4019037 0.6216839 0.0765045 0.2009519 0.3108420

4 0.0706858 0.2433184 0.4197917 0.0353429 0.1216592 0.2098958

5 0.0337580 0.1524743 0.2932269 0.0168790 0.0762372 0.1466134

n β = 3 β = 4

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 0.3313840 0.4961127 0.6052970 0.2485380 0.3720845 0.4539728

2 0.1183496 0.2366880 0.3272377 0.0887622 0.1775160 0.2454283

3 0.0510030 0.1339679 0.2072280 0.0382522 0.1004759 0.1554210

4 0.0235619 0.0811061 0.1399306 0.0176714 0.0608296 0.1049479

5 0.0112527 0.0508248 0.0977423 0.0084395 0.0381186 0.0733067

and α = 1(1)3 to seven decimal places. For the computation of variances and covariances, the product
moments μL(m,n), 1 ≤ m ≤ n, were computed first. The diagonal elements σL(m,n) = σ2

n are obtained
from the explicit expressions given in (2.4) and (2.5). Next, the explicit expression (2.10) was used for
the computation of product moments of any two record statistics. For m > n, the values of σL(m,n) were
filled in by using the symmetry of the variance-covariance matrix ((σL(m,n))). Tables 2 and 3 provide the
variance and product moments of record statistics to seven decimal places for β = 1(1)4 and α = 1(1)3.
The values of means, variances and product moments for n ≥ 6 are evaluated but not presented here.

Table 2. Variances of record Statistics

n β = 1 β = 2

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 0.9411758 1.1442041 1.2143144 0.2352908 0.2860513 0.3035658

2 0.1797892 0.3173054 0.3947753 0.0449470 0.0793240 0.0986864

3 0.0474583 0.1219664 0.1759941 0.0118684 0.0304890 0.0439980

4 0.0141434 0.0537651 0.0906063 0.0035410 0.0134391 0.0226524

5 0.0044504 0.0252732 0.0500560 0.0011153 0.0063174 0.0125163

n β = 3 β = 4

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 0.1045770 0.1271353 0.1349220 0.0588181 0.071516 0.0759012

2 0.0199732 0.0352581 0.0438643 0.0112424 0.0198270 0.0246743

3 0.0052690 0.0135523 0.0195562 0.0029671 0.0076242 0.0110050

4 0.0015751 0.0059710 0.0100704 0.0008884 0.0033603 0.0056651

5 0.0004934 0.0028073 0.0055673 0.0002790 0.0015772 0.0031264
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Table 3. Product moments of record Statistics

m n β = 1 β = 2

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 1 1.0394452 0.9883383 0.9313388 0.2598613 0.2470846 0.2328347

1 2 0.3081528 0.4254467 0.4748024 0.0770382 0.1063617 0.1187006

1 3 0.1223841 0.2363410 0.3026547 0.0305960 0.0590853 0.0756637

1 4 0.0543617 0.1432744 0.2071323 0.0135904 0.0358186 0.0517831

1 5 0.0254768 0.0902913 0.1463156 0.0063692 0.0225728 0.0365789

2 2 0.0994734 0.0788283 0.0663106 0.0248684 0.0197071 0.0165777

2 3 0.0323559 0.0416457 0.0417339 0.0080890 0.0104114 0.0104335

2 4 0.0135013 0.0251327 0.0288325 0.0033753 0.0062832 0.0072081

2 5 0.0061740 0.0159081 0.0205771 0.0015435 0.0039770 0.0051443

3 3 0.0106201 0.0087501 0.0067826 0.0026550 0.0021875 0.0016956

3 4 0.0040330 0.0052122 0.0046992 0.0010082 0.0013030 0.0011748

3 5 0.0017852 0.0033016 0.0033772 0.0004463 0.0008254 0.0008443

4 4 0.0013045 0.0011615 0.0008210 0.0003261 0.0002904 0.0002053

4 5 0.0005548 0.0007342 0.0005927 0.0001387 0.0001836 0.0001482

5 5 0.0001792 0.0001695 0.0001080 0.0007167 0.0006782 0.0004319

m n β = 3 β = 4

α = 1 α = 2 α = 3 α = 1 α = 2 α = 3

1 1 0.1154939 0.1098154 0.1034821 0.0649653 0.0617711 0.0582087

1 2 0.0342392 0.0472719 0.0527558 0.0192596 0.0265904 0.0296752

1 3 0.0135982 0.0262601 0.0336283 0.0076490 0.0147713 0.0189159

1 4 0.0060402 0.0159194 0.0230147 0.0033976 0.0089547 0.0129458

1 5 0.0028308 0.0100324 0.0162573 0.0015923 0.0056432 0.0091447

2 2 0.0110526 0.0087587 0.0073678 0.0062171 0.0049268 0.0041444

2 3 0.0035951 0.0046273 0.0046371 0.0020222 0.0026029 0.0026084

2 4 0.0015001 0.0027925 0.0032036 0.0008438 0.0015708 0.0018020

2 5 0.0006860 0.0017676 0.0022863 0.0003859 0.0009943 0.0012861

3 3 0.0011800 0.0009722 0.0007536 0.0006638 0.0005469 0.0004239

3 4 0.0004481 0.0005791 0.0005221 0.0002521 0.0003258 0.0002937

3 5 0.0001984 0.0003668 0.0003752 0.0001116 0.0002063 0.0002111

4 4 0.0001449 0.0001291 0.0000912 0.0001235 0.0001100 0.0000777

4 5 0.0001096 0.0001450 0.0001171 0.0001600 0.0000180 0.0001712

5 5 0.0000301 0.0000400 0.0000600 0.0000101 0.0000002 0.0000001
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3. CHARACTERIZATION

This section contains characterizations of GR distribution by conditional expectation of lower record
values.

Let {Xn, n ≥ 1} be a sequence of i.i.d continuous random variables with df F (x) and pdf f(x). Let
XL(n) be the nth lower record values, then the conditional pdf of XL(n) given XL(m) = x, 1 ≤ m < n in
view of (1.1) and (1.2) for k = 1, is

f(XL(n) |XL(m) = x) =
1

(n − m − 1)!
[− log(F (y)) + log(F (x))]n−m−1 f(y)

F (x)
, x > y. (3.1)

Theorem 3.1. Let X be an absolutely continuous random variable with df F (x) and pdf f(x) on
the support (0,∞), then for m < n,

E[XL(n) |XL(m) = x] =
(2α)n−m

β

∞∑

p=0

φp(1/2)
(1 − e(βx)2)p+(1/2)

[2(α + p) + 1]n−m
(3.2)

if and only if

F (x;α, β) =
(
1 − e−(βx)2

)α
, x > 0, α, β > 0.

Proof. From (3.1), we have

E[XL(n) |XL(m) = x] =
1

(n − m − 1)!

∫ x

0
y
[
log

(F (x)
F (y)

)]n−m−1 f(y)
F (x)

dy (3.3)

By setting t = log
(

F (x)
F (y)

)
from (1.4) in (3.3), we obtain

E[XU(n) |XU(m) = x] =
1

α(n − m − 1)!

∫ ∞

0

[
− log

{
1 −

(
1 − e−(βx)2

)
e−t/α

}]1/2
tn−m−1e−t dt.

Simplifying the above expression, we derive the relation given in (3.2).

To prove the sufficiency part, we have from (3.1) and (3.2)

1
(n − m − 1)!

∫ ∞

x
y[− log(F (y)) + log(F (x))]n−m−1f(y) dy = F (x)Hr(x), (3.4)

where

Hr(x) =
(2α)n−m

β

∞∑

p=0

φp(1/2)
(1 − e(βx)2)p+(1/2)

[2(α + p) + 1]n−m
.

Differentiating both sides of (3.4) with respect to x, we get

1
(n − m − 2)!

∫ x

0
y[− log(F (y)) + log(F (x))]n−m−2 f(x)

F (x)
f(y) dy = f(x)Hr(x) + F (x)H ′

r(x),

f(x)
F (x)

=
H ′

r(x)
[Hr+1(x) − Hr(x)]

=
2αβ2x

e(βx)2 − 1
,

which proves that

F (x;α, β) =
(
1 − e−(βx)2

)α
, x > 0, α, β > 0.
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4. NON-BAYESIAN ESTIMATION

In this section we discuss the process of obtaining the maximum likelihood estimators of the
parameters α and β based on lower record values. Let X1,X2, . . . be a sequence of iid random
variables with cdf F (x) and pdf f(x) on positive support. Let Yn = min{X1,X2, . . . ,Xn} for n ≥ 1.
The observation Xj , j ≥ 1, is a lower record value of this sequence, if it is greater than all preceding
observations, that is Yj < Yj−1 for j > 1.

Suppose we observe n lower record values XL(1),XL(2), . . . ,XL(n) from a sequence of iid random
variables following a GR(α, β) with pdf (1.1). Arnold et al. (1998) gives the likelihood function based on
the random sample of size n, which is obtained from

L(α, β |x) = f(XL(n);α, β)
n−1∏

i=1

f(XL(i);α, β)
F (XL(i);α, β)

. (4.1)

By using (1.1) and (1.2), (4.1) can be rewritten as

L(α, β |x) = 2nαnβ2n exp
{
α log

(
1 − e−(βxL(n))

2)} n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

) . (4.2)

The maximum likelihood estimates are the values of α and β that maximize this likelihood function.

The log likelihood function l(α, β |x) = log L(α, β |x), dropping terms that do not involve α and β,
is

l(α, β |x) = n(log α + 2 log β) + α log
(
1 − e−(βxL(n))

2) − β2
n∑

i=1

x2
L(i) −

n∑

i=1

log
(
1 − e−(βxL(i))

2)
.

(4.3)
We assume that the parameters α and β are unknown. To obtain the normal equations for the unknown
parameters, we differentiate (4.3) partially with respect to α and β and equate to zero. The resulting
equations are

0 =
∂l(α, β |x)

∂α
=

n

α
+ log

(
1 − e−(βxL(n))

2)
, (4.4)

and

0 =
∂l(α, β |x)

∂β
=

2n
β

+
2αβx2

L(n)e
−(βxL(n))

2

(
1 − e−(βxL(n))2

) − 2β
n∑

i=1

x2
L(i) −

n∑

i=1

2βx2
L(i)e

−(βxL(i))
2

(
1 − e−(βxL(i))2

) . (4.5)

The solutions of the above equations are the maximum likelihood estimators of the GR distribution
parameters α and β, denoted α̂MLE and β̂MLE , respectively. As the equations expressed in (4.4) and
(4.5) cannot be solved analytically, one must use a numerical procedure to solve them.

Since the MLEs of the unknown parameters α and β cannot be derived in closed form, it is not easy
to derive the exact distributions of the MLEs. Hence, we cannot obtain exact confidence intervals for the
parameters. We must use the large sample approximation. It is known that the asymptotic distribution
of the MLEs is [

√
n(α̂MLE − α),

√
n(β̂MLE − β)] → N2(0, I−1(α, β)), we can refer Lawless (1982),

where I−1(α, β), the inverse of observed information matrix of the unknown parameters Θ = (α, β), is

I−1(Θ) =

⎛

⎝−∂2l(α,β)
∂2α

−∂2l(α,β)
∂α∂β

−∂2l(α,β)
∂α∂β −∂2l(α,β)

∂2β

⎞

⎠

−1

(α,β)=(α̂,β̂)

=

⎛

⎝ Var(α̂) Cov(α̂, β̂)

Cov(α̂, β̂) Var(α̂)

⎞

⎠ .

The derivatives in I(Θ) are given by

∂2l(α, β |x)
∂α2

= − n

α2
, (4.6)
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∂2l(α, β |x)
∂α ∂β

=
2βx2

L(n)e
−(βxL(n))

2

(
1 − e−(βxL(n))2

) =
∂2l(α, β |x)

∂β ∂α
, (4.7)

∂2l(α, β |x)
∂β2

= −2n
β2

− 2
n∑

i=1

x2
L(i) −

4αβ2 x4
L(n) e−2(βxL(n))

2

(
1 − e−(βxL(n))2

)2

+
2α x2

L(n) e−(βxL(n))
2
(1 − 2β2x2

L(n))
(
1 − e−(βxL(n))2

) + 4β2
n∑

i=1

x4
L(i) e−2(βxL(i))

2

(
1 − e−(βxL(i))2

)2

− α

n∑

i=1

x2
L(i) e−(βxL(i))

2
(1 − 2β2x2

L(i))
(
1 − e−(βxL(i))2

)2 . (4.8)

The above approach is used to derive approximate 100(1 − τ)% confidence intervals of the parameters α
and β of the forms

α̂ ± zτ/2

√
Var(α̂)

and

β̂ ± zτ/2

√
Var(β̂),

where zτ/2 is the upper (τ/2)th percentile of the standard normal distribution.

5. BAYESIAN ESTIMATION

In this section we consider Bayesian inference of the unknown parameters of the GR distribution. It is
assumed that α and β has the independent Gamma prior distributions with probability density functions

h(α) ∝ αa−1e−bα, α > 0 (5.1)

and

h(β) ∝ βc−1e−dβ, β > 0. (5.2)

The hyper-parameters a, b, c, and d are known and nonnegative. If both the parameters α and
β are unknown, joint conjugate priors do not exist. It is not unreasonable to assume independent
Gamma priors on the shape and scale parameters for a two-parameter GR distribution, because Gamma
distributions are very flexible, and the Jeffreys (non-informative) prior, introduced by Jeffreys (1946) is a
special case of this. The joint prior distribution in this case is

h(α, β) ∝ αa−1e−bαβc−1e−dβ , α, β > 0. (5.3)

Combining (5.3) with (4.2) and using the Bayes theorem, the joint posterior distribution is derived as

π(α, β |x) = 2nαn+a−1β2n+c−1e−bα−dβ
(
1 − e−(βxL(n))

2)α 1
I0

n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

) , (5.4)

where

I0 =
∫ ∞

0

∫ ∞

0
2nαn+a−1β2n+c−1e−bα−dβ

(
1 − e−(βxL(n))

2)α
n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

) . (5.5)

The marginal posterior distribution of a parameter is obtained by integrating the joint posterior distribu-
tion with respect to the other parameter. Hence, the marginal posterior probability density functions of α
and β are given, respectively, by

π1(α |x) =
2nαn+a−1e−bα

I0

∫ ∞

0
β2n+c−1e−dβ

(
1 − e−(βxL(n))

2)α
n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

) dβ (5.6)
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and

π2(β |x) =
2nβ2n+c−1e−dβ

I0

n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

)
∫ ∞

0
αn+a−1e−bα

(
1 − e−(βxL(n))

2)α
dα. (5.7)

Next, we must consider the question of what loss function will be used to derive the estimators from the
marginal posterior distributions.

5.1. Bayes Estimators under the General Entropy Loss Function

Calabria and Pulcini (1996) have derived the point estimation under asymmetric loss function from
left-truncated exponential samples. According to this theory, the Bayes estimators for the parameters α
and β for the probability density function (1.1) under the general entropy loss function may be defined as

α̂BGE = [E(α)−q ]−1/q (5.8)

and

β̂BGE = [E(β)−q]−1/q (5.9)

respectively, provided that E(α)−q and E(β)−q exist and are finite. These estimators can be expressed
as

α̂BGE =
[Iα

I0

]−1/q
and β̂BGE =

[Iβ

I0

]−1/q
,

where

Iα =
∫ ∞

0

∫ ∞

0
2nαn+a−p−1β2n+c−1e−dβe−α[b−log(1−e

−(βxL(i))
2
)]

n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

) dα dβ

and

Iβ =
∫ ∞

0

∫ ∞

0
2nαn+a−1β2n+c−p−1e−dβe−α[b−log(1−e

−(βxL(i))
2
)]

n∏

i=1

xL(i)e
−(βxL(i))

2

(
1 − e−(βxL(i))2

) dα dβ.

All the double integrals above have no closed form. Therefore, we will implement the Metropolis–
Hastings (M-H) algorithm to compute the estimators. The M-H algorithm is a powerful Markov Chain
Monte Carlo algorithm. The M-H algorithm was introduced by Metropolis et al. (1953). For a discussion
of the algorithm, the reader is referred to any Bayesian statistics textbook. In this paper, we consider
three special cases of the general entropy loss function, corresponding to q = −1, q = 1 and q = −2. It
should be mentioned that for q = −1 the general entropy loss function simplifies to the squared-error loss
function. The weighted squared-error loss function results from q = 1. For q = −2, the general entropy
loss function is referred to as the precautionary loss function which is an asymmetric loss function.

5.2. Two-Sided Bayes Probability Intervals

The Bayesian method to interval estimation is much more direct than the frequentist method based
on confidence intervals. Once the marginal posterior distribution of α has been obtained, a symmetric
100(1 − τ)% two-sided Bayes probability interval estimate of α, denoted by [αL, αU ], can be obtained
by solving the two equations [see Martz and Waller (1982), pp. 208–209]

∫ αL

0
π1(w |x) dw =

τ

2
(5.10)

and
∫ ∞

αU

π1(w |x) dw =
τ

2
(5.11)
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for the limits αL and αu. Similarly, a symmetric 100(1 − τ)% two-sided Bayes probability interval
estimate of β, denoted by [βL, βU ], can be obtained by solving

∫ βL

0
π2(w |x) dw =

τ

2
(5.12)

and
∫ ∞

βU

π2(w |x) dw =
τ

2
(5.13)

for the limits βL and βU . Again, these equations cannot be solved in a closed form.

6. EMPIRICAL BAYES ESTIMATION

In the preceding sections, we assumed that the hyper-parameters a, b, c, and d are known.
Empirical Bayes estimation addresses the question of estimating the hyper-parameters from existing
data. When the current sample is observed, assume that p past samples XjL(1),XjL(2), . . . ,XjL(n), for
j = 1, 2, . . . , p, are available. Each sample is assumed to be a sample of size n from a GR distribution.
The likelihood function for each sample j is given by

L(α, β |x) = 2nαnβ2n exp
{
α log(1 − e−(βxjL(n))

2
)
} n∏

i=1

xjL(i)e
−(βxjL(i))

2

(
1 − e−(βxjL(i))2

) . (6.1)

For each sample j, let α̂j and β̂j be the maximum likelihood estimates for α and β, respectively, based
on sample j, which are obtained from (6.1). We then calculate the mean and variance of the maximum
likelihood estimators for each of the j samples, equate these to the mean and variance of the Gamma
prior distribution, and solve for the hyper-parameters. We can find â and b̂, estimators for a and b, by
solving

1
p

p∑

i=1

α̂j =
b

a

and

1
(p − 1)

p∑

i=1

(
α̂j −

1
p

p∑

i=1

α̂j

)2
=

b

a2
.

We can find ĉ and d̂, estimators for c and d, by solving

1
p

p∑

i=1

β̂j =
d

c

and

1
(p − 1)

p∑

i=1

(
β̂j −

1
p

p∑

i=1

β̂j

)2
=

d

c2
.

Solving the above equations yields the estimators for the hyper-parameters

â =

(
1
p

∑p
i=1 α̂j

)

(
1

p−1

∑p
i=1

(
α̂j − 1

p

∑p
i=1 α̂j

)2)

and

b̂ =

(
1
p

∑p
i=1 α̂j

)2

(
1

p−1

∑p
i=1

(
α̂j − 1

p

∑p
i=1 α̂j

)2)
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for the prior distribution for α. Similarly, estimators for the hyper-parameters for the prior distribution
for β can be found as

ĉ =

(
1
p

∑p
i=1 β̂j

)

(
1

p−1

∑p
i=1

(
β̂j − 1

p

∑p
i=1 β̂j

)2)

and

d̂ =

(
1
p

∑p
i=1 β̂j

)2

(
1

p−1

∑p
i=1

(
β̂j − 1

p

∑p
i=1 β̂j

)2) .

The empirical Bayes estimators of α and β are found by substituting â, b̂, ĉ, and d̂ into (7.6) and (7.7)
and proceeding as before.

7. PREDICTION OF FUTURE RECORD VALUES

Next, we consider the problem of predicting future record values given a sample of observed record
values.

7.1. Non-Bayesian Prediction

Suppose that we observe the first n lower record values from a population with pdf f(x; Θ). Our aim
is to predict z = XL(m), m > n, having observed records XL(1),XL(2), . . . ,XL(n). The joint predictive
likelihood function of z = XL(m), and the possibly vector-valued parameter Θ can be written, see Basak
and Balakrishnan (2003), as

L(z,Θ,X) =
n∏

i=1

h(XL(i); Θ)
[H(z,Θ) − H(XL(n); Θ)]m−n−1

Γ(m − n)
f(z; Θ),

where

H(z,Θ) = − log[F (z,Θ)]

and

h(XL(i); Θ) =
f(XL(i);α, β)
S(XL(i);α, β)

=
2αβ2 zL(i)e

−(βzL(i))
2(

1 − e−(βzL(i))
2)α−1

1 −
(
1 − e−(βzL(i))2

)α .

The predictive likelihood function for the GR distribution is

L(y;α, β) = 2n+1αmβ2(n+1)
n∏

i=1

yL(i)e
−(βyL(i))

2(
1 − e−(βyL(i))

2)α−1

1 −
(
1 − e−(βyL(i))2

)α

×
[
log

(
1 − e−(βyL(n))

2) − log
(
1 − e−(βy)2

)]m−n−1

Γ(m − n)
y
(
1 − e−(βy)2

)α−1
e−(βy)2 .

The log predictive likelihood is given by

log L = (n + 1) log 2 + m log α + 2(n + 1) log β

+
n∑

i=1

log yL(i) + (α − 1)
n∑

i=1

log
(
1 − e−(βyL(i))

2)

+
n∑

i=1

log
(
1 − e−(βyL(i))

2) −
n∑

i=1

log
[
1 −

(
1 − e−(βyL(i))

2)α]

+ (m − n − 1) log
[
log

(
1 − e−(βyL(n))

2) − log
(
1 − e−(βy)2

)]

− log Γ(m − n − 1) + log y − (βy)2 + (α − 1) log
(
1 − e−(βy)2

)
. (7.1)
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To obtain the normal equations for the unknown parameters, we differentiate (7.1) partially with respect
to α and β and equate to zero. The resulting equations are

0 =
∂ log L

∂α
=

m

α
+

n∑

i=1

log
(
1 − e−(βyL(i))

2)
+

n∑

i=1

(
1 − e−(βyL(i))

2)α log
(
1 − e−(βyL(i))

2)

1 −
(
1 − e−(βyL(i))2

)α ,

0 =
∂ log L

∂β
=

2(n + 1)
β

− (α − 1)
n∑

i=1

2βy2
L(i) e−(βyL(i))

2

(
1 − e−(βyL(i))2

) −
n∑

i=1

2βy2
L(i) e−(βyL(i))

2

(
1 − e−(βyL(i))2

)

+
n∑

i=1

2αβy2
L(i) e−(βyL(i))

2(
1 − e−(βyL(i))

2)α−1

1 −
(
1 − e−(βyL(i))2

)α − (α − 1)2βy2e−(βy)2

(
1 − e−(βyL(i))2

) − 2βy2

+ (m − n − 1)

(
2βy2

L(n)
e
−(βyL(n))

2

1−e
−(βyL(n))

2

)
−

(
2βy2e−(βy)2

1−e−(βy)2

)

log
(
1 − e−(βyL(n))2

)
− log

(
1 − e−(βy)2

)

and

0 =
∂ log L

∂y
= −(m − n − 1)

(
2β2ye−(βy)2

1−e−(βy)2

)

log
(
1 − e−(βyL(n))2

)
− log

(
1 − e−(βy)2

)

+
1
y

+ (α − 1)
2β2ye−(βy)2

(
1 − e−(βy)2

) − 2β2y.

The above equations cannot be solved in a closed form. Thus, we must use a numerical procedure to find
the maximum likelihood predictor.

7.2. Conditional Median Prediction

We now consider the conditional median prediction of future record values. Suppose that we have n
lower records XL(1),XL(2), . . . ,XL(n) from a GR(α, β) and we are interested in predicting z = XL(m),
the mth lower record, for some m > n. It is well known that the distribution of z = XL(m) depends only
on the current lower record, y = XL(n). The conditional median predictor is found as the median of the
conditional distribution of z given y.

First, we consider the case where α and β are unknown. The conditional distribution of z given y is
found in (7.4). To find the median, let the cumulative distribution function of z given y be

F (z | y) =
∫ z

0
f∗(τ | y) dτ.

Let F−1(u) be the inverse distribution function. Equating F−1(u) = 1/2 and solving for u yields ẑCMP ,
the conditional median predictor of z when α and β are unknown. The solution does not exist in a closed
form. In the case where α and β are known, the conditional median predictor can be found as the median
of (7.3). Let the cumulative distribution function of z given y be

F (z | y;α, β) =
∫ z

0
f∗(τ | y;αβ) dτ.

Again, let F−1(u) be the inverse distribution function. Equating F−1(u) = 1/2 and solving for u yields
ẑCMP , the conditional median predictor of z when α and β are known. Again, the solution does not exist
in a closed form.
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7.3. Bayes Prediction

In this section, we consider the prediction of future records based on a Bayesian approach. Prediction
of future records has been studied by a number of statisticians, among them Ahmadi and Doostparast
(2006), Ahsanullah (1998), Arnold et al (1992), Berred (1998) and Dunsmore (1983). Suppose that we
have n lower records XL(1),XL(2), . . . ,XL(n) from a GR distribution. Based on such a record sample,
we are interested in obtaining a Bayesian prediction interval for the future lower record XL(m), for some
m > n, with a certain confidence. The conditional pdf of z = XL(m) for a given y = XL(n) is given,
Ahsanullah (1998), by

f(z | y;α, β) =
[log S(y;α, β) − log S(z;α, β)]m−n−1

Γ(m − n)
f(z;α, β)
S(y;α, β)

, z > y. (7.2)

For the GR distribution, with pdf given in (1.1), the function f(z | y;α, β) can be shown to be

f(z | y;α, β) =
αm−nβe−(βz)2(1 − e−(βz)2)α−1

(1 − e−(βy)2)α

[
log

(1 − e−(βy)2

1 − e−(βz)2

)]m−n−1

. (7.3)

As we know, future record values satisfy the Markovian (memoryless) property, the future lower
record z = XL(m) given the set of the first n lower records X = {XL(1),XL(2), . . . ,XL(n)} depends only
on the current lower record y = XL(n). Therefore, the conditional distribution of z given x is the same as
the conditional distribution of z given y. The predictive pdf of z given x is

f∗(z |x) =
∫ ∞

0

∫ ∞

0
f(z | y;α, β)π(α, β |x) dα dβ, (7.4)

where f(z | y;α, β) and π(α, β |x) are given respectively by (7.3) and (5.4).
The predictive limits of the 100(1− τ)% two-sided interval of the future lower record z can be obtained

by solving
∫ zL

y
f∗(z |x) dz =

τ

2
(7.5)

and
∫ ∞

zU

f∗(z |x) dz =
τ

2
(7.6)

with respect to the lower and upper limits zL and zU .
The Bayesian prediction bounds for Y = XU(m) are obtained by evaluating P (Y ≥ η |x), for some

given positive value of η. From (7.4), we have

P (Y ≥ η |x) =
∫ ∞

η
f∗(z |x) dz.

The 100(1 − τ)% predictive interval for Y = XU(m) is obtained by evaluating both the lower L(x) and
the upper U(x) limits which satisfy P (Y ≥ L(x) |x) = 1 − τ/2 and P (Y ≥ U(x) |x) = τ/2.

8. SIMULATION STUDY

In this section, we examine and compare the performance of maximum likelihood and Bayes
estimators for the two parameters GR distribution based on record values by conducting various
simulations for different sizes n = 5, 10, 20. We simulate 1000 samples for the true parameters values
α = 1.2 and β = 2.2. First we compute the maximum likelihood estimators using the methods described
in Section 4.1. We report the average bias and mean squared error (MSE) over 1000 replications.
The Bayes estimators cannot be found in a closed form. Therefore, we use the Metropolis–Hastings
algorithm to compute Bayes estimates. We use informative priors for both α and β. The chosen hyper-
parameters are a = c = 4 and b = d = 1. Bayes estimators are computed using the general entropy loss
function with q = −2,−1, 1. This allows us to consider the Bayes estimators under both symmetric
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Table 4. Average bias and MSE of estimators for α and β

n α̂MLE α̂SEL α̂WSEL α̂PL β̂MLE β̂SEL β̂WSEL β̂PL

5 0.8320 0.0334 0.0185 0.0443 0.4283 0.1972 0.3312 0.1467

(2.902) (0.0019) (0.0010) (0.028) (1.7203) (0.8104) (0.6914) (0.8101)

10 0.4914 0.0196 0.1508 0.0209 0.4094 0.1614 0.2667 0.1182

(0.4501) (0.0012) (0.0071) (0.0032) (1.6304) (0.0413) (0.0831) (0.0401)

20 0.2617 0.0093 0.0790 0.0107 0.2189 0.1473 0.3162 0.1206

(0.2205) (0.0001) (0.0003) 0.0052 (1.1012) (0.0394) (0.0053) (0.0153)

Table 5. Average bias and MSE of empirical Bayes estimators for α and β

n α̂SEL α̂WSEL α̂PL β̂SEL β̂WSEL β̂PL

5 0.6165 0.4917 0.7130 1.3514 0.2243 2.1621

(0.4689) (0.2042) (0.5961) (2.9017) (0.2602) (7.2031)

10 0.4715 0.3721 0.5104 0.4620 0.1834 0.8257

(0.2043) (0.1644) (0.2304) (1.3296) (0.0010) (2.4604)

20 0.2107 0.1682 0.2506 0.1942 0.1145 0.3478

(0.0140) (0.01023) (0.0231) (0.0117) (0.0031) (3.2613)

and asymmetric loss functions. The proposal distribution used for the M-H algorithm is a chi-square
distribution. We generate 6000 samples after 6000 burn-in samples.

Table 4 contains the bias and MSE for the maximum likelihood estimators and the Bayes estimators
under three different loss functions for α and β. Average bias is listed first and the corresponding MSE
is listed second in parentheses. Table 5 includes the average bias and MSE of the empirical Bayes
estimators for α and β.

It is observed in Tables 4 and 5 that for each method the MLEs decrease as the sample size increases.
It indicates that both the methods deduce asymptotically unbiased and consistent estimators of the
parameters. Table 4 shows that the performance of the Bayes estimates is better than that of the MLEs
in terms of the bias and MSE. The Bayes estimates under precautionary loss function (which is an
asymmetric loss function) exhibit better performance than when under symmetric loss functions.

9. CONCLUSION

The GR distribution provided excellent model for life time data for a variety of situations. Thus, it is
important for the analyst to have reliable statistical methods to use for this distribution. We have provided
in this study new explicit expressions for single and product moments of lower record values from the GR
distribution. Further, a characterizing result of this distribution on using the conditional expectation of
lower record values is discussed. We have provided both frequentist and Bayesian methods of estimating
the parameters based on samples of upper record values and methods of predicting future record values.
We have examined and compared the different methods, including Bayesian methods under different loss
functions.
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