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Abstract—We consider the problem of estimating the mixing density f from n i.i.d. observations
distributed according to a mixture density with unknown mixing distribution. In contrast to finite
mixtures models, here the distribution of the hidden variable is not restricted to a finite set but is
spread out over a given interval. We propose an approach to construct an orthogonal series estimator
of the mixing density f involving Legendre polynomials. The construction of the orthonormal
sequence varies from one mixture model to another. Minimax upper and lower bounds of the
mean integrated squared error are provided which apply in various contexts. In the specific case
of exponential mixtures, it is shown that the estimator is adaptive over a collection of specific
smoothness classes, more precisely, there exists a constant A > 0 such that, when the order m
of the projection estimator verifies m ∼ A log(n), the estimator achieves the minimax rate over
this collection. Other cases are investigated such as Gamma shape mixtures and scale mixtures of
compactly supported densities including Beta mixtures. Finally, a consistent estimator of the support
of the mixing density f is provided.
Keywords: mixing density, nonparametric estimation, exponential mixture, scale mixture, Gamma
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1. MIXTURE DISTRIBUTIONS

We consider mixture distributions of densities belonging to some parametric collection {πθ, θ ∈ Θ}
of densities with respect to the dominating measure ζ on the observation space (X,X ). A general
representation of a mixture density uses the so-called mixing distribution and is of the form

πf (x) =
∫

Θ
f(t)πθ(x)μ(dθ), (1)

where the mixing density f is a density with respect to some measure μ defined on Θ. To avoid confusion
in the notation of πθ and πf , we use Greek letters in the indices to denote scalars and latin letters for
functions. If μ is a counting measure with a finite number of support points θk, then obviously, πf is a
finite mixture distribution of the form

∑K
k=1 pkπθk

. However, if μ denotes the Lebesgue measure on Θ,
and if Θ is a given interval, say Θ = [a, b], then the distribution of the latent variable t is spread out over
this interval and πf represents a continuous mixture. In this paper we consider continuous mixtures and
the problem of identifying the mixing density f when a sample of the continuous mixture πf is observed.
Note that when θ is a location parameter, the problem of estimating f is referred to as a deconvolution
problem, which has received considerable attention in the nonparametric statistics literature since [9].

Continuous mixtures have been used in very numerous and various fields of application. We just give
some recent examples to show that continuous mixtures are still of much interest from an application
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point of view. The video-on-demand traffic can be modeled by a continuous Poisson mixture for
the purpose of efficient cache managing [22]. In time-resolved fluorescence, where photon lifetimes
have exponential distribution and parameters depend on the emitting molecules, typically continuous
mixtures of exponential distributions are observed [20, 26]. When θ is a scale parameter, the distribution
πf is called a scale mixture. Scale mixtures of uniforms are also related to multiplicative censoring
introduced in Vardi [27] and length-biased data. A recent application in nanoscience of the latter are
length measurements of carbon nanotubes, where observations are partly censored [18]. Exponential
mixtures play a significant role in natural sciences phenomena of discharge or disexcitation as e.g.
radioactive decays, the electric discharge of a capacitor or the temperature difference between two
objects. Several examples of applications of the exponential mixture model can be found in the references
of the seminal paper [16].

Not only for applications, but also from the mathematical point of view, scale mixtures are particularly
interesting as they define classes of densities that verify some monotonicity constraints. It is well known
that any monotone non-increasing density function with support in (0,+∞) can be written as a mixture
of uniform densities U[0, θ] [12, p. 158]. Moreover, a k-monotone density is defined as a non-increasing,
convex density function h with derivatives such that (−1)jh(j) is nonnegative, non-increasing and
convex for all j = 1, . . . , k − 2. One can show that any k-monotone density can be represented by a
scale mixture of Beta distributions B(1, k). Furthermore, densities that are k-monotone for any k ≥ 1,
also called completely monotone functions, can be written as continuous mixtures of exponential
distributions [3].

The literature provides various approaches to the estimation of the mixing density, as for example
the nonparametric maximum likelihood estimate (NPMLE). A characteristic feature of this estimator
is that it yields a discrete mixing distribution [19, 21]. This appears to be unsatisfactory if we have
reasons to believe that the mixing density is indeed a smooth function. In this case a functional approach
is more appropriate, which relies on smoothness assumptions on the mixing density f . In Zhang [29]
kernel estimators are constructed for mixing densities of a location parameter. Goutis [14] proposes an
iterative estimation procedure also based on kernel methods. Asgharian et al. [2] show strong uniform
consistency of kernel estimators in the specific case of multiplicative censoring. In the same setting,
Andersen and Hansen [1] consider the linear operator K verifying πf = Kf and estimate f by an SVD
reconstruction in the orthonormal basis of eigenfunctions of K. This approach, although optimal in
principle, requires a deep and possibly difficult analysis of the operator K. Polynomial estimators in turn
apply easily in many settings. For mixtures of discrete distributions, that is when πθ are densities with
respect to a counting measure on a discrete space, orthogonal series estimators have been developed
and studied in Hengartner [15] and Roueff and Ryden [25]. For such mixtures, these estimators turn out
to enjoy similar or better rates of convergence than the kernel estimator presented in Zhang [30]. Comte
and Genon-Catalot [6] present a projection estimator based on Laguerre functions that has the specific
feature that the support of the mixing density f is not a compact set as usual, but the entire positive real
line. Belomestny and Schoemakers [4] extend the class of scale mixtures and derive estimation methods
based on the Mellin transform.

In this paper we show that orthogonal series estimators can be provided in a very general fashion to
estimate mixing densities with compact supports. In contrast to Andersen and Hensen [1], who consider
only the case of scale mixtures of uniforms, our approach applies to a large variety of continuous mixtures
as our numerous examples demonstrate. In the exponential mixture case, in particular, we exhibit an
orthogonal series estimator achieving the minimax rate of convergence in a collection of smoothness
classes without requiring a prior knowledge of the smoothness index. In other words, we provide an
adaptive estimator of the mixing density of an exponential mixture.

The paper is organized as follows. In Section 2 the general construction of an orthogonal series
estimator is presented and the estimator is applied in several different mixture settings. In Section 3 we
derive upper bounds on the rate of convergence of the mean integrated squared error of the estimator on
some specific smoothness classes. In Section 4 the approximation classes used for the convergence rate
are related to more meaningful smoothness classes defined by weighted moduli of smoothness. Section 5
is concerned with the investigation of the minimax rate. On the one hand, a general lower bound of the
MISE is provided and on the other hand, some specific cases are studied in detail. Section 6 provides
a consistent estimator of the support of the mixing density. Finally, the performance of the projection
estimator is evaluated by a simulation study in different mixture settings in Section 7. The Appendix
provides some technical results.
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2. ESTIMATION METHOD

In this section we develop an orthogonal series estimator and we provide several examples, namely
for mixtures of exponential, Gamma, Beta and uniform densities.

2.1. Orthogonal Series Estimator

Throughout this paper the following assumption will be used.

Assumption 1. Let ζ be a dominating measure on the observation space (X,X ). Let {πθ, θ ∈ Θ}
be a parametric collection of densities with respect to ζ. Furthermore, let the parameter space
Θ = [a, b] be a compact interval with known endpoints a < b in R. We denote by X,X1, . . . ,Xn an
i.i.d. sample from the mixture distribution density πf defined by (1) with μ equal to the Lebesgue
measure on [a, b].

The basic assumption of our estimation approach is that the mixing density f in (1) is square
integrable, that is f ∈ L2[a, b]. Then, for any complete orthonormal basis (ψk)k≥1 of the Hilbert space
H = L2[a, b], the mixing density f can be represented by the orthogonal series f(θ) =

∑
k≥1 ckψk(θ),

where the coefficients ck correspond to the inner products of f and ψk. If we have estimators ĉn,k of those
coefficients, then an estimator of the mixing density f is obtained by

∑m
k=1 ĉn,kψk.

To construct estimators ĉn,k, we remark that the following relation holds: Let g be a nonnegative
integrable function on R. Define the function ϕ on [a, b] by the conditional expectations

ϕ(θ) = Eπθ
[g(X)] =

∫
x∈X

g(x)πθ(x) ζ(dx), θ ∈ [a, b]. (2)

Suppose that ϕ belongs to H. The mean Eπθ
[g(X)] can be written as the inner product of f and ϕ.

Namely, by the definition of πf in (1) and Fubini’s theorem,

Eπf
[g(X)] =

∫
x∈X

g(x)πf (x) ζ(dx) =
∫ b

a
f(θ)

∫
x∈X

g(x)πθ(x) ζ(dx) dθ = 〈f, ϕ〉H.

Consequently, by the strong law of large numbers, 1
n

∑
i g(Xi) is a consistent estimator of the inner

product 〈f, ϕ〉H based on an i.i.d. sample (X1, . . . ,Xn) from the mixture density πf defined in (1).
We make the following assumption under which the orthogonal series estimator makes sense.

Assumption 2. Assumption 1 holds and there exists a sequence (gk)k≥1 of X → R functions such
that (ϕk)k≥1 is a dense sequence of linearly independent functions in H, where ϕk(θ) = Eπθ

[gk(X)]
as in (2).

We then proceed as follows. Using linear combinations of the ϕk’s, a sequence of orthonormal
functions ψ1, ψ2, . . . in H can be constructed, for instance by the Gram–Schmidt procedure. Say that ψk

writes as
∑k

j=1 Qk,jϕj with an array (Qk,j)1≤j≤k of real values that are computed beforehand. Then we

define estimators of ck = 〈f, ψk〉H =
∑k

j=1 Qk,j〈f, ϕj〉H by the empirical means

ĉn,k =
1
n

n∑
i=1

k∑
j=1

Qk,jgj(Xi).

Finally, for any integer m, an estimator of f is given by

f̂m,n =
1
n

m∑
k=1

ĉn,kψk =
1
n

n∑
i=1

m∑
j,k,l=1

Qk,jQk,lgj(Xi)ϕl, (3)

with the convention Qk,j = 0 for all j > k. We refer to f̂m,n as the orthogonal series estimator or the
projection estimator of approximation order m.
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Define the subspaces

Vm = span (ϕ1, . . . , ϕm) for all m ≥ 1. (4)

By Assumption 2, the sequence (Vm)m is strictly increasing, Vm has dimension m for all m, and
∪mVm has closure equal to H. By construction the orthogonal series estimator f̂m,n belongs to Vm.
Consequently, the best squared error achievable by f̂m,n is ‖f − PVm(f)‖2

H
, where ‖ · · · ‖H denotes the

norm associated with H and PVm the orthogonal projection on the space Vm. Hence once the functions gk

are chosen, the definition of the subspaces Vm follows and the performance of the estimator will naturally
depend on how well f can be approximated by functions in Vm. It is thus of interest to choose a sequence
(gk)k≥1 yielding a meaningful sequence of approximation spaces (Vm)m. In the context of scale family
mixtures (but not only, see Roueff and Ryden [25]), polynomial spaces appear naturally. Indeed, for any
function g, we have Eπθ

[g(X)] = Eπ1[g(θX)], so that, provided that π1 has finite moments, if g is a
polynomial of degree k, so is ϕ(θ) = Eπθ

[g(X)]. The following assumption slightly extends this choice
for the two following reasons. First, a scale family is not always parameterized by its scale parameter but
by its inverse (as for the exponential family). Second, it will appear that the choice of (gk)k≥1 not only
influences the approximation class (and thus the bias) but also the variance. It may thus be convenient
to allow the gk’s not to be polynomials, while still remaining in the context of polynomial approximation.
This goal is achieved by the following assumption.

Assumption 3. Assumption 2 holds and there exist two real numbers a′ < b′ and a linear
isometry T from H to H

′ = L2[a′, b′] such that, for all k ≥ 1, Tϕk is a polynomial of degree k − 1.
We denote by T−1 the inverse isometry.

To compute the coefficients Qk,j under Assumption 3, one may rely on the well-known Legendre
polynomials which form an orthogonal sequence of polynomials in H

′ = L2[a′, b′]. Indeed, by choosing gk

so that Tϕk is the polynomial t �→ tk−1, as will be illustrated in all the examples below, the constants Qk,j

are the coefficients of the normalized Legendre polynomials
∑k

j=1 Qk,jt
j−1. Let us recall the definition

of the Legendre polynomials.

Definition 1 (Legendre polynomials). Let a′ < b′ be two real numbers and denote μ = (a′ + b′)/2 and
δ = (b′ − a′)/2. The Legendre polynomials related to the interval [a′, b′] are defined as the polynomials
rk(t) =

∑k
l=1 Rk,lt

l−1, where the coefficients Rk,l are given by the following recurrence relation

Rk+1,l = Rk,l−1 + μRk,l − βkRk−1,l for all k, l ≥ 1,

with R1,1 = 1 and Rk,l = 0 for all l > k, β1 = 2δ and βk = δ2(k − 1)2/(4(k − 1)2 − 1) for k ≥ 2. The
obtained sequence (rk)k≥1 is orthogonal in H

′ = L2([a′, b′]) with norms given by ‖rk‖H′ =
√

β1 . . . βk.
Hence, the coefficients of the normalized Legendre polynomials are defined by the relation

Qk,l =
Rk,l√

β1 . . . βk
for all k, l ≥ 1. (5)

2.2. Examples

For illustration we exhibit in this section the orthogonal series estimator in some special cases. Some
scale mixtures are presented. As an example for a nonscale mixture we also consider Gamma shape
mixtures.

Example 1 (a). Exponential Mixture. We first consider continuous exponential mixtures as they play
a meaningful role in physics. That is, we consider πθ(x) = θe−θx. For the orthogonal series estimator we
choose the functions gk(x) = �

{
x > k − 1

2

}
for k ≥ 1. By (2), we obtain

ϕk(θ) = e−(k− 1
2
)θ. (6)
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We claim that the ϕk’s can be transformed into polynomials in the space H
′ = L2[e−b, e−a]. Indeed,

define, for all f ∈ H = L2[a, b],

Tf(t) = f(− log t)/
√

t, t ∈ [e−b, e−a]. (7)

Then one has 〈Tf, Tg〉H′ = 〈f, g〉H, hence T is an isometry from H to H
′. Moreover Tϕk(t) = tk−1 are

polynomials. Denote by pk(t) =
∑k

j=1 Qk,jt
j−1 the Legendre polynomials in H

′ with coefficients Qk,j

defined by (5) with a′ = e−b and b′ = e−a. Denote by T−1 the inverse operator of T given by T−1h(θ) =
e−θ/2h(e−θ). Since T−1 is a linear isometry, we get that the functions ψk ≡ T−1pk =

∑k
j=1 Qk,jϕj are

orthonormal in H. Consequently, an orthonormal series estimator is given by

f̂m,n(θ) =
1
n

m∑
k,j,l=1

n∑
i=1

�

{
Xi > j − 1

2

}
Qk,jQk,le

−(l− 1
2
)θ. (8)

Example 1 (b). Exponential Mixture. The choice of the functions gk is not unique and needs to be done
with care. For illustration, consider once again exponential mixtures with πθ(x) = θe−θx. This time we
take

gk(x) = akx
k with ak =

(∫
xkπ1(dx)

)−1

= 1/k!

and hence ϕk(θ) = θ−k, for k ≥ 1. To relate ϕk to polynomials, define the isometry T̃ from H to
H̃ = L2[1/b, 1/a] by T̃ f(t) = 1

t f(1
t ). We have T̃ϕk(t) = tk−1 for all k ≥ 1. Furthermore, denote by T̃−1

the inverse of T̃ satisfying T̃−1h(θ) = 1
θh(1

θ ). Let p̃k(t) =
∑k

j=1 Qk,jt
j−1 be the Legendre polynomials

in H̃ defined with a′ = 1/b and b′ = 1/a. Since T̃−1 is an isometry, ψk ≡ T̃−1pk =
∑k

j=1 Qk,jϕj are
orthonormal functions in H and the orthonormal series estimator is given by

f̂m,n(θ) =
1
n

m∑
k,j,l=1

n∑
i=1

Qk,jQk,lX
j
i

j!
θ−l.

To decide which functions gk should be chosen between Example 1 (a) and Example 1 (b), their rates of
convergence may be studied. For these examples this will be done later on p. 208.

Example 2. Gamma Shape Mixture. Polynomial estimators can be used in the context where the
mixed parameter is not necessarily a scale parameter. As pointed out earlier, they have first been used
for mixtures on a discrete state space X, such as Poisson mixtures, see [15] and [25]. Let us consider
the Gamma shape mixture model. Parametric Gamma shape mixtures have been considered in [28]. For
this model πθ is the Gamma density with shape parameter θ and a fixed scale parameter (here set to 1
for simplicity),

πθ(x) =
xθ−1

Γ(θ)
e−x, θ ∈ [a, b],

where Γ denotes the Gamma function. This model has a continuous state space (ζ is the Lebesgue
measure on R+) and is not a scale mixture. We shall construct gk and ϕk(θ) = Eπθ

[gk(X)] such that
Assumption 3 holds with T being the identity and ϕk(θ) = θk−1. Consider the following sequence of
polynomials, p1(t) = 1, p2(t) = t, . . . , pk(t) = t(t + 1) . . . (t + k − 2) for all k ≥ 2. Since (pk)k≥1 is a
sequence of polynomials of degree k − 1, there are coefficients (c̃k,l)1≤l≤k such that tk−1 =

∑
l c̃k,lpl(t)

for k = 1, 2, . . . . A simple recursive formula for computing (c̃k,l)1≤l≤k is provided in Lemma 6 in the
Appendix, see Eq. (48). Observe that, for any l ≥ 1,∫

xl−1 πθ(x)] dx =
Γ(θ + l − 1)

Γ(θ)
= pl(θ).
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Hence, setting gk(x) =
∑

l c̃k,lx
l−1, we obtain

ϕk(θ) = πθ(gk) =
∑

l

c̃k,lpl(θ) = θk−1,

and thus Assumption 3 holds with T being the identity operator and ϕk(θ) = θk−1. Define (Qk,l)k,l as
the coefficients of Legendre polynomials on H = L2([a, b]), that is as in (5) with a′ = a and b′ = b. The
polynomial estimator defined by (8) reads

f̂m,n(θ) =
1
n

n∑
i=1

m∑
k,j,l=1

Qk,jQk,l

j∑
h=1

c̃j,hXh−1
i θl−1.

Example 3. Scale Mixture of Beta Distributions or Uniform Distributions. It is well known that any
k-monotone density, for k ≥ 1, can be represented by a scale mixture of Beta distributions B(1, k) [3]
with

πθ(x) =
k

θ

(
1 − x

θ

)k−1

for x ∈ [0, θ].

Note that if k = 1, then πθ is the uniform density U(0, θ). We take

gp(x) = apx
p−1 with ap =

(∫
xp−1π1(dx)

)−1

=
1

k β(p, k)
, p ≥ 1,

where β(a, b) =
∫ 1
0 ta−1(1 − t)b−1 dt denotes the Beta function. It follows that ϕp(θ) = θp−1. As in the

preceding example, if f ∈ H then an orthogonal series estimator f̂m,n of f can be constructed by using
Legendre polynomials pk(t) =

∑k
j=1 Qk,jt

j−1, where the coefficients Qk,j are defined as in (5) with
a′ = a and b′ = b. Then according to (3), the corresponding orthogonal series estimator is given by

f̂m,n(θ) =
1
n

m∑
j,p,l=1

n∑
i=1

Qp,jQp,l
Xj−1

i

kβ(j, k)
θl−1.

In Example 1 (b) we considered the same functions gp but here Assumption 3 holds with T equal to
the identity operator on H. This difference relies on the parametrization of the exponential family by the
inverse of the scale parameter.

Example 4. Mixture of exponential distributions with location parameter. The estimator also
applies to the deconvolution setting. As an example, consider X = Y + θ where Y and θ are independent
random variables, Y has exponential distribution with mean 1 and θ has unknown density f supported
on [a, b]. The density of X is given by πf (x) =

∫ b
a πθ(x)f(θ) dθ with πθ(x) = e−(x−θ)

�{x > θ}. Let
g1(x) = 1 and

gk(x) = xk−1 − (k − 1)xk−2 (9)

for k ≥ 2. Then ϕk(θ) = θk−1 for k ≥ 1. The estimator f̂m,n of f is then given by

f̂m,n(θ) =
1
n

n∑
i=1

m∑
j,k,l=1

Qk,lQk,jgj(Xi)θl−1,

where Qk,l are the Legendre coefficients defined by (5) with a′ = a and b′ = b.

3. ANALYSIS OF THE ORTHOGONAL SERIES ESTIMATOR

In this section the properties of the orthogonal series estimator are analyzed.
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3.1. Bias, Variance and MISE

It is useful to write the orthogonal series estimator f̂m,n defined in (3) in matrix notation. Therefore,
we introduce the m × m matrix Q = (Qk,j)k,j , where Qk,j = 0 for all j > k, and the m-vectors

Φ = [ϕ1, . . . , ϕm]T , Ψ = [ψ1, . . . , ψm]T = QΦ,

g(x) = [g1(x), . . . , gm(x)]T , ĝ =
1
n

n∑
i=1

g(Xi),

c = [c1, . . . , cm]T = 〈Ψ, f〉H, ĉ = [ĉn,1, . . . , ĉn,m]T = Qĝ.

It follows that the orthogonal series estimator can be written as

f̂m,n = ĉT Ψ = ĝT QT QΦ.

Further, let Σ = πf (ggT ) − πf (g)πf (g)T be the covariance matrix of g(X1). The MISE is defined by

E‖f̂m,n − f‖2
H

. The orthogonal projection of f on Vm is denoted by

PVmf = cT Ψ =
m∑

k=1

cn,kψk.

It is clear that the orthogonal series estimator f̂m,n is an unbiased estimator of PVmf . Furthermore,
by the usual argument, the MISE is decomposed into two terms representing the integrated variance
and integrated squared bias, as summarized in the following result, whose proof is standard and thus
omitted.

Proposition 1. Suppose that Assumption 2 holds. The orthogonal series estimator f̂m,n defined
in (3) satisfies

(i) For every t ∈ [a, b], E[f̂m,n(t)] = PVmf(t).

(ii) For every t ∈ [a, b], Var(f̂m,n(t)) = 1
nΨT (t)QΣQT Ψ(t).

(iii) E‖f̂m,n − f‖2
H

= ‖PVmf − f‖2
H

+ 1
ntr (QΣQT ).

An important issue for orthogonal series estimators f̂m,n is the choice of the approximation order m.
The integrated squared bias ‖PVmf − f‖2

H
only depends on how well PVmf approximates f , whose rate

of convergence depends on the smoothness class to which the density f belongs. To be more precise,
define for any approximation rate index α and radius C, the approximation class

C(α,C) =
{
f ∈ H : ‖f‖H ≤ C and ‖PVmf − f‖H ≤ C m−α for all m ≥ 1

}
. (10)

So when the mixing density f belongs to C(α,C), then the bias of the orthogonal series estimator f̂m,n

is well controlled, namely it decreases at the rate m−α as m increases. Furthermore, denote the set
of densities in H by H1 = {f ∈ H : f ≥ 0,

∫ b
a f(t) dt = 1}. We will investigate the rate of convergence

of f̂m,n in H when f ∈ C(α,C) ∩ H1. We will obtain the best achievable rate in the case of exponential
mixtures and almost the best one in the case of Gamma shape mixtures.
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3.2. Upper Bound of the MISE

We now provide an upper bound of the MISE for the orthogonal series estimator based on Legendre
polynomials, that is, when Assumption 3 holds.

To show an upper bound of the MISE we use the following property [25, Lemma A.1]. If λ >
2+a′+b′

b′−a′ +
√

1 + 2+a′+b′
b′−a′ , then the coefficients of the normalized Legendre polynomials in L2[a′, b′]

defined by (5) verify

k∑
l=1

Q2
k,l = O(λ2k) as k → ∞. (11)

By combining Proposition 1 (iii) and the bound given in (11) along with a normalization condition on
the gk’s (Condition (12) or Condition (15) below), we obtain the following asymptotic upper bounds of
the MISE.

Theorem 1. Let α be a positive rate index and C be a positive radius. Suppose that Assumption 3
holds with f ∈ C(α,C)∩H1. Let f̂m,n be defined by (3) with Legendre polynomials coefficients Qk,j

given by (5). Then the two following assertions hold.

(a) Let, for some constants C0 > 0 and B ≥ 1,

Var (gk(X)) < C0 B2k for all k ≥ 1. (12)

Set mn = A log n with

A <
1
2

{
log B + log

(
2 + a′ + b′

b′ − a′
+

√
1 +

2 + a′ + b′

b′ − a′

)}−1

. (13)

Then, as n → ∞,

E

∥∥∥f̂mn,n − f
∥∥∥2

H

≤ C2m−2α
n (1 + o(1)), (14)

where the o-term only depends on the constants α, C, a′, b′, A and C0.

(b) Let, for some constants C0 > 0 and η > 0,

Var (gk(X)) < C0 kηk for all k ≥ 1. (15)

Set mn = A log n/ log log n with A < η−1. Then, as n → ∞,

E‖f̂mn,n − f‖2
H ≤ C2m−2α

n (1 + o(1)), (16)

where the o-term only depends on the constants α, C, a′, b′, A and C0.

Remark 1. The larger A, the lower the upper bound in (14). Hence, since a′, b′ and B directly depend
on the gk’s, the constraint (13) on A indicates how appropriate the choice of the gk’s is.

Remark 2. In the examples treated in this paper, C0 and B or η can be chosen independently of
f ∈ C(α,C) ∩ H1. Consequently, the bounds given in (14) and (15) show that f̂mn,n achieves the
MISE rates (log n)−2α and (log(n)/ log log n)−2α, respectively, uniformly in f ∈ C(α,C) ∩ H1. In the
exponential mixture case, we show below that f̂mn,n of Example 1 (a) is minimax rate adaptive in these
classes (since mn does not depend on α). In the Gamma shape mixture case, we could only show that
f̂mn,n of Example 2 is minimax rate adaptive in these classes up to the multiplicative log log n term.
A data-driven choice of mn should not improve the behavior of the estimator, see the case of Poisson
mixtures in [6], where a data-driven choice of mn is provided.
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Proof. We first consider Case (a). By (13), we may choose a number λ strictly lying between 2+a′+b′

b′−a′ +√
1 + 2+a′+b′

b′−a′ and e1/(2A)/B. Note that from Condition (12), it follows by the Cauchy–Schwarz

inequality that |Σk,l| = |Cov (gk(X), gl(X))| ≤ C0B
kBl for all k, l. Thus, we obtain

tr (QΣQT ) ≤ C0

m∑
k=1

k∑
j=1

k∑
l=1

|Qk,jQk,l| BjBl ≤ C0

m∑
k=1

( k∑
j=1

Q2
k,j

k∑
j=1

B2j

)
≤ Km{Bλ}2m,

where the last inequality comes from (11) and K is a positive constant (the multiplicative term m is
necessary only for B = 1). It follows by the decomposition of the MISE in Proposition 1 (iii) that

E‖f̂mn,n − f‖2
H
≤ C2m−2α

n + Kn−1mn(Bλ)2mn ≤ C2m−2α
n

(
1 +

K

C2
n−1m2α+1

n (Bλ)2mn

)
.

Now we have for mn = A log n that

n−1m2α+1
n (Bλ)2mn = A2α+1(log n)2α+1n2A log Bλ−1 = o(1),

since A < 1/(2 log Bλ).

Let us now consider Case (b). Proceeding as above, for any λ > 2+a′+b′

b′−a′ +
√

1 + 2+a′+b′
b′−a′ , we get

tr (QΣQT ) ≤ K C0λ
2mm1+ηm, which yields

E‖f̂mn,n − f‖2
H
≤ C2m−2α

n

(
1 +

K

C2
n−1m2α+1+ηmn

n λ2mn

)
.

To conclude, it suffices to check that the log of the second term between parentheses tends to −∞ as
n → ∞ for mn = A log n/ log log n with A < η−1, which is easily done.

Let us check the validity of Condition (12) or Condition (15) for the above examples.

Example 1 (a). Exponential Mixture (continued). Condition (12) immediately holds with B = C0 =
1 for the exponential mixture of Example 1(a) since gk(x) = �{x > k − 1

2}.

Example 1 (b). Exponential Mixture (continued). Interestingly, Condition (12) does not hold for
Example 1 (b), where a different choice of gk’s is proposed. In fact, one finds that log Var(gk(X)) is of
order k log(k). Hence, only Condition (15) holds and we fall in case (b) of Theorem 1. Since a slower rate
is achieved in this case, this clearly advocates to choose the estimator obtained in Example 1 (a) rather
than the one in Example 1 (b) for the exponential mixture model.

Example 2. Gamma Shape Mixture (continued). We recall that here we set gk(x) =
∑k

l=1 c̃k,lx
l−1,

where the coefficients (c̃k,l) are those defined and computed in Lemma 6 of the Appendix. Using
the bound given by (49) in the same lemma, we obtain that gk(x) ≤ k!(1 ∨ |x|k−1). It follows that
Eπθ

[g2
k(X)] ≤ (k!)2(1 + Γ(θ + 2k − 2)/Γ(θ)) and Eπf

[g2
k(X)] ≤ (k!)2(1 + Γ(b + 2k − 2)/Γ(b)) for any

f ∈ H1. Hence, by Stirling’s formula, we find that Condition (15) holds for η = 4 and some C0

independent of f ∈ H1.

Example 3. Scale Mixture of Beta Distributions or Uniform Distributions (continued). We now
verify Condition (12) for Beta mixtures and the gp of Example 3. Note that we can write X = AX0 with
independent random variables A ∼ f and X0 ∼ B(1, k). We have for all p ≥ 1

Var(gp(X)) ≤ E[X2p−2]
k2β2(p, k)

=
E[A2p−2]E[X2p−2

0 ]
k2β2(p, k)

≤ b2p−2

k2β2(p, k)
≤ b2p−2k2p−2.

Hence Condition (12) holds with B = k if b < 1 and with B = bk if b ≥ 1.
A close inspection of Example 3 indicates that it is a particular case of the following more general

result concerning mixtures of compactly supported scale families.
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Lemma 1. Suppose that Assumption 1 holds in the context of a scale mixture on R+, that is, ζ
is the Lebesgue measure on R+ and πθ = θ−1π1(θ−1·) for all θ ∈ Θ = [a, b] ⊂ (0,∞). Assume in
addition that π1 is compactly supported in R+. Define, for all k ≥ 1,

gk(x) =
(∫

xk−1π1(x) dx

)−1

xk−1.

Then Assumption 2 holds with ϕk(θ) = θk−1, and thus so does Assumption 3 with T being the
identity operator on L2([a, b]). Moreover there exist C0 and B only depending on π1 and b such
that Condition (12) holds.

Proof. Using the assumptions on π1 and Jensen’s inequality, we have

Bm
1 ≤

∫
xm π1(x) dx ≤ Bm

2 for all m ≥ 1,

with B1 =
∫

x π1(x) dx and B2 > 0 such that the support of π1 is included in [0, B2]. The result then
follows from the same computations as in Example 3.

An immediate consequence of Theorem 1 and Lemma 1 is the following.

Corollary 1. Under the assumptions of Lemma 1, the estimator f̂m,n defined by (3) with Leg-
endre polynomials coefficients Qk,j given by (5) achieves the MISE rate (log n)−2α uniformly in
f ∈ C(α,C) ∩ H1 for any α > 0 and C > 0.

Example 4. Exponential mixture with location parameter (continued). One can show that Condi-
tion (15) of Theorem 1 is satisfied, so that the rate of the MISE of the estimator is (log(n)/ log log n)−2α.
Indeed,

E[Xr] = r!
∫ b

a
f(t)

r∑
j=0

tj

j!
dt ≤ r!

r∑
j=0

bj

j!
≤ r!eb,

and thus, using the definition of gk in (9), Var (gk(X)) ≤ 2(2k − 2)!eb ≈ 2
√

2πeb−2k+2(2k − 2)2k−3/2.

4. APPROXIMATION CLASSES

Although the approximation classes C(α,C) appear naturally when studying the bias of the orthog-
onal series estimator defined in (3), it is legitimate to ask whether such classes can be interpreted in
a more intuitive way, say using a smoothness criterion. This section provides a positive answer to this
question.

4.1. Weighted Moduli of Smoothness

Let us recall the concept of weighted moduli of smoothness as introduced by Ditzian and Totik [8] for
studying the rate of polynomial approximations. For a < b in R, f : [a, b] → R, r ∈ N

∗ and h ∈ R denote
by Δr

h(f, ·) the symmetric difference of f of order r with step h, that is

Δr
h(f, x) =

r∑
i=0

(
r

i

)
(−1)if

(
x + (i − r/2)h

)
, (17)

with the convention that Δr
h(f, x) = 0 if x ± mh/2 /∈ [a, b]. Define the step-weight function ϕ on the

bounded interval [a, b] as ϕ(x) =
√

(x − a)(b − x). Then for f : [a, b] → R the weighted modulus of
smoothness of f of order r and with the step-weight function ϕ in the Lp([a, b]) norm is defined as

ωr
ϕ(f, t)p = sup

0<h≤t
‖Δr

hϕ(·)(f, ·)‖p.
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We recall an equivalence relation of the modulus of smoothness with the so-called K-functional,
which is defined as

Kr,ϕ(f, tr)p = inf
h

{
‖f − h‖p + tr‖ϕrh(r)‖p : h(r−1) ∈ A.C.loc

}
, (18)

where h(r−1) ∈ A.C.loc means that h is r − 1 times differentiable and h(r−1) is absolutely continuous on
every closed finite interval. If f ∈ Lp([a, b]), then

M−1ωr
ϕ(f, t)p ≤ Kr,ϕ(f, tr)p ≤ Mωr

ϕ(f, t)p for t ≤ t0, (19)

for some constants M and t0, see Theorem 6.1.1 in Ditzian and Totik [8].

4.2. Equivalence Result

We show that the classes C(α,C) are equivalent to classes defined using weighted moduli of
smoothness. This, in turn, will relate them to Sobolev and Hölder classes. To make this precise, we
define for constants α > 0 and C > 0 the following class of functions in H = L2([a, b])

C̃(α,C) =
{
f ∈ H : ‖f‖H ≤ C and ωr

ϕ(f, t)2 ≤ Ctα for all t > 0
}
, (20)

where ϕ(x) =
√

(x − a)(b − x) and r = [α] + 1.

The following theorem states the equivalence of the classes C(α,C) and C̃(α,C). This result is an
extension of Proposition 7 in Roueff and Ryden [25] to the case where the subspaces Vm correspond
to transformed polynomial classes through an isometry T , which includes both a multiplication and a
composition with smooth functions.

Theorem 2. Let α > 0. Suppose that Assumption 3 holds with a linear isometry T : H =
L2([a, b]) → H

′ = L2([a′, b′]) given by Tg = σ × g ◦ τ , where σ is nonnegative and [α] + 1 times
continuously differentiable, and τ is [α] + 1 times continuously differentiable with a nonvanishing
first derivative. Then for any positive number α, there exist positive constants C1 and C2 such that
for all C > 0

C(α,C1C) ⊂ C̃(α,C) ⊂ C(α,C2C), (21)

where C̃(α,C) is defined in (20) and C(α,C ′) is defined in (10) with approximation classes (Vm)
given by (4).

For short, we write C(α, ·) ↪→ C̃(α, ·) when there exists C1 > 0 such that the first inclusion in (21)
holds for all C > 0. The validity of both inclusions is denoted by the equivalence C(α, ·) � C̃(α, ·).

Proof of Theorem 2. Weighted moduli of smoothness are used to characterize the rate of polynomial
approximation. We start by relating C(α,C) to classes defined by the rate of polynomial approximation,
namely

C̄(α,C) =
{

g ∈ H
′ : ‖g‖H′ ≤ C and inf

p∈Pm−1

‖g − p‖H′ ≤ Cm−α, for all m ≥ 1
}

,

where Pm is the set of polynomials of degree at most m. Indeed, we see that, since T is a linear isometry,

C(α,C) = {f ∈ H :
∥∥f‖H ≤ C and ‖PVmf − f‖H ≤ Cm−α for all m ≥ 1

}
=

{
T−1g : g ∈ H

′, ‖g‖H′ ≤ C and ‖PTVmg − g‖H′ ≤ Cm−α for all m ≥ 1
}

= T−1C̄(α,C).

As stated in Corollary 7.25 in Ditzian and Totik [8], we have the equivalence C̄(α, ·) � C̃′(α, ·), where
C̃′(α,C) is defined as C̃(α,C) but with a′ and b′ replacing a and b. Hence, it only remains to show that

T−1C̃′(α, ·) � C̃(α, ·). (22)
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To show this, we use the assumed particular form of T , that is T (g) = σ × g ◦ τ . Since T is an isometry
from H = L2([a, b]) to H

′ = L2([a′, b′]) and σ is nonnegative, we necessarily have that τ is a bijection
from [a′, b′] to [a, b] (whose inverse bijection is denoted by τ−1) and σ = 1/

√
τ ′ ◦ τ−1. Moreover the

inverse isometry writes T−1(g) = (σ ◦ τ−1)−1 × g ◦ τ−1. From the assumptions on τ we have that σ,
(σ ◦ τ−1)−1, τ and τ−1 all are [α] + 1 times continuously differentiable and the first derivatives of the last
two do not vanish. The equivalence (22) then follows by Lemma 5 in the Appendix.

Example 1 (a). Exponential Mixture (continued). In Example 1 (a) of continuous exponential
mixtures, the operator T is given by (7), that is σ(t) = 1/

√
t and τ(t) = − log t and further H

′ =
L2(e−b, e−a). Both σ and τ are infinitely continuously differentiable on [a, b] if a > 0, and thus the
equivalence given in (21) holds.

Example 1 (b). Exponential Mixture (continued). For the estimator exhibited in Example 1 (b) for
exponential mixtures, the isometry T is such that σ(t) = τ(t) = 1/t with a′ = 1/b and b′ = 1/a. Hence
the conclusion of Theorem 2 holds if a > 0.

Examples 2, 3 and 4. Gamma Shape Mixture, Scale Mixture of Beta Distributions and Expo-
nential mixture with location parameter (continued). In the cases of Examples 2, 3 and 4, the
transform T is the identity and hence Theorem 2 applies. However, this result is also obtained by
Corollary 7.25 in Ditzian and Totik [8].

5. LOWER BOUND OF THE MINIMAX RISK

Our goal in this section is to find a lower bound of the minimax risk

inf
f̂∈Sn

sup
f∈C

Eπf
‖f̂ − f‖2

H
,

where Sn is the set of all Borel functions from R
n to H, C denotes a subset of densities in H1 and Eπf

denotes the expectation when (X1, . . . ,Xn) is an i.i.d. sample with density πf under Assumption 1.

We first provide a general lower bound, which is then used to investigate the minimax rate in the
specific cases of exponential mixtures, Gamma shape mixtures and mixtures of compactly supported
scale families.

5.1. A General Lower Bound for Mixture Densities

We now present a new lower bound for the minimax risk of mixture density estimation. As in
Proposition 2 in [25], it relies on the mixture structure. However, in contrast to this previous result
which only applies for mixtures of discrete distributions, we will use the following lower bound in the
case of mixtures of exponential distributions, Gamma shape mixtures and scale mixtures of compactly
supported densities.

Theorem 3 (Lower bound). For f0 ∈ H1 and f∗ ∈ H with ‖f∗‖H ≤ 1 and f0 ± f∗ ∈ H1 the following
lower bound holds, for any c ∈ (0, 1),

inf
f̂∈Sn

sup
f∈{f0,f0±f∗}

Eπf
‖f − f̂‖2

H
≥ c‖f∗‖2

H
− c

(1 − c)2

((
1 +

∫
|πf∗(x)| ζ(dx)

)n

− 1
)

. (23)

Proof. Let f∗ be as in the Theorem. We define for a fixed f̂ ∈ Sn and any c ∈ (0, 1) the set A =
{‖f0 − f̂‖H ≤ c

1−c}. Then, for all f̂ ∈ Sn, supf∈{f0,f0±f∗} Eπf
‖f − f̂‖2

H
is bounded from below by

c

2
Eπf0+f∗‖f0 + f∗ − f̂‖2

H
+

c

2
Eπf0−f∗‖f0 − f∗ − f̂‖2

H
+ (1 − c)Eπf0

‖f0 − f̂‖2
H

≥ c

2
Eπf0+f∗

[
�A‖f0 + f∗ − f̂‖2

H

]
+

c

2
Eπf0−f∗

[
�A‖f0 − f∗ − f̂‖2

H

]
+ (1 − c)Eπf0

‖f0 − f̂‖2
H
.
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Note that for a function k defined on R
n we have

Eπf0±f∗k =
∫

k(x1, . . . , xn)
n∏

i=1

[πf0(xi) ± πf∗(xi)]
n∏

i=1

ζ(dxi)

=
∫

k(x1, . . . , xn)
∑
I,J

[
(±1)#J

∏
j∈J

πf∗(xj)
∏
i∈I

πf0(xi)
] n∏

i=1

ζ(dxi),

where the sum is taken over all sets I and J such that I ∪ J = {1, . . . , n} and I ∩ J = ∅. Therefore,

Eπf0+f∗

[
�A‖f0 + f∗ − f̂‖2

H

]
+ Eπf0−f∗

[
�A‖f0 − f∗ − f̂‖2

H

]

=
∑
I,J

∫ ∏
i∈I

πf0(xi)
∏
j∈J

πf∗(xj)�A

[
‖f0 + f∗ − f̂‖2

H + (−1)#J‖f0 − f∗ − f̂‖2
H

] n∏
i=1

ζ(dxi).

Since ‖f∗‖H ≤ 1 and, on A, ‖f0 − f̂‖H ≤ c
1−c , we obtain that, on A, ‖f0 ± f∗ − f̂‖H ≤ ‖f0 − f̂‖H +

‖f∗‖H ≤ 1
1−c . This implies that the absolute value of the sum in the last display taken over all sets I

and J such that the cardinality of J is positive, #J ≥ 1, is no greater than

2
(1 − c)2

∑
I,J : #J≥1

∫ ∏
i∈I

πf0(xi)
∏
j∈J

|πf∗(xj)|
n∏

i=1

ζ(dxi)

=
2

(1 − c)2
∑

I,J : #J≥1

∏
i∈I

∫
πf0(xi)ζ(dxi)

∏
j∈J

∫
|πf∗(xj)|ζ(dxj)

=
2

(1 − c)2

{(
1 +

∫
|πf∗(x)|ζ(dx)

)n

− 1
}

.

Moreover, the term with #J = 0 writes

Eπf0

(
�A(‖f0 + f∗ − f̂‖2

H
+ ‖f0 − f∗ − f̂‖2

H
)
)

= 2Eπf0

(
�A(‖f0 − f̂‖2

H
+ ‖f∗‖2

H
)
)
,

by the Parallelogram law. By combining these results, the minimax risk is bounded from below by

(1 − c)Eπf0
‖f0 − f̂‖2

H
+ cEπf0

[
�A(‖f0 − f̂‖2

H
+ ‖f∗‖2

H
)
]

− c

(1 − c)2

[(
1 +

∫
|πf∗(x)|ζ(dx)

)n

− 1
]
.

Finally we see that

(1 − c)‖f0 − f̂‖2
H

+ c�A

(
‖f0 − f̂‖2

H
+ ‖f∗‖2

H

)
= c�A‖f∗‖2

H
+ ((1 − c) + c�A)‖f0 − f̂‖2

H
≥ c�A‖f∗‖2

H
+ c�Ac ≥ c‖f∗‖2

H
,

where we used 1 ≥ ‖f∗‖2
H

. This yields the lower bound asserted in the theorem.

5.2. Application to Polynomial Approximation Classes

The lower bound given in (23) relies on the choice of a function f∗ such that f0 and f0 ± f∗ are in the
smoothness class of interest. In this subsection, we give conditions which provide a tractable choice of
‖f∗‖H ≤ 1 for the class C(α,C) defined in (10). Following the same lines as Theorem 1 in [25], the key
idea consists in restricting our choice using the space V ⊥

m (the orthogonal complement of Vm in H) and
to control separately the two terms that appear in the right-hand side of (23) within this space.

An important constraint on f∗ is that f0 ± f∗ ∈ H1. In particular, for controlling the sign of f0 ± f∗,
we use the following semi-norm on H,

‖f‖∞,f0 = ess sup
t∈Θ

|f(t)|
f0(t)

,
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with the convention 0/0 = 0 and s/0 = ∞ for s > 0. Further, for any subspace V of H, we denote

K∞,f0(V ) = sup{‖f‖∞,f0 : f ∈ V, ‖f‖H = 1}.

The following lemma will serve to optimize the term ‖f∗‖H on the right-hand side of (23). It is similar to
Lemma 2 in [25], so we omit its proof.

Lemma 2. Suppose that Assumption 2 holds. Let f0 be in H1, α,C0 > 0, K ≤ 1 and let C(α,C0) be
defined by (10) with Vm given by (4). Let moreover w ∈ H. Then there exists g ∈ C(α,C0)∩ V ⊥

m ∩w⊥

such that ‖g‖∞,f0 ≤ K and

‖g‖H = min
(

C0 (m + 1)−α,
K

K∞,f0(Vm+2 ∩ V ⊥
m ∩ w⊥)

)
.

Under Assumption 3, where the orthonormal functions ψk are related to polynomials in some space
H

′ = L2[a′, b′], the constant K∞,f0(Vm+2 ∩ V ⊥
m ∩w⊥) can be bounded by K∞,f0(Vm+2) and then using

the following lemma.

Lemma 3. Suppose that Assumption 3 holds. Let f0 be in H1 and suppose that

sup
{
‖f‖∞,f0 : f ∈ H such that sup

t∈[a′,b′]
|Tf(t)| ≤ 1

}
< ∞. (24)

Then there exists a constant C0 > 0 satisfying

K∞,f0(Vm+2) ≤ C0m for all m ≥ 1.

Proof. Note that {Tf : f ∈ Vm} is the set of polynomials in H
′ of degree at most m − 1, denoted by

Pm−1. Using ‖f‖H = ‖Tf‖H′ and denoting by B the left-hand side of (24), we have

K∞,f0(Vm) = sup{‖f‖∞,f0 : f ∈ Vm, ‖f‖H = 1}

≤ B sup
{

sup
t∈[a′,b′]

|Tf(t)| : f ∈ Vm, ‖f‖H = 1
}

= B sup
{

sup
t∈[a′,b′]

|p(t)| : p ∈ Pm−1,

∫ b′

a′
p2(t) dt = 1

}
.

By the Nikolskii inequality (see, e.g., DeVore and Lorentz [7], Theorem 4.2.6), there exists a constant
C > 0 such that the last sup is at most Cm. Hence there exists C0 > 0 such that K∞,f0(Vm) ≤ C0m for
all m ≥ 1.

Theorem 3 and Lemmas 2 and 3 yield the following result.

Corollary 2. Let α ≥ 1 and C > (b− a)−1/2. Suppose that Assumption 3 holds with an isometry T
satisfying the assumptions of Theorem 2. Let w be an [α] + 1 times continuously differentiable
function defined on [a, b] and set

vm = sup
g∈V ⊥

m ,‖g‖H≤1

∫
|πw g(x)| ζ(dx). (25)

Then there exists a small enough C∗ > 0 and C∗ > 0 such that, for any sequence (mn) of integers
increasing to ∞ satisfying vmn ≤ C∗ n−1m−α

n , we have

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

Eπf
‖f̂ − f‖2

H
≥ C∗ m−2α

n (1 + o(1)), (26)

where C̃(α,C) is the smoothness class defined by (20).
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Remark 3. The assumption C > (b − a)−1/2 is necessary, otherwise C̃(α,C) ∩ H1 is reduced to one
density for C = (b − a)−1/2 and is empty for C < (b − a)−1/2. To see why, observe that for any f ∈ H1,
by Jensen’s inequality, ‖f‖2

H
=

∫ b
a f2(t) dt ≥ (b − a)−1, with equality implying that f is the uniform

density on [a, b].

Proof. We apply Theorem 3 with f0 set as the uniform density on [a, b] and f∗ chosen as follows. For
some C0 > 0 and an integer m to be determined later, we choose f∗ = wg, where g is given by Lemma 2
with K = min(1, supt∈[a,b] |w(t)|). Since g ∈ w⊥ and ‖g‖∞,f0 ≤ K, we get that f0 ± f∗ ∈ H1.

Now we show that {f0, f0 ± f∗} ⊂ C̃(α,C) for a well-chosen C0. We have ‖f0‖H = (b − a)−1/2 and,
since the symmetric differences of all order vanish on f0, we get that f0 ∈ C̃(α, (b− a)−1/2). By definition
of g in Lemma 2 and Lemma 5 successively, we get that f∗ ∈ C̃(α,C ′

1C0) for some C ′
1 > 0 not depending

on C0. Choosing C0 = (C − (b − a)−1/2)/C ′
1, we finally get that

{f0, f0 ± f∗} ⊂ C̃(α,C) ∩ H1.

By Lemma 2, ‖g‖H → 0 as m → ∞ and, since w is bounded, it implies that ‖f∗‖H ≤ 1 for m large
enough. Hence we may apply Theorem 3 and, to conclude the proof, it remains to provide a lower
bound of the right-hand side of (23) for the above choice of f∗. Under the assumptions of Theorem 2,
Condition (24) clearly holds. So Lemma 3 and the definition of g in Lemma 2 give that

‖g‖H ≤ C ′
0m

−α

for some constant C ′
0 > 0. By definition of vm and since g ∈ V ⊥

m , we have∫
|πf∗(x)| ζ(dx) ≤ ‖g‖H vm ≤ C ′

0m
−αvm.

We now apply the lower bound given by (23) with m = mn for (mn) satisfying vmn ≤ C∗n−1m−α
n . We

thus obtain

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

Eπf
‖f̂ − f‖2

H
≥ c(C ′

0m
−α
n )2 − c

(1 − c)2
C∗C

′
0m

−2α
n (1 + o(1))

≥ C∗m−2α
n (1 + o(1)),

where the last inequality holds for some C∗ > 0 provided that C∗ is small enough.

To apply Corollary 2, one needs to investigate the asymptotic behavior of the sequence (vm) defined
in (25). The following lemma can be used to achieve this goal.

Lemma 4. Under Assumption 3, if π·(x) ∈ H for all x ∈ X, then vm defined in (25) satisfies

vm ≤
∫

‖T [wπ·(x)] − PPm−1(T [wπ·(x)])‖H′ ζ(dx), (27)

where Pm−1 is the set of polynomials of degree at most m − 1 in H
′ and PPm−1 denotes the

orthogonal projection in H
′ onto Pm−1.

Proof. Let g ∈ V ⊥
m such that ‖g‖H ≤ 1. Then we have, for all x ∈ R,

πwg(x) = 〈wg, π·(x)〉H = 〈g,wπ·(x)〉H = 〈Tg, T [wπ·(x)]〉H′ .

Recall that TVm = Pm−1 is the set of polynomials of degree at most m− 1 in H
′. Hence Tg is orthogonal

to Pm−1, and for any p ∈ Pm−1, we get, for all x ∈ R,

|πwg(x)| = |〈Tw, T [wπ·(x)] − p〉H′ | ≤ ‖T [wπ·(x)] − p‖H′ , (28)

where we used the Cauchy–Schwarz inequality and ‖Tg‖H′ = ‖g‖H ≤ 1. Now the bound given by (27)
is obtained by taking p equal to the projection of [wπ·(x)] onto Pm−1 (observe that the right-hand side
of (28) is then minimal).
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5.3. Minimax Rate for Exponential Mixtures

In this section, we show that in the case of exponential mixtures the orthogonal series estimator of
Example 1 (a) achieves the minimax rate.

Theorem 4. Consider the exponential case, that is, let Assumption 1 hold with ζ defined as the
Lebesgue measure on R+, Θ = [a, b] ⊂ (0,∞) and πθ(x) = θe−θx. Let C > (b − a)−1/2 and α > 1
and define C̃(α,C) as in (20). Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

Eπf
‖f̂ − f‖2

H
≥ C∗(log n)−2α(1 + o(1)). (29)

Proof. Let gk(x) = �
{
x > k − 1

2

}
for k ≥ 1. Then Assumption 3 holds with ϕk and T defined by (6)

and (7) respectively. Since a > 0, T satisfies the assumptions of Theorem 2. We may thus apply
Corollary 2 with w = �[a,b]. Hence the minimax lower bound given in (29) follows from (26), provided
that we have, setting mn = C ′ log n for some C ′ > 0,

vmn = o(n−1m−α
n ) as n → ∞, (30)

where vm is defined by (25). Note that πθ(x) = θe−θt
�R+(x). We apply Lemma 4 to bound vm. Using

the definition of T in (7), we have [Tπ·(x)](t) = − log t tx−1/2 for all x ≥ 0. We write x ∈ R+ as the
sum of its entire and decimal parts, x = [x] + 〈x〉, and observe that, since 〈x〉 − 1/2 ∈ [−1/2, 1/2)
and [a′, b′] = [e−b, e−a] ⊂ (0, 1), the expansion of t〈x〉−1/2 =

∑
k≥0 αk(x)(1 − t)k as a power series

about t = 1 satisfies |αk(x)| =
∏k

j=1 |〈x〉 − 1/2 − j|/k! ≤ 1. Extending − log t about t = 1, we thus get

− log(t)t〈x〉−1/2 =
∑

k≥0 βk(x)(1 − t)k with |βk(x)| = |
∑k

l=1 αk−l/l| ≤ 1 + log(k). For any x < m, we

use this expansion to approximate [Tπ·(x)](t) = − log(t)t〈x〉−1/2 × t[x] by a polynomial of degree m.
Namely, we obtain

sup
t∈[a′,b′]

∣∣∣∣[Tπ·(x)](t) −
m−[x]∑
k=0

βk(x) tk+[x]

∣∣∣∣ ≤
∑

k>m−[x]

(1 + log(k))(b′)k+[x] ≤ C1c
m,

where we used the bound 1 + log(k) ≤ C1(c/b′)k valid for some constants C1 > 0 and c ∈ (b′, 1) not
depending on x. This bound also applies to ‖Tπ·(x) − PPm−1(Tπ·(x))‖H′ by definition of the projec-

tion PPm−1 . For x ≥ m, we simply observe that |[Tπ·(x)](t)| ≤ − log(a′)b′x−1/2. This also provides an
upper bound for ‖Tπ·(x) − PPm−1(Tπ·(x))‖H′ . Finally, integrating on x ≥ 0 we get∫

R+

‖Tπ·(x) − PPm−1(Tπ·(x))‖H′ dx ≤ C2 m cm

with constants C2 > 0 and c < 1 not depending on m, and this upper bound applies to vm by Lemma 4.
This shows that (30) holds provided that C ′ > 0 is taken small enough. This completes the proof.

5.4. Minimax Rate for Gamma Shape Mixtures

In this section, we show that in the case of Gamma shape mixtures the orthogonal series estimator
of Example 4 achieves the minimax rate up to the log log n multiplicative term.

Theorem 5. Consider the Gamma shape mixture case, that is, let Assumption 1 hold with ζ
defined as the Lebesgue measure on R+, Θ = [a, b] ⊂ (0,∞) and πθ(x) = xθ−1e−θ/Γ(θ). Let C >

(b − a)−1/2 and α > 1 and define C̃(α,C) as in (20). Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

Eπf
‖f̂ − f‖2

H
≥ C∗(log n)−2α(1 + o(1)). (31)
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Proof. We proceed as in the proof of Theorem 4. This time we set gk(x) =
∑k

l=1 c̃k,lx
l−1 with coeffi-

cients (c̃k,l) defined in Lemma 6. Assumption 3 then holds with H
′ = H and T defined as the identity

operator. Applying Corollary 2 with w(t) = Γ(t), we obtain the lower bound given in (31) provided
that Condition (30) holds with mn = C ′ log n/ log log n for some C ′ > 0. Again we use Lemma 4 to
check this condition in the present case. To this end we must, for each x > 0, provide a polynomial
approximation of w(θ)πθ(x) = xθ−1e−x as a function of θ. Expanding the exponential function as a
power series, we get

sup
θ∈[a,b]

∣∣∣∣w(θ)πθ(x) − e−x
m−1∑
k=0

logk(x)
k!

(θ − 1)k
∣∣∣∣ ≤ e−x

∑
k≥m

| log(x)|k
k!

ck,

where c = max(|a − 1|, |b − 1|). Let (xm) be a sequence of real numbers tending to infinity. The right-
hand side of the previous display is less than ec| log(x)|−x(c| log(x)|)m/m!. We use this for bounding
‖wπ·(x) − PPm−1(wπ·(x))‖H (recall that T is the identity and H

′ = H) when x ∈ [e−xm , xm]. When
x ∈ (0, e−xm) we use that the latter is bounded by O(1) and when x > xm by O(e−x/2). Hence Lemma 4
gives that

vm = O(e−xm) +
cm

m!

∫ xm

e−xm

ec| log(x)|−x | log(x)|m dx + O
(
e−xm/2

)
.

Now observe that, as xm → ∞, separating the integral
∫ xm

e−xm as
∫ 1
e−xm +

∫ xm

1 , we get∫ xm

e−xm

ec| log(x)|−x | log(x)|m dx = O(ecxmxm
m) + O(logm(xm)).

Set xm = c0m. By Stirling’s formula, for c0 > 0 small enough, we get vm = O(cm
1 ) with c1 ∈ (0, 1). We

conclude as in the proof of Theorem 4.

5.5. Lower Bound for Compactly Supported Scale Families

We derived in Corollary 1 an upper bound of the minimax rate for estimating f in C(α,C). It is
thus legitimate to investigate whether, as in the exponential mixture case, this upper bound is sharp for
mixtures of compactly supported scale families. A direct application of Corollary 2 provides the following
lower bound, which, unfortunately, is far from providing a complete and definite answer.

Theorem 6. Consider the case of scale mixtures of a compactly supported density on R+, that is,
suppose that the assumptions of Lemma 1 hold. Suppose moreover that π1 has the kth derivative
bounded on R+. Let C > (b − a)−1/2 and α ≥ 1, and define C̃(α,C) as in (20). Then if k > α,

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

Eπf
‖f̂ − f‖2

H
≥ n−2α/(k−α)(1 + o(1)). (32)

Proof. We proceed as in the proof of Theorem 4, that is, we observe that Assumption 3 holds with the
same choice of (gk) as in Lemma 1 and apply Corollary 2 with w = �[a,b]. Here, the lower bound given
in (32) is obtained by showing that

vmn = O(n−1m−α
n ) as n → ∞ (33)

holds with mn = n1/(k−α) and with (vm) defined by (25). Again we use Lemma 4 to bound vm. Here T
is the identity operator on H = H

′ and πθ(x) = θ−1π1(x/θ). Let M > 0 be such that the support of π1 is
contained in [0,M ]. Then for t ∈ [a, b] and x > Mb, πθ(x) = 0. Hence

‖π·(x) − PPm−1(π·(x))‖H = 0 for all x > Mb. (34)

We now consider the case x ≤ Mb. By the assumption on π1 and a, we have that θ �→ πθ(x) =
θ−1π1(x/θ) is k times differentiable on [a, b]. Moreover its kth derivative is bounded by Ckx

k on [a, b],
where Ck > 0 does not depend on x. It follows that, for any h > 0 and t ∈ [a, b],∣∣Δk

h(π·(x), t)
∣∣ ≤ Ck k! (xh)k,
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where Δk
h is the k-th order symmetric difference operator defined by (17). Observing moreover that

‖π·(x)‖2
H

=
∫ b

a
t−2π2

1(x/t) dt ≤ C ′,

for some C ′ > 0 not depending on x, we get that π·(x) ∈ C̃(k,C ′ ∨ Ck k!xk). Using Corollary 7.25 in
Ditzian and Totik [8], we thus have for a constant C ′′ > 0 not depending on x,

‖π·(x) − PPm−1(π·(x))‖H ≤ C ′′(1 + xk)m−k for all x ≤ Mb. (35)

Applying Lemma 4 with (34) and (35), we obtain vm = O(m−k). We conclude that (33) holds with
mn = n1/(k−α), which completes the proof.

Theorem 6 provides polynomial lower bounds of the minimax MISE rate, whereas Corollary 1 gives
logarithmic upper bounds in the same smoothness spaces. Hence the question of the minimax rate is left
completely open in this case. Moreover the lower bound relies on smoothness conditions on π1 which
rule out Example 3 (for which π1 is discontinuous). On the other hand, the case of scale families can be
related with the deconvolution problem that has received a considerable attention in a series of papers in
the 1990’s (see, e.g., [9–11, 23, 29]). The following section sheds a light on this relationship.

5.6. Scale Families and Deconvolution

The following lower bound is obtained from classical lower bounds in the deconvolution problem
derived in [11].

Theorem 7. Consider the case of scale mixtures on R+, that is, suppose that Assumption 1 holds
with ζ equal to the Lebesgue measure on R+, Θ = [a, b] ⊂ (0,∞) and πθ(x) = θ−1π1(x/θ). Denote
by φ the characteristic function of the density eθπ1(eθ) on R,

φ(ξ) =
∫

eθ+iξθπ1(eθ) dθ.

Define T̃ as the operator T̃ (g) = g̃, where g : R → R and g̃(t) = t−1g(log(t)) for all t ∈ (0,∞). Let
C > 0 and α > 0, and define L(α,C) as the set containing all densities g on R such that∣∣g(r)(t) − g(r)(u)

∣∣ ≤ C|t − u|α−r for all t, u ∈ R,

where r = [α].

(a) Assume that φ(j)(t) = O(|t|−β−j) as |t| → ∞ for j = 0, 1, 2, where φ(j) is the jth derivative of φ.
Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈T̃ (L(α,C))

Eπf
‖f̂ − f‖2

H
≥ C∗ n−2α/(2(α+β)+1)(1 + o(1)). (36)

(b) Assume that φ(t) = O(|t|β1e−|t|β/γ) as |t| → ∞ for some β, γ > 0 and β1, and that π1(u) =
o(u−1| log(u)|−a) as u → 0,∞ for some a > 1. Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈T̃ (L(α,C))

Eπf
‖f̂ − f‖2

H ≥ C∗ log(n)−2α/β(1 + o(1)). (37)

Proof. In the scale mixture case the observation X can be represented as X = θY , where Y and θ are
independent variables having density π1 and (unknown) density f , respectively. By taking the log of the
observations, the problem of estimating the density of log(θ), that is f∗(t) = etf(et), is a deconvolution
problem. Hence we may apply Theorem 2 in [11] to obtain lower bounds on the nonparametric estimation
of f∗ from log(X1), . . . , log(Xn) under appropriate assumptions on φ, which is the characteristic
function of log(Y ). Let a′ = log(a) and b′ = log(b). The lower bounds in (a) and (b) above are those
appearing in (a) and (b) in Theorem 2 in [11] on the minimax quadratic risk in H

′ = L2([a′, b′]) for
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estimating f∗ in the Lipschitz smoothness class L(α,C). Observe that T̃ is defined for all functions
g : [a′, b′] → R by T̃ (g) = g̃ with g̃ defined on [a, b] by g̃(t) = t−1g(log(t)), so that T̃ (f∗) = f . Observing
that T̃ is a linear operator and that for any g ∈ H

′, ‖T̃ (g)‖H � ‖g‖H′ , we obtain the lower bounds given
in (36) and (37).

As in Theorem 6, the smoother π1 is assumed, the slower the lower bound of the minimax rate.
However the lower bounds obtained in Theorem 7 hold for a much larger class of scale families.
Indeed, if π1 is compactly supported, the conditions imposed on π1 in case (a) are much weaker than
in Theorem 6. For instance, it holds with β = k for Example 3. For an infinitely differentiable π1 both
theorems say that the minimax rate is slower than any polynomial rate. However, in this case, case (b)
in Theorem 7 may provide a more precise logarithmic lower bound. It is interesting to note that, as a
consequence of [5], the MISE rate (log n)−2α, which is the rate obtained in Corollary 1 by the polynomial
estimator for any compactly supported π1, is the slowest possible minimax rate obtained in Theorem 7(b)
for a compactly supported π1. Such a comparison should be regarded with care since the smoothness
class in the latter theorem is different and cannot be compared to the smoothness classes considered in
the previous results, as we explain hereafter.

The arguments for adapting the lower bounds of Theorem 7 also apply for minimax upper bounds.
More precisely, using the kernel estimators for the deconvolution problem from the observations log(X1),
. . . , log(Xn) and mapping the estimator through T̃ , one obtains an estimator of f achieving the same
integrated quadratic risk. The obtained rates depend on similar assumptions on φ as those in (a) and (b),
see [9–11]. Although the scale mixture and the convolution model are related to one another by taking
the exponential (or the logarithm in the reverse sense) of the observations, it is important to note that,
except for Theorem 7, our results are of different nature. Indeed, the upper and lower bounds in the
deconvolution problem cannot be compared with those obtained previously in the paper because there
are no possible inclusions between the smoothness classes considered in the deconvolution problem and
those defined by polynomial approximations.

Let us examine more closely the smoothness class T̃ (L(α,C)) that appears in the lower bounds
of Theorem 7, inherited from the results on the deconvolution problem. This class contains densities
with noncompact supports, whereas C̃(α,C) ∩ H1 only contains densities with supports in [a, b]. Hence
neither (36) nor (37) can be used for deriving minimax rates in C̃(α,C) ∩ H1. In fact the densities
exhibited in [11] to prove the lower bound have infinite support by construction and the argument does
not at all seem to be adaptable for a class of compactly supported densities. As for upper bounds in the
deconvolution problem, they are based on Lipschitz or Sobolev type of smoothness conditions which are
not compatible with compactly supported densities on [a, b] except for those that are smoothly decreasing
close to the end points. This follows from the fact that, in the deconvolution problem, standard estimators
(kernel or wavelet) highly rely on the Fourier behavior both of the mixing density and of the additive
noise density. In contrast, such boundary constraints are not necessary for densities in C̃(α,C). For
instance, the uniform density on [a, b] belongs to C̃(α,C) for all α > 0 and C > (b − a)−1/2, but has a
Fourier transform decreasing very slowly. A natural conclusion from this observation is that polynomial
estimators should be used preferably to standard deconvolution estimators when the mixing density has
a known compact support [a, b] ⊂ (0,∞). Of course this conclusion holds for both deconvolution and
scale mixture problems.

6. SUPPORT ESTIMATION

A basic assumption of our estimation approach is that the mixing density f belongs to H = L2[a, b].
However, in practice the exact interval [a, b] is generally unknown. To cope with this problem, we propose
an estimator of the support of the mixing density f , or more precisely of the support of Tf . It can be
shown that the support estimator is consistent when it is based on an estimator T f̂n,mn , which is a
polynomial, and Tf behaves as follows on the bounds of the support interval. Note that the problem of
dealing with an unknown support also occurs in classical density estimation, see [13, 17, 24].
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Denote by [a0, b0] the smallest interval such that Tf(u) = 0 for all u ∈ [a′, b′] \ [a0, b0]. In other
words, a0 = inf{u ∈ [a′, b′], T f(u) > 0} and b0 = sup{u ∈ [a′, b′], T f(u) > 0}. Furthermore, we sup-
pose that there exist constants D > a0, E < b0, D′, E′, α′ > 0 such that

Tf(u) ≥ ((u − a0)/D′)α
′

for all u ∈ [a0,D], (38)

Tf(u) ≥ ((b0 − u)/E′)α
′

for all u ∈ [E, b0]. (39)

For fixed εn, ηn > 0, we define the estimators ân and b̂n of the interval bounds a0 and b0 by

ân = inf
{

u ∈ [a′, b′] : T f̂n,mn(v) >
εn

2
for all v ∈ [u, u + ηn]

}
, (40)

b̂n = sup
{
u ∈ [a′, b′] : T f̂n,mn(v) >

εn

2
for all v ∈ [u − ηn, u]

}
. (41)

Roughly, these estimators take the smallest and largest value where the estimator T f̂n,mn exceeds εn/2,
by disregarding side-effects of size ηn. For a suitable choice of the sequences (εn)n and (ηn)n these
estimators are consistent.

Proposition 2. Let f̂n,mn be the density estimator defined in (3) under Assumption 3 with
α > 1/2. Suppose that f verifies (38)–(39) for appropriate constants D > a0, E < b0, D′, E′,
α′ > 0. Assume that there are sequences mn → ∞, εn → 0 and ηn → 0 such that

E‖f̂n,mn − f‖2
H

= O
(
m−2α

n

)
, ε−1

n = o
(
m(2α−1)/(2+1/α′)

n

)
, ηn = O

(
ε1/α′
n m−1

n

)
.

Then the estimators ân and b̂n defined by (40) and (41) are consistent for the support bounds a0

and b0. More precisely, as n → ∞,

(ân − a0)+ = OP

(
ε1/α′
n

)
and (ân − a0)− = OP

(
ε1/α′
n m−1

n

)
,

(b̂n − b0)+ = OP

(
ε1/α′
n m−1

n

)
and (b̂n − b0)− = OP

(
ε1/α′
n

)
.

Proof. First we consider (ân − a0)+. We set δn = MD′ε
1/α′
n for some M > 1 and denote

An = {(ân − a0)+ > δn} = {ân > a0 + δn}

=
{
∀u ∈ [a′, a0 + δn] ∃v ∈ [u, u + ηn] such that T f̂n,mn(v) ≤ εn

2

}
.

As T f̂n,mn is a polynomial of degree mn, T f̂n,mn has at most mn intersections with any constant
function. Hence the number of subintervals of [a′, b′], where T f̂n,mn exceeds ε/2, is bounded by mn

for any fixed ε > 0. On An, all such intervals included in [a′, a0 + δn] are at most of size ηn. Thus, on An,∫ a0+δn

a′
�

{
T f̂n,mn(u) >

εn

2

}
du ≤ mnηn.

It follows that on An ∫ a0+δn

a′
�

{
T f̂n,mn(u) ≤ εn

2

}
du ≥ a0 + δn − a′ − mnηn,

and thus ∫ a0+δn

a0+D′ε
1/α′
n

�

{
T f̂n,mn(u) ≤ εn

2

}
du ≥ δn − mnηn − D′ε1/α′

n .

For large n such that δ
1/α′
n < D and since Tf > εn on [a0 + D′ε

1/α′
n ,D] by (38), we obtain on An∫ a0+δn

a0+D′ε1/α′
n

�

{
T f̂n,mn(u) ≤ εn

2

}
du ≤

∫ a0+δn

a0+D′ε1/α′
n

�

{
|T f̂n,mn(u) − Tf(u)| >

εn

2

}
du

≤ 4
ε2
n

∫ a0+δn

a0+D′ε1/α′
n

|T f̂n,mn(u) − Tf(u)|2 du ≤ 4
ε2
n

‖T f̂n,mn − Tf‖2
H′ =

4
ε2
n

‖f̂n,mn − f‖2
H
.
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For sufficiently large M we have mnηn < δn − D′ε1/α′
n . Then it follows by Markov’s inequality that

P((ân − a0)+ > δn) ≤ P

(
4
ε2
n

‖f̂n,mn − f‖2
H ≥ δn − mnηn − D′ε1/α′

n

)

≤ 4E[‖f̂n,mn − f‖2
H
]

ε2
n(δn − mnηn − D′ε

1/α′
n )

−→ 0, n → ∞,

by the assumptions on (εn)n and E‖f̂n,mn − f‖2
H

and as δn = MD′ε
1/α′
n . Thus (ân − a0)+ = OP (δn) =

OP

(
ε
1/α′
n

)
.

To investigate (ân − a0)− put δn = M ′ηn for some M ′ > 1. By using that Tf = 0 on [a, a0], we have

P
(
(ân − a0)− > δn

)
= P(ân < a0 − δn)

= P

(
∃x ∈ [a′, a0 − δn[ :

∫ x+ηn

x
�

{
T f̂n,mn(u) >

εn

2

}
du = ηn

)

≤ P

(∫ a0

a′
�

{
T f̂n,mn(u) >

εn

2

}
du ≥ ηn

)
= P

(∫ a0

a′
�

{
|T f̂n,mn(u) − Tf(u)|2 >

ε2
n

4

}
du > ηn

)

≤ P

(
4
ε2
n

∫ a0

a
|T f̂n,mn(u) − Tf(u)|2 du > ηn

)
≤ 4E[‖f̂n,mn − f‖2

H
]

ηnε2
n

−→ 0,

where again we applied Markov’s inequality. Consequently, (ân − a0)− = OP (ηn) = OP

(
ε
1/α′
n m−1

n

)
.

By symmetry, the properties on b̂n stated in the proposition hold as well.

By Theorem 1 the proposition applies to Examples 1 (a) and 3 with mn = A log n and to Exam-
ples 1 (b) and 2 with mn = A log n/ log log n.

7. NUMERICAL RESULTS

A simulation study is conducted to evaluate the performance of the estimator on finite datasets. Six
different mixture settings are considered, namely the exponential mixture from Example 1 (a) and 1 (b),
the Gamma shape mixture from Example 2, the uniform mixture and the Beta mixture with k = 4 from
Example 3 and the exponential mixture with a location parameter from Example 4.

We consider the case where the mixing density f is the Beta distribution on the interval [1, 4] with
parameters α = 3/2 and β = 3. Remark that for the exponential mixture setting of Example 1 (b) we
cannot take a mixing distribution with support [a, b] with a = 0, since b′ = 1/a must be finite.

For every mixture setting, the estimator f̂m,n with m = 5 is computed on a large number of datasets
(for sample sizes n varying from 100 to 109) and the corresponding MISE is evaluated. Table 1 gives
the mean values of the different MISE’s and the associated standard deviations. Obviously, in all six
settings the MISE decreases when n increases. Note that in the last four settings, where the mixing
density f is approximated in the same polynomial basis, the MISE tends to the same value, which is
obviously the squared bias of the estimator when m = 5. In the exponential mixture settings, different
values are obtained because different bases are used to approach f . The exponential mixture setting from
Example 1 (a) always has the largest mean MISE value, while the uniform and the Beta mixtures are
doing best.

Figure 1 illustrates the estimator f̂m,n when n = 105 and where the order m is the value minimizing
the MISE when n = 105, say mbest. The values of mbest have been obtained by extra simulations. We
see that in the first two settings, we only have mbest = 3 and the estimator seems slightly biased. On the
contrary, the uniform mixture setting allows for the best approximation with mbest = 5.
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Table 1. Estimated MISE (and standard deviation) of estimator f̂m,n with m = 5 in six different mixture
settings when the mixing density f is a Beta distribution

n

102 103 104 105 106 107 108 109

Exp. (a) MISE 0.72 0.69 0.62 0.48 0.26 0.058 8.4e-03 1.1e-03

sd (0.16) (0.17) (0.16) (0.19) (0.18) (0.085) (0.10) (1.4e-03)

Exp. (b) MISE 0.61 0.52 0.35 0.21 0.084 0.015 2.0e-03 4.4e-04

sd (0.21) (0.25) (0.25) (0.21) (0.12) (0.027) (2.9e-03) (2.7e-04)

Gamma MISE 0.58 0.47 0.31 0.12 0.020 3.4e-03 1.5e-03 1.3e-03

sd (0.20) (0.22) (0.21) (0.13) (0.024) (3.0e-03) (4.5e-04) (4.9e-05)

Uniform MISE 0.32 0.10 0.015 2.9e-03 1.5e-03 1.3e-03 1.3e-03 1.3e-03

sd (0.25) (0.12) (0.018) (2.1e-03) (2.6e-04) (4.4e-05) (1.2e-05) (3.6e-06)

Beta MISE 0.46 0.19 0.035 5.4e-03 1.7e-03 1.4e-03 1.3e-03 1.3e-03

sd (0.27) (0.17) (0.040) (5.3e-03) (6.5e-04) (8.6e-05) (2.2e-05) (5.8e-06)

Exp. loc. MISE 0.55 0.47 0.29 0.11 0.015 2.9e-03 1.5e-03 1.3e-03

sd (0.20) (0.23) (0.21) (0.11) (0.018) (1.9e-03) (2.6e-04) (5.3e-05)
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(a) Exp. mixture (a), mbest = 3 (b) Exp. mixture (b), mbest = 3 (c) Gamma mixture, mbest = 4
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(d) Uniform mixture, mbest = 5 (e) Beta mixture, mbest = 4 (f) Exp. location, mbest = 4

Fig. 1. 10 estimators f̂mbest,n in six different settings with n = 105 when the mixing density f is a Beta distribution
(dashed curve).
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APPENDIX A: TECHNICAL RESULTS

Lemma 5. Let α > 0, a < b and a′ < b′. Define C̃(α,C)H as in (20) and C̃′(α,C)H similarly with a′

and b′ replacing a and b. Let σ be [α] + 1 differentiable on [a, b] and τ : [a′, b′] → [a, b] be [α] + 1
differentiable on [a′, b′] with a nonvanishing first derivative. Then

{
σf : f ∈ C̃(α, ·)H

}
↪→ C̃(α, ·)H and

{
f ◦ τ : f ∈ C̃(α, ·)H

}
↪→ C̃′(α, ·)H.

Proof. As the first embedding is the inclusion (40) in Roueff and Ryden [25], we only show the second
embedding. Let f ∈ C̃(α,C) and denote r = [α] + 1. Let t ∈ (0, 1]. By the equivalence (19) with the
K-functional given in (18) there exists a function h such that h(r−1) ∈ A.C.loc and

‖f − h‖H + tr‖ϕrh(r)‖H ≤ 2Mωr
ϕ(f, t)H ≤ 2MCtα, (42)

where ϕ(x) =
√

(x − a)(b − x). Let us set h̃ = h ◦ τ and show that, for some constant K > 0 depending
neither on t nor on C,

‖f ◦ τ − h̃‖H′ + tr‖ϕ̃r h̃(r)‖H′ ≤ K C tα, (43)

where we defined ϕ̃(x) =
√

(x − a′)(b′ − x), that is the same definition as ϕ with a′ and b′ replacing a
and b. Using again equivalence (19), the bound given in (43) will achieve the proof of the lemma.

Note that since τ ′ does not vanish, denoting C1 = (inf |τ ′|)−1, for all g ∈ H, we have

‖g ◦ τ‖H′ ≤ C1‖g‖H . (44)

In particular, we have that

‖f ◦ τ − h̃‖H′ = ‖(f − h) ◦ τ‖H′ ≤ C1‖f‖H . (45)

Since τ is r times continuously differentiable and h(r−1) ∈ A.C.loc, we note that h̃(r−1) ∈ A.C.loc with
h̃(r) =

∑r
j=1 τj × h(j) ◦ τ , where the τj ’s are continuous functions only depending on τ . Hence there is

a constant C2 > 0 only depending on τ and r such that

‖ϕ̃r h̃(r)‖H′ ≤ C2 max
j=1,...,r

‖ϕ̃r h(j) ◦ τ‖H′ .

Another simple consequence of τ ′ not vanishing on [a′, b′] is that there exists a constant C3 > 0 such
that ϕ̃(x) ≤ C3ϕ ◦ τ(x) for all x ∈ [a′, b′]. Using this with (44) in the previous display, we get

‖ϕ̃r h̃(r)‖H′ ≤ C1 C2 C3 max
j=1,...,r

‖ϕr h(j)‖H. (46)

We shall prove that ‖ϕr h(j)‖H appearing in the right-hand side of the previous inequality is in fact
maximized, up to multiplicative and additive constants, at j = r. For j = 1, . . . , r − 1, we proceed
recursively as follows. For any u ∈ (a, b), we have

|h(j)(x)| ≤
∣∣∣∣
∫ x

u
h(j+1)(s) ds

∣∣∣∣ + |h(j)(u)|.

Then, by Jensen’s inequality,

‖ϕr h(j)‖H ≤
{∫ b

x=a
ϕ2r(x)

(
|x − u|

∫
s∈[u,x]

{h(j+1)(s)}2 ds

)
dx

}1/2

+ ‖ϕr‖H |h(j)(u)|,

where we used the convention that [c, d] denotes the same segment for c ≤ d as well as for c ≥ d. By
Fubini’s theorem, the term between braces reads

∫ b

s=a
{h(j+1)(s)}2ψ(s;u) ds with ψ(s;u) =

∫
�[u,x](s) (x − a)r(b − x)r|x − u| dx.
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Let ã < b̃ be two fixed numbers in (a, b). It is straightforward to show that, for some constant C4 > 0
only depending on a, b, ã, b̃, we have

ψ(s;u) ≤ C2
4 ϕ2r(s) for all u ∈ (ã, b̃).

The last three displays thus give that

‖ϕr h(j)‖H ≤ C4‖ϕr h(j+1)‖H + ‖ϕr‖H inf
u∈[ã,b̃]

|h(j)(u)|.

By induction in j, we thus get with (46) that there is a constant C5 such that

‖ϕ̃r h̃(r)‖H′ ≤ C5

(
‖ϕr h(r)‖H +

∑
j=1,...,r−1

inf
u∈[ã,b̃]

|h(j)(u)|
)

. (47)

The final step of the proof consists in bounding δj = infu∈[ã,b̃] |h(j)(u)| for j = 1, . . . , r − 1. For any

v, v′ ∈ [ã, b̃], we have |h(j−1)(v′) − h(j−1)(v)| ≥ δj |v′ − v|. Suppose that v is in the first third part of
the segment [ã, b̃] and v′ in the last third so that |v − v′| ≥ (b̃ − ã)/3. On the other hand, |h(j−1)(v′) −
h(j−1)(v)| ≤ |h(j−1)(v′)| + |h(j−1)(v)|. It follows that |h(j−1)(v′)| and |h(j−1)(v)| cannot be both less
than δj (b̃ − ã)/3, which provides a lower bound of |h(j−1)| on at least one sub-interval of [ã, b̃] of length
(b̃ − ã)/3. Proceeding recursively we get that there exists a sub-interval of [ã, b̃] on which h is lower
bounded by δj multiplied by some constant. This in turn gives that

∑
j=1,...,r−1

inf
u∈[ã,b̃]

|h(j)(u)| ≤ C6‖h‖H,

where C6 is a constant only depending on ã, b̃ and r. Observe that, since f ∈ C̃(α,C), we have
‖f‖H ≤ C. Using (42), t ∈ (0, 1] and ‖h‖H ≤ ‖f − h‖H + ‖f‖H in the last display we thus get

∑
j=1,...,r−1

inf
u∈[ã,b̃]

|h(j)(u)| ≤ C6(2M + 1)C.

Finally, this bound, (47), (45) and (42) yield (43) and the proof is achieved.

Lemma 6. Let (pk) be the sequence of polynomials defined by p1(t) = 1, p2(t) = t, . . . , pk(t) =
t(t + 1) . . . (t + k − 2) for all k ≥ 2. Define the coefficients (c̃k,l)1≤l≤k by the expansion formula
tk−1 =

∑k
l=1 c̃k,lpl(t) valid for k = 1, 2, . . . . Then c̃1,1 = 1, and for all k ≥ 2,

c̃k,1 = 0, c̃k,k = 1 and c̃k,l = c̃k−1,l−1 − (l − 1)c̃k−1,l for all l = 2, . . . , k − 1. (48)

Moreover, we have, for all k ≥ 1,

k∑
l=1

|c̃k,l| ≤ k!. (49)

Proof. By definition of pl, we have tpl(t) = pl+1(t) − (l − 1)pl(t) for any l ≥ 1. Hence, for any k ≥ 2,
writing tk−1 = ttk−2 =

∑
l c̃k−1,ltpl(t), we obtain (48).

We now prove (49). It is obviously true for k = 1. From (48), it follows that, for all k ≥ 2,

k∑
l=1

|c̃k,l| ≤
k−1∑
l=1

l |c̃k−1,l| + 1.

Bounding l inside the last sum by (k − 1) yields (49).

MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 3 2015



224 REBAFKA, ROUEFF

REFERENCES
1. K. E. Andersen and M. B. Hansen “Multiplicative Censoring: Density Estimation by a Series Expansion

Approach”, J. Statist. Plann. Inference 98, 137–155 (2001).
2. M. Asgharian, M. Carone, and V. Fakoor, “Large-Sample Study of the Kernel Density Estimators under

Multiplicative Censoring”, Ann. Statist. 40 (1), 159–187 (2012).
3. F. Balabdaoui and J. A. Wellner, “Estimation of a k-Monotone Density: Limit Distribution Theory and the

Spline Connection”, Ann. Statist. 35 (6), 2536–2564 (2007).
4. D. Belomestny and J. Schoenmakers, Statistical Skorohod Embedding Problem and Its Generaliza-

tions, Technical Report, 2014. URL http://arxiv.org/abs/1407.0873.
5. A. Beurling and P. Malliavin, “On Fourier Transforms of Measures with Compact Support”, Acta Math. 107,

291–309 (1962).
6. F. Comte and V. Genon-Catalot, “Adaptive Laguerre Density Estimation for Mixed Poisson Models”,

Electronic J. Statist. 9, 1112–1148 (2015).
7. R. A. DeVore and G. G. Lorentz, Constructive Approximation (Springer, 1993).
8. Z. Ditzian and V. Totik, Moduli of Smoothness, in Springer Series in Computational Mathematics

(Springer, 1987).
9. Jianqing Fan, “On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems”, Ann.

Statist. 19 (3), 1257–1272 (1991).
10. Jianqing Fan, “Global Behavior of Deconvolution Kernel Estimates”, Statist. Sinica 1 (2), 541–551 (1991).
11. Jianqing Fan, “Adaptively Local One-Dimensional Subproblems with Application to a Deconvolution Prob-

lem”, Ann. Statist. 21 (2), 600–610 (1993).
12. W. Feller, An Introduction to Probability Theory and Its Applications, 2nd ed. (Wiley, New York, 1971),

Vol. 2.
13. G. Gayraud, “Estimation of Functionals of Density Support”, Math. Meth. Statist. 6, 26–47 (1997).
14. C. Goutis, “Nonparametric Estimation of a Mixing Density via the Kernel Method”, J. Amer. Statist. Assoc.

92 (440), 1445–1450 (1997).
15. N. W. Hengartner, “Adaptive Demixing in Poisson Mixture Models”, Ann. Statist. 25 (3), 917–928 (1997).
16. N. P. Jewell, “Mixtures of Exponential Distributions”, Ann. Statist. 10 (2), 479–484 (1982).
17. A. Juditsky and S. Lambert-Lacroix, “On Minimax Density Estimation on R”, Bernoulli 10 (2), 187–220

(2004).
18. P. Kvam, “Length Bias in the Measurements of Carbon Nanotubes”, Technometrics 50 (4), 462–467 (2008).
19. Nan Laird, “Nonparametric Maximum Likelihood Estimation of a Mixing Distribution”, J. Amer. Statist.

Assoc. 73 (364), 805–811 (1978).
20. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Academic/Plenum, New York, 1999).
21. B. G. Lindsay, “The Geometry of Mixture Likelihoods: A General Theory”, Ann. Statist. 11 (1), 86–94

(1983).
22. F. Olmos, B. Kauffmann, A. Simonian, and Y. Carlinet, “Catalog Dynamics: Impact of Content Publishing

and Perishing on the Performance of a LRU Cache”, in Proc. 26th Internat. Teletraffic Congress, Karl-
skrona, Sweden (2014) URL http://arxiv.org/abs/1403.5479.

23. M. Pensky and B. Vidakovic, “Adaptive Wavelet Estimator for Nonparametric Density Deconvolution”, Ann.
Statist. 27 (6), 2033–2053 (1999).

24. P. Reynaud-Bouret, V. Rivoirard, and Ch. Tuleau-Malot, “Adaptive Density Estimation: A Curse of Sup-
port?”, J. Statist. Plann. Inference 141, 115–139 (2011).

25. F. Roueff and T. Ryden, “Nonparametric Estimation of Mixing Densities for Discrete Distributions”, Ann.
Statist. 33, 2066–2108 (2005).

26. B. Valeur, Molecular Fluorescence (Wiley-VCH, Weinheim, 2002).
27. Y. Vardi, “Multiplicative Censoring, Renewal Processes, Deconvolution and Decreasing Density: Nonpara-

metric Estimation”, Biometrika 76, 751–761 (1989).
28. S. Venturini, F. Dominici, and G. Parmigiani, “Gamma Shape Mixtures for Heavy-Tailed Distributions”,

Ann. Appl. Statist. 2 (2), 756–776 (2008).
29. Cun-Hui Zhang, “Fourier Methods for Estimating Mixing Densities and Distributions”, Ann. Statist. 18,

806–831 (1990).
30. Cun-Hui Zhang, “On Estimating Mixing Densities in Discrete Exponential Family Models”, Ann. Statist.

23, 929–945 (1995).

MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 3 2015


		2015-09-17T11:50:14+0300
	Preflight Ticket Signature




