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Abstract—In the present paper, we are mainly concerned with the nonparametric estimation
of the density as well as the regression function, related to stationary and ergodic continuous
time processes, by using orthonormal wavelet bases. We provide the strong uniform consistency
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1. INTRODUCTION

Let X = {Xt : t ≥ 0} be a R
d-valued stationary process having a common density function f(·)

with respect to the Lebesgue measure. On the basis of the sample {Xt : 0 ≤ t ≤ T} observed from the
process X, the kernel estimate of the density function f(·) is defined (see, e.g., Banon (1978)), for any
x ∈ R

d, by

fT (x) =
1

Thd
T

∫ T

0
K

(
x− Xt

hT

)
dt,

where the kernel K(·) is any function which satisfies some regularity conditions and (hT )T≥0 is a
sequence of positive constants converging to zero and Thd

T → ∞ as T → ∞. In the traditional kernel
methods for curve estimation, it has been widely regarded that the performance of the kernel methods
depends largely on the smoothing bandwidth, and depends very little on the form of the kernel. Most
kernels used are symmetric kernels and, once chosen, are fixed. This may be efficient for estimating
curves with unbounded support, but not for curves which have compact support or subset of the
whole real line and are discontinuous at boundary points. For curves of this type, conventional kernel
or orthogonal-series techniques are not adequate and cause boundary bias which is quite difficult to
remove. In such situations, wavelet methods perform relatively well. For finer local analysis and good
asymptotic properties the wavelet estimator is certainly the method to be chosen against kernel method
estimation. A great advantage of the wavelet methods in statistics is to provide adaptive procedures in
the sense that they automatically adapt to the regularity of the object to be estimated. Another advantage
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164 BOUZEBDA et al.

of the wavelet procedures is their remarkable facility of use. For the general theory of wavelets we refer
to Meyer (1992), Daubechies (1992), Mallat (2009) and Vidakovic (1999) among others. The use of
wavelets in various curve estimation problems is surveyed in Härdle et al. (1998), where approximation
properties of wavelets are discussed in detail. For recent references on the subject refer to Giné and
Madych (2014), Li (2014), Bouzebda and Didi (2015), and Giné and Nickl (2009). Leblanc (1995)
established the L2 error of the linear wavelet estimator of f(·) in the univariate setting, which converges
with the rate 1/

√
T when f(·) is in a Besov space and the underlying random process X = {Xt : t ≥ 0}

is assumed to be strongly mixing. Also Masry (1997, 2000)’s seminal papers, studied the rates of strong
convergence for wavelet-based estimation of the density and the regression functions, which are uniform
over compact subsets of R

d. In the present work, we do not assume anything beyond ergodicity of the
underlying process. It is worth noticing that strong mixing implies ergodicity; see, e.g., Remark 2.6 on
p. 50 in combination with Proposition 2.8 on p. 51 in Bradley (2007). Hence the present work extends
the scope of applications provided by the existing works. On the other hand, we mention that there exist
interesting processes which are ergodic but not mixing. Andrews (1984) has shown that a stationary
AR(1) process (Xt)t∈Z obeying

Xt = θXt−1 + εt

with i.i.d. Bernoulli distributed innovations is not strongly mixing. However, ergodicity is preserved
under taking functions of an ergodic process. If (εt)t∈Z is a strictly stationary ergodic process and

Yt = ϑ
(
(. . . , εt−1, εt), (εt+1, εt+2, . . .)

)
for some Borel-measurable function ϑ(·), then (Yt)t∈Z is also ergodic; see Proposition 2.10 on p. 54 in
Bradley (2007). Since the above autoregressive process can be represented as a linear process in the εt’s,
it follows that it is also ergodic. Another example of an ergodic and non-mixing process is considered in
Section 5.3 of Leucht and Neumann (2013). Indeed, assume that the process {(Ti, λi) : i ∈ Z} is strictly
stationary with Ti | Ti−1 ∼ Poisson(λi), Ti being the σ-field generated by (Ti, λi, Ti−1, λi−1, . . .). We
assume that λi = κ(λi−1, Ti−1), where

κ : [0,∞) × N → (0,∞).

However, this process is not mixing in general; see Remark 3 of Neumann (2011) for a counterexample.
We refer to Leucht and Neumann (2013) for further details and motivations for the use of ergodicity
assumption. One of their arguments is that for certain classes of processes, it can be much easier to
prove ergodicity rather than mixing. It is known that any sequence (εt)t∈Z of i.i.d. random variables is
ergodic. Hence, it is immediately clear that (Yt)t∈Z as above is also ergodic. It is worth noticing that the
ergodicity is implied by all mixing conditions, being weaker than all of them. This hypothesis seems to be
the most naturally adapted and provides a better framework to study data series, for example, generated
by noisy chaos.

To the best of our knowledge, the results presented here, respond to a problem that has not been
studied systematically until present, and it gives the main motivation to this paper.

The paper is organized as follows. General notation and definitions of the multiresolution analysis are
given in Section 2. The assumptions and asymptotic properties of the wavelet-based density estimators
are given in Section 3, which includes the optimal uniform convergence rates. Section 4 is devoted to
wavelet-based estimation of the regression function. We establish the uniform convergence rates and
characterize the asymptotic normality under the ergodicity condition in Section 4.1. Some concluding
remarks and possible future developments are mentioned in Section 5. To avoid interrupting the flow of
the presentation, all mathematical developments are relegated to Section 6.

2. MULTIRESOLUTION ANALYSIS

In this section, we set out some definitions and notation for later use. A general introduction to the
theory of wavelets can be found in Meyer (1992), Daubechies (1992), Mallat (2009), and Vidakovic
(1999). Following Meyer (1992) a multiresolution analysis on the Euclidean space R

d is a decomposition
of the space L2(Rd) into an increasing sequence of closed subspaces {Vj : j ∈ Z} such that

(i) Vj ⊂ Vj+1, j ∈ Z,

MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 3 2015



MULTIVARIATE WAVELET DENSITY 165

(ii) ∩jVj = {0}, ∪jVj = L2(Rd),

(iii) f(x) ∈ Vj ⇔ f(2x) ∈ Vj−1, f(x) ∈ Vj ⇒ f(x + k) ∈ Vj, k ∈ Z
d,

where V0 is closed under integer translation. Finally, there exists a scale function φ(·) ∈ L2(Rd) with∫
Rd

φ(x) dx = 1,

such that {φk(x) = φ(x − k) : k ∈ Z
d} is an orthonormal basis for V0. It follows that {φj,k(x) =

2jd/2φj(2jx− k) : k ∈ Z
d} is an orthonormal basis for Vj . The multiresolution analysis is called r-

regular if φ(·) ∈ Cr and all its partial derivatives up to total order r are rapidly decreasing, i.e., for every
integer i > 0, there exists a constant Ai such that

|(Dβφ)(x)| ≤ Ai

(1 + ‖x‖)i for all |β| ≤ r, (2.1)

where

(Dβφ)(x) =
∂βφ(x)

∂β1x1 · · · ∂βdxd
and β = (β1, . . . , βd), |β| =

d∑
i=1

βi.

Throughout the sequel, the multiresolution is assumed to be r-regular. If Wj denotes the orthogonal
complement of Vj in Vj+1, i.e.,

Vj ⊕ Wj = Vj+1,

then L2(Rd) can be decomposed as

L2(Rd) =
⊕
j∈Z

Wj , (2.2)

or, equivalently, as

L2(R) = Vj0 ⊕
⊕
j≥j0

Wj. (2.3)

Then there exist N = 2d − 1 wavelet functions {ψi(x), i = 1, . . . , N} such that

(W.1) {ψi(x − k) : k ∈ Z
d, i = 1, . . . , N} is an orthonormal basis for W0,

(W.2) with ψi,j,k(x) = 2jd/2ψi(2jx − k) the functions {ψi,j,k(x) : i = 1, . . . , N,k ∈ Z
d, j ∈ Z} consti-

tute an orthonormal basis for L2(Rd),

(W.3) ψi(·) has the same regularity as φ(·) and both functions have compact support [−L,L]d for some
L > 0.

For any f(·) ∈ L2(Rd) we have the orthonormal representation, for any integer m,

f(x) =
∑
k∈Zd

amkφm,k(x) +
∑
j≥m

N∑
i=1

∑
k∈Zd

bijkψi,j,k(x), (2.4)

where

amk =
∫

Rd

f(u)φm,k(u) du

and

bi,j,k =
∫

Rd

f(u)ψi,j,k(u) du.
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Note that the orthogonal projection of f(·) on Vl can be written in two equivalent ways, for any m ≤ l,

(PVl
f)(x) :=

∑
k∈Zd

alkφl,k(x) =
∑
k∈Zd

amkφm,k(x) +
l∑

j=m

N∑
i=1

∑
k∈Zd

bijkψi,j,k(x). (2.5)

3. MULTIVARIATE DENSITY ESTIMATION

Throughout the sequel, assume that the density function f(·) ∈ L2(Rd). Then f(·) admits the
wavelet representation (2.4). Given the sample {Xt : 0 ≤ t ≤ T} we estimate the coefficients {amk}
and {bijk} by

âmk =
1
T

∫ T

0
φm,k(Xt) dt and b̂ijk =

1
T

∫ T

0
ψi,j,k(Xt) dt, (3.1)

and note that these estimates are unbiased, that is

E(âmk) = amk and E(̂bijk) = bijk.

A linear estimate of f(·) can be obtained from (2.4) by

f̂T (x) =
∑
k∈Zd

âmkφm,k(x) (3.2)

or, equivalently, as

f̂T (x) =
∑
k∈Zd

âj0kφj0,k(x) +
m∑

j=j0

N∑
i=1

∑
k∈Zd

b̂ijkψi,j,k(x), (3.3)

for any j0 ≤ m. Here the resolution level m = m(T ) → ∞ at a rate specified below. We assume that
φ(·) and ψi(·) have a compact support so that the summations above are finite for each fixed x (note
that in this case the support of φ(·) and ψi(·) is a monotonically increasing function of their degree of
differentiability, see Daubechies (1992)). We focus our attention on multivariate linear estimators (3.2)
and (3.3) which will be shown to have uniform almost sure convergence rates over compact sets.

We will denote by Ft the σ-field generated by {Xs : 0 ≤ s ≤ t}. For a small constant δ > 0, define by

f
Ft−δ

Xt
(·) the conditional density of Xt given the σ-field Ft−δ .

The following assumptions will be needed throughout the paper.

(C.1) For any x ∈ R
d

lim
T→∞

sup
x∈Rd

∣∣∣∣ 1
T

∫ T

0
fFt−δ(x) dt − f(x)

∣∣∣∣ = 0, in the a.s. and L2 sense.

At this point, we may refer to Peškir (1998) for further details.

(C.2) The density f(·) is continuous and has bounded partial derivatives of order r, that is, there exists
a constant 0 < C < ∞ such that

sup
x∈D

∣∣∣∣ ∂rf(x)

∂xk1
1 . . . ∂xkd

d

∣∣∣∣ ≤ C, k1, . . . , kd ≥ 0, 0 < k1 + · · · + kd = r.

Define the kernel K(u,v) by

K(u,v) :=
∑
k∈Zd

φ(u − k)φ(v − k) and hn = 2−m(n). (3.4)
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Theorem 3.1. Assume that

m(T ) = m → ∞ and
2dm(T ) log T

T
→ 0 as T → ∞.

For every compact subset D ⊂ R
d, and under assumption (C.1), we have almost surely

sup
x∈D

∣∣f̂T (x) − E(f̂T (x))
∣∣ = O

((
(log T )2dm(T )

T

)1/2)
+ O(2−dm(T )/2).

The proof of Theorem 3.1 is presented in Section 6.

Theorem 3.2. Assume that

m(T ) = m → ∞ and
2dm(T ) log T

T
→ 0 as T → ∞.

For every compact subset D ⊂ R
d, and under assumptions (C.1) and (C.2), we have almost surely

sup
x∈D

|f̂T (x) − f(x)| = O

((
(log T )2dm(T )

T

)1/2)
+ O(2−dm(T )/2) + O(2−drm(T )).

The proof of Theorem 3.2 is presented in Section 6.

4. MULTIVARIATE REGRESSION ESTIMATION

Let {Xi, Yi} be jointly stationary processes and ϕ(·) be a Borel measurable function on the real line.
Assume that E[|ϕ(Y1)|] < ∞ and define the regression function

m(x, ϕ) = E[ϕ(Y1) | X1 = x].

The introduction of the function ϕ(·), as was pointed out in the Introduction, allows us to include some
important special cases:

• ϕ(Y ) = 1{Y ≤ y} gives the conditional distribution of Y1 given X1 = x.

• ϕ(Y ) = Y k gives the conditional moments of Y1 given X1 = x.

Recall that the probability density f(x) = fX1(x) of X1 is assumed to exist and be bounded and suppose
in addition that

E[|ϕ(Y1)|p] < ∞ for p ≥ 1.

Now define

H(x) = m(x, ϕ)f(x).

Notice that H(·) ∈ Lp(Rd). It follows that for p = 2, H(·) has the L2 orthonormal representation

H(x) =
∑
k∈Zd

a′mkφm,k(x) +
∑
j≥m

N∑
i=1

∑
k∈Zd

b′ijkψi,j,k(x), (4.1)

where

a′mk =
∫

Rd

H(u)φm,k(u)du, b′i,j,k =
∫

Rd

H(u)ψi,j,k(u)du.

Suppose now that we observe a sequence {Xi, Yi}n
i=1 of copies of (X, Y ) that is assumed to be stationary

and ergodic. Given the preceding notation, we consider the estimates of the coefficients {a′mk} and {b′ijk}
given by

â′mk =
1
T

∫ T

0
ϕ(Yt)φm,k(Xt) dt and b̂′ijk =

1
T

∫ T

0
ϕ(Yt)ψi,j,k(Xt) dt. (4.2)
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A linear estimate of H(·) can be obtained, from (4.1), by

ĤT (x) =
∑
k∈Zd

â′mkφm,k(x), (4.3)

or, equivalently, as

ĤT (x) =
∑
k∈Zd

â′j0kφj0,k(x) +
m∑

j=j0

N∑
i=1

∑
k∈Zd

b̂′ijkψi,j,k(x), (4.4)

for any j0 ≤ m. Now define the linear estimates of the regression function m(x, ϕ) by

mT (x, ϕ) :=
ĤT (x, ϕ)

f̂T (x)
:=

ĤT (x)

f̂T (x)
. (4.5)

The estimates (4.5) can be viewed as wavelet-based Nadaraya–Watson estimates of the regression
function m(x, ϕ). This family of estimators was deeply investigated by Masry (2000). Let us denote
by g(·) the density function of (X, Y ), and by ρ the density function of Y . Let Gt be the σ-field generated
by {(Xs, Ys) : 0 ≤ s ≤ t}, and for δ > 0 small enough, let gGt−δ(·) and ρGt−δ(·) be the conditional
densities of (X, Y ) and Y respectively, given the σ-field Gt−δ. Define the σ-field

St,δ = σ
(
(Xs, Ys); (Xr) : 0 ≤ s ≤ t, t ≤ r ≤ t + δ

)
.

We need the following assumptions.

(N.0) E
[
|ϕ(Y0)|ν

]
< ∞ for some ν ≥ 1.

(N.1) For any y ∈ R

lim
T→∞

sup
y∈R

∣∣∣∣ 1
Tρ(y)

∫ T

0
ρGt−δ(y) dt − 1

∣∣∣∣ = 0 in the a.s. and L2 sense.

We may refer to Peškir (1998) for further details.

Our main results concerning the strong consistency with rate of ĤT (x) are given in the following
theorems.

Theorem 4.1. Assume that

m(T ) = m → ∞ and
2dm(T ) log T

T
→ 0 as T → ∞.

Let LT be a sequence of numbers such that

Lp
T 2−m(T )(d(p−1)+p) = O(1) as T → ∞.

For every compact subset D ⊂ R
d, and under the assumptions (N.0)–(N.1), we have almost surely

sup
x∈D

|ĤT (x) − HT (x)| = O

((
(log T )2dm(T )

T

)1/2)
+ O(2−dm(T )/2),

where

HT (x) =
1

Thd
T

∫ T

0
E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt.

The proof of Theorem 4.1 is presented in Section 6.
The following additional assumptions are needed for our second strong consistency result.
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(N.2) The regression function m(·) is continuous and has bounded partial derivatives of order r, that is,
there exists a constant 0 < C′ < ∞ such that

sup
x∈D

∣∣∣∣ ∂rm(x)

∂xk1
1 . . . ∂xkd

d

∣∣∣∣ ≤ C
′, k1, . . . , kd ≥ 0, k1 + · · · + kd = r;

(N.3) For any (x, y) ∈ R
d+1 and any δ > 0 small enough,

lim
n→∞

sup
(x,y)∈Rd+1

∣∣∣∣ 1
T

∫ n

0
gGt−δ (x, y) dt − g(x, y)

∣∣∣∣ = 0 in the a.s. and L2 sense.

(N.4) For any x ∈ R
d, there are two positive constants λ and Λ such that

(i) inf
x∈D

|f(x)| > λ > 0,

(ii) sup
x∈D

|m(x, ϕ)| ≤ Λ < ∞.

Comments on hypotheses. Condition (N.1) implies the ergodic nature of the data as given, for
instance, in Györfi et al. (1989), assuming that ρGt−δ and gGt−δ belong to the space C0, at least, of
continuous functions, which is a separable Banach space. Moreover, approximating the integrals∫ T

0
ρGt−δ(y) dt and

∫ T

0
gGt−δ(x, y) dt

by their Riemann’s sums, it follows that

T−1

∫ T

0
ρGt−δ(y) dt � n−1

n∑
i=1

ρGTi−δ(y) = n−1
n∑

j=1

ρG(j−1)δ (y)

and

T−1

∫ T

0
gGt−δ (x, y) dt � n−1

n∑
i=1

gGTi−δ(x, y) = n−1
n∑

j=1

gG(j−1)δ (x, y).

Since the processes (XTj , YTj )j≥1 and (YTj )j≥1 are stationary and ergodic (see Proposition 4.3 of
Krengel (1985)) following Delecroix (1987) (see Lemma 4 and Corollary 1 together with their proofs),
one may prove that the sequences (ρG(j−1)δ (y))j≥1 and (gG(j−1)δ (x, y))j≥1 of conditional densities are
stationary and ergodic. Moreover, making use of Beck (1963)’s theorem (see, for instance, Györfi et
al. (1989), Theorem 2.1.1), it follows that

lim
T→∞

sup
y∈R

∣∣∣∣ 1
T

∫ T

0
ρGt−δ(y) dt − E(ρG−δ(y))

∣∣∣∣ = lim
T→∞

sup
y∈R

∣∣∣∣ 1
T

∫ T

0
ρGt−δ(y) dt − ρ(y)

∣∣∣∣ = 0 a.s.

and

lim
T→∞

sup
x∈Rd

∣∣∣∣ 1
T

∫ T

0
gGt−δ(x, y) dt − E(gG−δ(x, y))

∣∣∣∣ = lim
T→∞

sup
x∈Rd

∣∣∣∣ 1
T

∫ T

0
gGt−δ(x, y) dt − g(x)

∣∣∣∣ = 0 a.s.

It is then clear that both Conditions (N.1) and (N.3) are satisfied.

Theorem 4.2. Assume that

m(T ) = m → ∞ and
2dm(T ) log T

T
→ 0 as n → ∞.

Let LT be a sequence of numbers such that

Lp
T 2−m(T )(d(p−1)+p) = O(1) as T → ∞.
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For every compact subset D ⊂ R
d, and if the hypotheses (C.2), (N.0)–(N.3) are satisfied, we have

almost surely

sup
x∈D

|Ĥn(x) − H(x)| = O

((
(log n)2dm(n)

n

)1/2)
+ O(2−dm(n)/2) + O(2−drm(T )).

The proof of Theorem 4.2 is presented in Section 6.
Our main result concerning the strong consistency with rate of mn(x, ϕ) is given in the following

theorem.

Theorem 4.3. Assume that

m(T ) = m → ∞ and
2dm(T ) log T

T
→ 0 as T → ∞.

Let LT be a sequence of numbers such that

Lp
T 2−m(T )(d(p−1)+p) = O(1) as T → ∞.

For every compact subset D ⊂ R
d, and if the hypothesis (C.1), (C.2), (N.0)–(N.4) are satisfied, we

have almost surely

sup
x∈D

|mT (x, ϕ) − m(x, ϕ)| = O

((
(log T )2dm(T )

T

)1/2)
+ O(2−dm(T )/2) + O(2−drm(T )).

The proof of Theorem 4.3 is presented in Section 6.

Some comments on the results. In deriving results for nonparamptric estimators, in particular, the
wavelet estimator, we generally decompose the error in two terms: the stochastic component and
the deterministic one, i.e., the bias. For bounding the stochastic part, i.e., in order to find almost
sure bounds on the stochastic process, we especially need assumptions about the wavelet functions
{ψi(x), i = 1, . . . , N} in addition to general assumptions about the density or reversion. The determin-
istic component requires more assumptions about the smoothness of m(·, ϕ) and the density function f .
In the classical kernel density estimation, the limiting behavior of kernel estimator fn(·), for appropriate
choices of the bandwidth an, has been studied by a large number of statisticians over many decades. For
good sources of references to research literature in this area along with statistical applications consult
Devroye and Lugosi (2001), Devroye and Györfi (1985), Bosq and Lecoutre (1987), Scott (1992), Wand
and Jones (1995) and Prakasa Rao (1983). In particular, the condition that an → 0 together with
nad

n → ∞ is necessary and sufficient for the convergence in probability of fn(x) towards the limit f(x),
independently of x ∈ R

d and the density f(·). Theorem 3.1 (resp. Theorem 4.1) shows an intermediate
result by obtaining a rate of convergence for the density estimator (resp. ĤT (x)). Secondly, we have
shown that the density estimate (resp. ĤT (x)) converges to the true density function (resp. H(x))
with the same rate. In particular, we have proved that the difference between the right-hand side of
the equation in Theorem 3.1 (resp. Theorem 4.1) and the right-hand side of the equation in Theorem 3.2
(resp. Theorem 4.2) vanishes faster than the rest of the terms. The imposed conditions on the wavelet
functions permit us to exploit the smoothness of the density function or the regression function. It is well
known that the best obtainable rate of convergence of the kernel estimator, in the AMISE sense, is of
order n−4/5, in the univariate case. If we discard the condition that the kernel function must be a density,
the convergence rate could be faster. Indeed, the convergence rate can be made arbitrarily close to the
parametric n−1 as the order increases. In fact, Chacón et al. (2007) showed that the parametric rate n−1

can be attained by the use of superkernels, and that superkernel density estimators automatically adapt
to the unknown degree of smoothness of the density. The main drawback of higher-order kernels in this
situation is the negative contribution of the kernel which may make the estimated density not a density
itself. The interested reader may refer to, e.g., Jones et al. (1995), Jones and Signorini (1997) and Jones
(1995). It will be of interest to give a complete and analogous discussion in our setting for wavelet type
estimators.
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4.1. Asymptotic Normality

Let us introduce

σ2
ϕ(x) = Var(ϕ(Y ) | X = x) =

1
fX(x)

∫
R

{
ϕ(y) − m(x, ϕ)

}2
fX,Y (x, y) dy, (4.6)

and let m2(ϕ, ·) be the second order conditional moment of the random variable ϕ(Y ) defined by

δ2
ϕ(ϕ,x) = E[ϕ2(Y ) | X = x] =

1
fX(x)

∫
R

ϕ2(y)fX,Y (x, y) dy. (4.7)

The following additional conditions are needed for the detailed statement of our results concerning the
asymptotic normality.

(N.5) The conditional mean of Yt given the σ-field St−δ,δ depends only on Xt, i.e., for any i ≥ 1,

E[ϕ(Yt) | St−δ,δ] = E[ϕ(Yt) | Xt].

(N.6) For any x ∈ R
d and any δ > 0 small enough,

lim
T→∞

1
T

∫ T

0
fGt−δ(x) dt = f(x) in the a.s. and L2 sense,

where fGt−δ exists and continuous in a neighborhood of x.

(N.7) For any t ∈ [0, T ] and any δ > 0 small enough, and t ≤ r ≤ t + δ,

(i) The conditional variance of ϕ(Yt) given the σ-field Si−1 depends only on Xi, i.e., for any
i ≥ 1,

E
[(

ϕ(Yt) − m(x, ϕ)
)2 | Sr,δ

]
= E

[(
ϕ(Yt) − m(x, ϕ)

)2 | Xt

]
= σ2

ϕ(x) a.s.

(ii) The function σ2
ϕ(x) is continuous in a neighborhood of x, that is

sup
{u : ‖x−u‖<h}

|σ2
ϕ(u) − σ2

ϕ(x)| = o(1) as h → 0.

(N.8) The function m2(ϕ, ·) is a continuous function in a neighborhood of x, that is

sup
{u : ‖x−u‖<h}

|δ2
ϕ(ϕ,u) − δ2

ϕ(ϕ,x)| = o(1) as h → 0.

Comments on hypotheses. Assume that the random functions f
Gt−δ
t (x), for any t ∈ [0, T ], belong to

the space C0 of continuous functions, which is a separable Banach space. Moreover, approximating the
integral

∫ T
0 f

Gt−δ
t (x) dt by its Riemann’s sum, it follows that

1
T

∫ T

0
f
Gt−δ
t (x) dt =

1
T

n∑
i=1

∫ Ti

Ti−1

f
Gt−δ
t (x) dt � 1

n

n∑
i=1

f
GTi−2

Ti−1
(x).

Since the process (XTj )j≥1 is stationary and ergodic, following Delecroix (1987) (see Lemma 4 and
Corollary 1 together with their proofs), one may prove that the sequence (fjδ,(j−1)δ(x))j≥1 of random
functions is stationary and ergodic. Indeed, it suffices to replace the conditional densities in the work of
Delecroix by fjδ,(j−1)δ’s and the density by the function f .

Below, we write Z
d= N(μ, σ2) whenever the random variable Z follows a normal law with expecta-

tion μ and variance σ2.
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Theorem 4.4. Assume that Conditions (C.3), (N.0), (N.2), (N.3), (N.6), (N.7) are fulfilled. Suppose
that

m(T ) → ∞, T2−d(m(T )) → ∞ as T → ∞.

We have the following convergence in distribution, for x ∈ D, as T → ∞,
{

T

2dm(T )

}1/2(
mT (x, ϕ) − m(x, ϕ)

)
→ N

(
0,Σ2

ϕ(x)
)
,

where

Σ2
ϕ(x) =

σ2
ϕ(x)

fX(x)

∫
Rd

{ ∑
k∈Zd

φ(k)φ(t + k)
}2

dt

with σ2
ϕ(x) defined in (4.6).

The proof of Theorem 4.4 is provided in Section 6.

Theorem 4.5. Assume that Conditions (N.0), (N.1), (N.2), (N.6) and (N.8) are fulfilled. Suppose
that

m(n) → ∞, n2−d(m(n)) → ∞ as n → ∞.

We have the following convergence in distribution, for x ∈ D as n → ∞,
{

n

2dm(n)

}1/2(
Ĥn(x, ϕ) − Hn(x, ϕ)

)
→ N

(
0,Σ∗2

ϕ (x)
)
,

where

Σ2∗
ϕ (x) = m2(ϕ,x)fX(x)

∫
Rd

{ ∑
k∈Zd

φ(k)φ(t + k)
}2

dt

with m2(ϕ,x) defined in (4.7).

The proof of Theorem 4.5 is given in Section 6.

Corollary 4.6. Assume that the conditions of Theorem 4.5 are satisfied. In addition, (C.3), (N.4)
and (N.5) are assumed to be satisfied. Suppose that

n2−(d+2)m(n) → 0 as n → ∞. (4.8)

We have the following convergence in distribution, for x ∈ D, as n → ∞,
{

n

2dm(n)

}1/2(
Ĥn(x) − H(x)

)
→ N

(
0,Σ∗2

ϕ (x)
)
.

The proof of Corollary 4.6 is given in Section 6.
The following theorem is more or less straightforward, given Theorem 4.5.

Theorem 4.7. Assume that Condition (C.2) is fulfilled. Suppose that

m(n) → ∞, n2−d(m(n)) → ∞ as n → ∞.

We have the following convergence in distribution, for x ∈ D, as n → ∞,
{

n

2dm(n)

}1/2(
f̂n(x) − fn(x)

)
→ N

(
0,Σ∗∗2

ϕ (x)
)
,

where

Σ∗∗2(x) = fX(x)
∫

Rd

{ ∑
k∈Zd

φ(k)φ(t + k)
}2

dt.
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Corollary 4.8. Assume that Conditions (C.1), (C.2), (C.3) are fulfilled. Suppose that

n2−(d+2)m(n) → 0 as n → ∞. (4.9)

We have the following convergence in distribution, for x ∈ D, as n → ∞,
{

n

2dm(n)

}1/2(
f̂n(x) − f(x)

)
→ N

(
0,Σ∗∗2(x)

)
.

The proof of Corollary 4.8 is given in Section 6.

5. CONCLUDING REMARKS AND FUTURE WORK

In this work we have considered the problem of estimation of the density and regression functions
in the framework of stationary and ergodic continuous time processes. The uniform strong consistency
with the exact rates and the asymptotic normality are obtained by using the sophisticated martingale
approach. It is obvious that in some applications the stationarity assumption may be violated, where an
important question arises, that is how to extend our results to the setting of non-stationary continuous
time processes. The proof of such results, however, should require a different methodology from the one
used in the present paper, which goes well beyond the scope of the present paper and leaves this study
open for future research.

5.1. The Estimation in the Besov Spaces

According to the Appendix of Masry (2000), there are many equivalent definitions of the Besov
spaces Bs,p,q, for s > 0, 1 ≤ p ≤ ∞, and 1 ≤ q ≤ ∞. Let

(Sτf)(x) = f(x− τ ).

For 0 < s < 1, set

γs,p,q(f) =
(∫

Rd

(‖Sτf − f‖Lp

‖τ‖s

)q dτ

‖τ‖d

)
, γs,p,∞(f) = sup

τ∈Rd

‖Sτf − f‖Lp

‖τ‖s
.

For s = 1, set

γs,p,q(f) =
(∫

Rd

(‖Sτf − f‖Lp

‖τ‖

)q dτ

‖τ‖d

)
, γs,p,∞(f) = sup

τ∈Rd

‖Sτf − f‖Lp

‖τ‖ .

For 0 < s < 1 and 1 ≤ p, q ≤ ∞, define

Bs,p,q = {f ∈ Lp : γs,p,q(f) < ∞}.
For s > 1, put

s = [s]− + {s}+

with [s]− an integer and 0 < {s}+ ≤ 1. Define Bs,p,q to be the space of functions in Lp(Rd) such that
Djf ∈ B{s}−,p,q for all |j| ≤ [s]−. The norm is defined by

‖f‖Bs,p,q = ‖f‖Lp +
∑

|j|≤[s]−

γ{s}−,p,q(D
jf).

For further details, refer to Bergh and Löfström (1967), Triebel (1983) and the Appendix of Masry (2000).
Recall that the function f ∈ Bs,p,q must be in Lp(Rd) and s > 0 is a real-valued smoothness parameter
of f . A second and very useful characterization of Bs,p,q in terms of wavelets coefficients is due to Meyer
(1992). Assume the multiresolution analysis is r-regular and s < r. Then f ∈ Bs,p,q if and only if

Js,p,q(f) = ‖PV0f‖Lp +
(∑

j>0

(
2js‖PWjf‖Lp

)q
)1/q

< ∞,
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with the usual sup-norm modification for q = ∞. Moreover, using the wavelet representation, f ∈ Bs,p,q

if and only if

J ′
s,p,q(f) = ‖a0 · ‖Lp +

(∑
j>0

(
2j(s+d(1/2−1/p))‖bj · ‖Lp

)q
)1/q

< ∞,

where

‖bj · ‖Lp =
( d∑

i=1

∑
k∈Zd

|bi,j,k|p
)1/p

.

If we assume that f,H ∈ Bs,p,q, and some additional conditions, one can show, by using similar
arguments to those used in Masry (2000), adapted to our setting, that

sup
x∈D

|mn(x, ϕ) − m(x, ϕ)| = O

((
log n

n

)(s−d/p)/d+2(s−d/p))
.

This will be considered elsewhere.

6. PROOFS

This section is devoted to the proofs of our results. The previously presented notation continues to be
used in the following. The following technical lemma will be instrumental in the proof of our theorems.

Lemma 6.1. Let (Zn)n≥1 be a sequence of real martingale differences with respect to the sequence
of σ-fields (Fn = σ(Z1, . . . , Zn))n≥1, where σ(Z1, . . . , Zn) is the σ-field generated by the random
variables Z1, . . . , Zn. Set

Sn =
n∑

i=1

Zi.

For any p ≥ 2 and any n ≥ 1, assume that there exist nonnegative constants C and dn such that

E
[
Zp

n | Fn−1

]
≤ Cp−1p! d2

n, almost surely.

Then, for any ε > 0, we have

P(|Sn| > ε) ≤ 2 exp
{
− ε2

2(Dn + Cε)

}
,

where Dn =
∑n

i=1 d2
i .

The proof follows as a particular case of Theorem 8.2.2 due to de la Peña and Giné (1999).

Proof of Theorem 3.1
Define the kernel K(u,v) by

K(u,v) :=
∑
k∈Zd

φ(u − k)φ(v − k). (6.1)

By using the fact that

|φ(x)| ≤ Ad+1

(1 + ‖x‖)d+1
,

we infer that the kernel function K(·) defined in (6.1) converges uniformly and satisfies Meyer (1992),
p. 33,

|K(v,u)| ≤ Cd+1

(1 + ‖v − u‖)d+1
, (6.2)
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for a constant Cd+1. From (6.2) it follows, for any j ≥ 1, that∫
Rd

|K(v,u)|jdv ≤ Gj(d),

where

Gj(d) = 2πd/2 Γ(d)Γ(j + d(j − 1))
Γ(d/2)Γ((d + 1)j)

Cj
d+1

and Γ(t) is the Gamma function, that is, Γ(t) :=
∫ ∞
0 yt−1 exp(−y) dy. By combining (3.1), (3.2)

and (6.1), we observe that f̂T (x) can be written as an extended kernel estimator in the following way

f̂T (x) =
1

Thd
T

∫ T

0
K

(
x
hT

,
Xt

hT

)
dt, where hT = 2−m(T ). (6.3)

Making use of the triangle inequality, we readily obtain that

sup
x∈D

∣∣f̂T (x) − E(f̂T (x))
∣∣ ≤ sup

x∈D

∣∣f̂T (x) − fT (x)
∣∣ + sup

x∈D

∣∣fT (x) − E(f̂T (x))
∣∣

= FT,1(x) + FT,2(x), (6.4)

where

fT (x) =
1

Thd
T

∫ 1

0
E

(
K

( x
hT

,
Xt

hT

)∣∣∣Ft−δ

)
dt.

For a positive real number δ such that n = T/δ ∈ N, consider the δ-partition γi = iδ, 0 ≤ i ≤ n, of the
interval [0, T ]. Moreover, for t > 0 and 1 ≤ j ≤ n, consider the σ-fields

Ft = σ
(
(Xs) : 0 ≤ s < t

)
, Gi = σ

(
(Xs) : 0 ≤ s ≤ Ti

)
.

Since D is compact, it can be covered by a finite number L = L(T ) of cubes Dj , with centers xj

having sides of length

r(T ) = const /L(T )1/d for j = 1, . . . , L(T ).

We set

L(T ) =
(

T

hd+2
T log T

)d/2

.

Then we readily infer that

sup
x∈D

|f̂T (x) − fT (x)| = sup
x∈D

∣∣∣∣ 1
Thd

T

n∑
i=1

∫ γi

γi−1

(
K

( x
hT

,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

)∣∣∣Ft−δ

])
dt

∣∣∣∣

= max
1≤j≤L(T )

sup
x∈Dj

∣∣∣∣ 1
Thd

T

n∑
i=1

∫ γi

γi−1

(
K

( x
hT

,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

)∣∣∣Ft−δ

])
dt

∣∣∣∣

≤ max
1≤j≤L(T )

sup
x∈Dj

∣∣∣∣ 1
Thd

T

(
Yi(x) − Yi(xj)

)∣∣∣∣ + max
1≤j≤L(T )

∣∣∣∣ 1
Thd

T

Yi(xj)
∣∣∣∣

= IT,1(x) + IT,2(x)

with

Yi(x) :=
∫ γi

γi−1

(
K

( x
hT

,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

)∣∣∣Ft−δ

])
dt.

Since φ(·) satisfies (2.1) for |β| = 1, it follows that (Meyer (1992), p. 33)∣∣∣∣∂K(u,y)
∂ui

∣∣∣∣ ≤ C2

(1 + ‖u− y‖)2 ≤ C2, i = 1, . . . , d.
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This, in turn, by Cauchy–Schwarz, implies that

∣∣K(u,y) − K(v,y)
∣∣ ≤ C2

d∑
i=1

|ui − vi| ≤ d1/2C2‖u − v‖.

The last equation allows us to infer that∣∣∣∣K
( x

hT
,
Xt

hT

)
− K

( xj

hT
,
Xt

hT

)∣∣∣∣ ≤ d1/2r(T )C2h
−1
T ,

which implies that

IT,1(x) ≤ 2d1/2r(T )C2

hd+1
T

=
2d1/2 const ·C2

hd+1
T L(T )1/d

= o

(
log T

Thd
T

)1/2

. (6.5)

The proof needs to use Lemma 6.1. Therefore we have to check its conditions. Notice, for any δ > 0, that
(Yi)1≤j≤n is a sequence of martingale differences with respect to the sequence of σ-fields (Gi−1)1≤j≤n.
Indeed, since

Gi−2 ⊆ Ft−δ ⊆ Gi−1 for any t ∈ [Ti−1, Ti],

it is clear that Yi is Gi−1-measurable and satisfies

E
[
Yi (x) | Gi−2

]
= E

[ ∫ Ti

Ti−1

(
K

( x
hT

,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

)∣∣∣Ft−δ

])
dt

∣∣∣Gi−2

]
= 0.

By Minkowski’s and Jensen’s inequalities, we observe that
∣∣E[Y p

i (x) | Gi−2]
∣∣ ≤ E

[∣∣∣∣
∫ γi

γi−1

(
K

( x
hT

,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

)∣∣∣Ft−δ

])
dt

∣∣∣∣
p ∣∣∣Gi−2

]

≤
∫ γi

γi−1

E

[∣∣∣∣K
( x

hT
,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

]∣∣∣∣
p ∣∣∣Gi−2

]
dt

≤
∫ γi

γi−1

(
E

[
Kp

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]1/p
+ E

[
E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

]p ∣∣∣Gi−2

]1/p)p

dt

≤
∫ γi

γi−1

(
E

[
Kp

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]1/p
+ E

[
E

[
Kp

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

] ∣∣∣Gi−2

]1/p)p

dt

=
∫ γi

γi−1

(
2E

[
Kp

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]1/p
)p

dt

= 2p

∫ γi

γi−1

E

[
Kp

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt.

Observe that

E
[
Kp

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
=

∫
Kp

( x
hT

,
Xt

hT

)
fGi−2(u) du

≤
∫

Cp
d+1

(1 + h−1
T ‖x − u‖)(d+1)p

fGi−2(u) du

≤ Cp
d+1h

(d+1)p
T . (6.6)

Therefore we have∣∣E[
Y p

i (x)|Gi−2

]∣∣ ≤ 2p

∫ γi

γi−1

Cp
d+1h

(d+1)p
T dt ≤ 2δCp

d+1h
(d+1)p
T ≤ 2Cp−1

d+1p!d2
i ,

where

d2
i = δCd+1h

(d+1)p
T .
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It follows that

Dn =
n∑

j=1

d2
i = Th

(d+1)p
T Cd+1 ≤ Thd

T Cd+1. (6.7)

Therefore we have the following chain of inequalities, for a positive constant C2,

P

(
max

1≤j≤L(T )

∣∣∣∣ 1
Thd

T

n∑
i=1

Yi(xj)
∣∣∣∣ > εT

)
≤

L(T )∑
j=1

P

(∣∣∣
n∑

i=1

Yn(xj)
∣∣∣ > εT Thd

T

)

≤ 2L(T ) exp
{
− (Thd

T )2(log T/Thd
T )

2(Dn + 2Cd+1Thd
T (log T/Thd

T )1/2)

}

≤
(

T

hd+1
T log T

)d/2

exp
{
− Thd

T log T

O(Thd
T )(1 + 2Cd+1(log T/Thd

T )1/2)

}

≤
(

T

hd+1
T log T

)d/2

(T−C2ε20) =
T d/2−C2ε20

(hd+1
T log T )d/2

=
1(

(Thd
T ) log T hT T 2(ε20C2/d−2)

)d/2
.

By choosing ε0 sufficiently large, such that

ε2
0C2/d − 2 > 0,

we readily obtain that

∑
n≥1

P

(
max

1≤j≤L(T )

∣∣∣∣ 1
Thd

T

n∑
i=1

Yi(xj)
∣∣∣∣ > εT

)
< ∞.

We obtain the assertion by a routine application of the Borel–Cantelli lemma

IT,2(x) = O

(
log T

Thd
T

)1/2

. (6.8)

We next evaluate the second term in the right-hand side of (6.4). One can see that

sup
x∈D

∣∣fT (x) − E(f̂T (x))
∣∣

= sup
x∈D

∣∣∣∣ 1
Thd

T

∫ T

0
E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

]
dt − 1

Thd
T

∫ T

0
E

[
K

( x
hT

,
Xt

hT

)]
dt

∣∣∣∣
= sup

x∈D

∣∣∣∣ 1
Thd

T

∫ T

0

∫
Rd

K
( x

hT
,

y
hT

)(
fFt−δ(y) − f(y)

)
dy dt

∣∣∣∣
= sup

x∈D

∣∣∣∣ 1
hd

T

∫
Rd

K
( x

hT
,

y
hT

)(
1
T

∫ T

0
fFt−δ(y) dt − f(y)

)
dy

∣∣∣∣.
By using the fact that

|φ(x)| ≤ Ad+1

(1 + ‖x‖)d+1
,

we infer that the kernel function K(·) defined in (6.1) converges uniformly and satisfies Meyer (1992),
p. 33,

|K(v,u)| ≤ Cd+1

(1 + ‖v − u‖)d+1
,
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for some constant Cd+1.
Making use of the Cauchy–Schwarz inequality, (6.2) and Condition (C.1), we obtain readily that∣∣∣∣ 1

hd
T

∫
Rd

K
( x

hT
,

y
hT

)(
1
n

∫ T

0
fFt−δ(y)dt − f(y)

)
dy

∣∣∣∣

≤
(∫

Rd

∣∣∣∣ 1
hd

T

K
( x

hT
,

y
hT

)∣∣∣∣
2

dy
)1/2(∫

Rd

∣∣∣∣ 1
T

∫ T

0
fFt−δ(y) dt − f(y)

∣∣∣∣
2

dy
)1/2

≤
(∫

Rd

(
1

hd
T

Cd+1

(1 + h−1
T ‖x − y‖)d+1

)∣∣∣∣ 1
hd

T

K
( x

hT
,

y
hT

)∣∣∣∣ dy
)1/2∥∥∥∥ 1

T

∫ 1

0
fFt−δ dt − f

∥∥∥∥
L2

≤ h
1/2
T C

1/2
d+1

∫
Rd

K
( x

hT
,u

)
du

∥∥∥∥ 1
T

∫ 1

0
fFt−δdt − f

∥∥∥∥
L2

.

From (6.2) it follows, for any j ≥ 1, that∫
Rd

|K(v,u)|j dv ≤ Gj(d),

where

Gj(d) = 2πd/2 Γ(d)Γ(j + d(j − 1))
Γ(d/2)Γ((d + 1)j)

Cj
d+1

and Γ(t) is the Gamma function, which yields

FT,2(x) ≤ h
1/2
T C

1/2
d+1G

1/2
1 (d)

∥∥∥∥ 1
T

∫ 1

0
fFt−δ dt − f

∥∥∥∥
L2

= O(h1/2
T ). (6.9)

Proof of Theorem 3.2

Making use of the triangle inequality, we readily obtain that

sup
x∈D

∣∣f̂T (x) − f(x)
∣∣ ≤ sup

x∈D

∣∣f̂T (x) − E(f̂T (x))
∣∣ + sup

x∈D

∣∣E(
f̂T (x)

)
− f(x)

∣∣
= FT,1(x) + FT,2(x). (6.10)

By an application of Theorem 3.1 we readily obtain

FT,1(x) = O

((
log T

Thd
T

)1/2)
+ O(h1/2

T ). (6.11)

Notice that under the conditions imposed in Section 2, we have (refer, e.g., Walter (1994) and Xue
(2004)),

K(u,v) = 0 for |ui − vi| ≥ 2L, i = 1, . . . , d,

and
∫

Rd

{ d∏
i=1

(ui − vi)ki

}
K(u,v)du = 0 for k1, . . . , kd ≥ 0, 0 < k1 + · · · + kd < r.

Under Condition (C.2) and using Taylor series expansion of order r and a change of variables in
connection with a straightforward application of Lebesgue dominated convergence theorem, for x ∈ D
and 0 < θ < 1, we have

|Ef̂T (x) − f(x)| =
∣∣∣∣ 1
hd

T

∫
Rd

K
( x

hT
,

v
hT

)
f(v)dv − f(x)

∣∣∣∣
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=
∣∣∣∣
∫

[−2L,2L]d
K

( x
hT

,
x
hT

+ v
)(

f(x + hTv) − f(x)
)
dv

∣∣∣∣
=

∣∣∣∣
∫

[−2L,2L]d
K

( x
hT

,
x
hT

+ v
)(

1
r!

∑
k1+···+kd=r

hk1
T vk1

1 . . . hkd
T vkd

d

∂rf(vhT θ + x)

∂vk1
1 . . . ∂vkd

d

)
dv

∣∣∣∣

≤ 1
r!

sup
x∈D

∣∣∣∣ ∂rf(x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣
∑

k1+···+kd=r

hk1
T . . . hkd

T

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |K
( x

hT
,

x
hT

+ v
)

dv

=
1
r!

sup
x∈D

∣∣∣∣ ∂rf(x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣hr
T

∑
k1+···+kd=r

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |
∣∣∣∣K

( x
hT

,
x
hT

+ v
)∣∣∣∣ dv = O(hr

T ).

Therefore

FT,2(x) = sup
x∈D

∣∣E(f̂T (x)) − f(x)
∣∣ = O(hr

T ). (6.12)

By combining (6.11) and (6.12) we achieve the proof of Theorem 3.2.

Proof of Theorem 4.1

Let us introduce the truncated version of ĤT (x) as follows. Let

âL
mk =

1
T

∫ T

0
ϕ(Yt)1{|ϕ(Yt)| ≤ LT}φm,k(Xt) dt (6.13)

and

ĤL
T (x) =

∑
k∈Zd

âL
mkφm,k(x). (6.14)

Here and in the sequel, 1{A} denotes the indicator function of the set A. In a similar way as in the
preceding proof, we write ĤT (x) as an extended kernel estimator

ĤT (x) =
1

Thd
T

∫ T

0
ϕ(Yt)K

( x
hT

,
Xt

hT

)
dt, (6.15)

and

ĤL
T (x) =

1
Thd

T

∫ T

0
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

)
dt. (6.16)

We recall

HT (x) =
1

Thd
T

∫ T

0
E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt,

and

H
L
T (x) =

1
Thd

T

∫ T

0
E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
. (6.17)

We first decompose
{
ĤT (x) − E(ĤT (x))

}
into the sum of four components by writing

ĤT (x) − HT (x) =
(
ĤT (x) − ĤL

T (x)
)

+
(
ĤL

T (x) − H
L
T (x)

)
+

(
H

L
T (x) − HT (x)

)
.

Recalling (6.2), we observe that

sup
x∈D

∣∣ĤT (x) − ĤL
T (x)

∣∣ ≤ hT Cd+1

T

∫ T

0

∣∣ϕ(Yt)1{|ϕ(Yt)| > LT }
∣∣ dt. (6.18)
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A simple Markov inequality application implies that

P
(
|ϕ(Yt)| > LT

)
≤ L−ν

T E
(
|ϕ(Yt)|ν

)
.

Recall the notation T = nδ, under Assumption (N.0) and using the fact that∑
n>1

L−ν
T < ∞, T → ∞.

We have by the Borel–Cantelli lemma that |ϕ(Yt)| ≤ LT almost surely for all sufficiently large T .
Since LT is increasing,

|ϕ(Yt)| ≤ LT for all t ≤ T.

By all this and using (6.18) we infer that

sup
x∈D

∣∣ĤT (x) − ĤL
T (x)

∣∣ = o(1) a.s. (6.19)

Once more, by (6.2) we infer that∣∣HL
T (x) − HT (x)

∣∣
≤ 1

Thd
T

∫ T

0

∣∣∣∣E
[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
− E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]∣∣∣∣ dt

≤ 1
Thd

T

∫ T

0
E

[
|ϕ(Yt)|1{|ϕ(Yt)| > LT }

∣∣∣K
( x

hT
,
Xt

hT

)∣∣∣
∣∣∣Gt−δ

]
dt

≤ 1
Thd

T

∫ T

0
E

[
|ϕ(Yt)|1{|ϕ(Yt)| > LT }

Cd+1

hd
T (1 + ‖x − Xt‖h−1

T )d+1

∣∣∣Gt−δ

]
dt

≤ hT Cd+1

T

∫ T

0
E

[
|ϕ(Yt)|1{|ϕ(Yt)| > LT } | Gt−δ

]
dt.

By the Hölder and Markov inequalities, we obtain, for any ε > 0 and any p and q fulfilling

1
p

+
1
q

= 1,

that

E
[
|ϕ(Yt)|1{|ϕ(Yt)| > LT } | Gt−δ

]
≤

(
E

[
|ϕ(Yt)|q

∣∣Gt−δ

])1/q(
P{|ϕ(Yt)| > LT

∣∣Gt−δ}
)1/p

≤ L−q
T E

[
|ϕ(Yt)|q | Gt−δ

]
= L−q

T

∫
R

|ϕ(v)|qρGt−δ(v) dv.

The process (ρGt−δ(v))t∈T fulfills Condition (N.1), which combined with Condition (N.0), in turn, readily
implies that

sup
x∈D

∣∣HL
T (x) − HT (x)

∣∣ ≤ hT sup
y∈R

∥∥∥∥ 1
Tρ(y)

∫ T

0
ρGt−δ(y)

∥∥∥∥L−q
T

∫
R

|ϕ(v)|qρ(v) dv

= hT sup
y∈R

∥∥∥∥ 1
Tρ(y)

∫ T

0
ρGt−δ(y)

∥∥∥∥L−q
T E

[
|ϕ(Y0)|q

]
,

which gives

sup
x∈D

∣∣HL
T (x) − Ht(x)

∣∣ = O(hT ) a.s. (6.20)

We set

D(T ) =
⌊ TL2

T

hd+2
T log T

⌋d/2
.
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Recalling that the set D is compact and using the same arguments as in the proof of Theorem 3.1, we
obtain that

sup
x∈D

∣∣ĤL
T (x) − H

L
T (x)

∣∣ = max
1≤j≤D(T )

sup
x∈D∩Ij

∣∣ĤL
T (x) − H

L
T (x)

∣∣

≤ max
1≤j≤D(T )

sup
x∈D∩Ij

∣∣ĤL
T (x) − ĤT

n (xj)
∣∣ + max

1≤j≤L(n)

∣∣ĤT
n (xj) − H

T
n (xj)

∣∣

+ max
1≤j≤L(n)

sup
x∈D∩Ij

∣∣HT
n (xi) − H

T
n (x)

∣∣
= Q1 + Q2 + Q3. (6.21)

From (6.12), we infer that, almost surely,

∣∣ĤL
T (x) − ĤL

T (xj)
∣∣ =

∣∣∣∣ 1
Thd

T

∫ T

0
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }

(
K

( x
hT

,
Xt

hT

)
− K

( xj

hT
,
Xt

hT

))
dt

∣∣∣∣
≤ 1

Thd
T

∫ T

0
|ϕ(Yt)|

∣∣∣∣K
( x

hT
,
Xt

hT

)
− K

( xj

hT
,
Xt

hT

)∣∣∣∣
=

d1/2C2LT

hd+1
T

‖x − xj‖.

This, in turn, implies that

Q1 = max
1≤j≤D(T )

sup
x∈D∩Ij

∣∣ĤL
T (x) − ĤL

T (xj)
∣∣

≤ const · LT

L1/d(T )hd+1
T

= O

((
log T

Thd
T

)1/2)
a.s. (6.22)

In a similar way, making use of (6.12) gives∣∣HL
T (x) − H

L
T (xj)

∣∣
=

∣∣∣∣ 1
Thd

T

∫ T

0
E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }

(
K

( x
hT

,
Xt

hT

)
− K

( xj

hT
,
Xt

hT

)) ∣∣∣Gt−δ

]
dt

∣∣∣∣
≤ 1

nhd
n

∫ T

0
E

[
|ϕ(Yt)|

∣∣∣∣K
( x

hT
,
Xt

hT

)
− K

( xj

hT
,
Xt

hT

)∣∣∣∣
∣∣∣Gt−δ

]
dt

=
d1/2C2LT

hd+1
T

‖x − xj‖.

This yields likewise

Q3 = max
1≤j≤D(T )

sup
x∈D∩Ij

∣∣HL
T (xi) − H

L
T (x)

∣∣

≤ const · LT

L1/d(T )hd+1
T

= O

((
log T

Thd
T

)1/2)
a.s. (6.23)

We next evaluate the term W2 in the right-hand side of (6.21). Observe that

Q2 = max
1≤j≤D(T )

∣∣ĤL
T (xj) − H

L
T (xj)

∣∣

= max
1≤j≤D(T )

∣∣∣∣ 1
Thd

T

∫ T

0

(
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

)

− E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])
dt

∣∣∣∣
MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 3 2015



182 BOUZEBDA et al.

= max
1≤j≤D(T )

∣∣∣∣ 1
Thd

T

n∑
i=1

VT,i(xj)
∣∣∣∣,

where, for i = 1, . . . , n,

VT,i(x) =
∫ Ti

Ti−1

ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K
( x

hT
,
Xt

hT

)

− E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt

is a sequence of martingale differences array with respect to the σ-field Gi. It is easy to see that, using
Jensen’s and Minkowski’s inequalities, for i = 1, . . . , n,

E(V p
T,i(x) | Gi−2) = E

((∫ Ti

Ti−1

(
ϕ(Yt)1{|ϕ(Yt)| ≤ LT}K

( x
hT

,
Xt

hT

)

− E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])
dt

)p ∣∣∣Gi−2

)

≤
∫ Ti

Ti−1

(
E

1/p

((
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

))p ∣∣∣Gi−2

)

+ E
1/p

(
E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])p ∣∣∣Gi−2

)p

dt. (6.24)

Recalling that for δ > 0 and Ti−1 ≤ t ≤ Ti, Gi−2 ⊆ Gt−δ ⊆ Gi−1

E

[(
E

[
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])p ∣∣∣Gi−2

]

≤ E

[(
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

))p ∣∣∣Gi−2

]

is Gi−1-measurable and using (6.24), it follows that

E[V p
T,i(x) | Gi−2] ≤ 2p

∫ Ti

Ti−1

E

[(
ϕ(Yt)1{|ϕ(Yt)| ≤ LT }K

( x
hT

,
Xt

hT

))p ∣∣∣Gi−2

]
dt (6.25)

≤ Lp
T 2p

∫ Ti

Ti−1

E

[∣∣∣∣Kp
( x

hT
,
Xt

hT

)∣∣∣∣
∣∣∣Gi−2

]
dt. (6.26)

From (6.6) we obtain, for any integer p, that∣∣E[
V p

T,i(x)
∣∣Gi−2

]∣∣ ≤ δLp
T 2pCp

d+1h
p(d+1)
T ≤ p!Cp−1d2

i .

Taking

C = 2Cd+1, d2
i = δCd+1L

p
T h

p(d+1)
T ,

and making use of the condition

Lp
T 2−m(n)(d(p−1)+p) = O(1) as n → ∞,

we conclude that

Dn =
n∑

i=1

d2
i = nδLp

T h
p(d+1)
T = Thd

T (Lp
T h

d(p−1)+p
T ) = O(Thd

T ).

Applying Lemma 6.1 to the sum of {VT,i(xj)} and choosing

εT = ε0(log T/Thd
T )1/2,
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we obtain

P

(
max

1≤j≤D(T )

∣∣∣∣ 1
Thd

T

n∑
i=1

VT,i(xj)
∣∣∣∣ > εT

)
≤

D(T )∑
j=1

P

(∣∣∣∣
n∑

i=1

VT,i(xj)
∣∣∣∣ > εT Thd

T

)

≤ 2D(T ) exp
{
− (Thd

T )2(log T/Thd
T )

2(Dn + 2Cd+1Thd
T (log T/Thd

T )1/2)

}

≤
(

TL2
T

hd+1
T log T

)d/2

exp
{
− Thd

T log T

O(Thd
T )(1 + 2Cd+1(log T/Thd

T )1/2)

}

≤
(

TL2
T

hd+1
T log T

)d/2

(T−C2ε20).

We conclude that

max
1≤j≤D(T )

∣∣ĤL
T (xj) − H

L
T (xj)

∣∣ = O

((
log T

Thd
T

)1/2)
(6.27)

by a routine application of the Borel–Cantelli lemma. This, when combined with (6.22), (6.27) and
(6.23), and the fact that hT = 2−m(T ), implies the desired result

sup
x∈D

∣∣ĤT (x) − HT (x)
∣∣ = O

((
(log T )2dm(T )

T

)1/2)
. (6.28)

Therefore the proof of Theorem 3.2 is completed by combining (6.19), (6.20) and (6.28).

Proof of Theorem 4.2

Consider the decomposition

ĤT (x) − H(x) =
(
ĤT (x) − HT (x)

)
+

(
HT (x) − E(ĤT (x))

)
+

(
E(ĤT (x)) − H(x)

)
= KT,1(x) + KT,2(x) + KT,3(x). (6.29)

Applying Theorem 3.2, we have

sup
x∈D

|KT,1(x)| = O

((
log T

Thd
T

)1/2)
+ O(hT ) a.s. (6.30)

Making use of the Cauchy–Schwarz inequality in combination with (6.2), we infer that

∣∣HT (x) − E(ĤT (x))
∣∣ ≤ 1

Thd
T

∫ T

0

∫
Rd+1

ϕ(v)K
( x

hT
,

u
hT

)(
gGt−δ(u, v) − g(u, v)

)
du dv dt

≤
∥∥∥∥ 1
T

∫ T

0
gGt−δ dt − g

∥∥∥∥
L2

(∫
Rd+1

(
Cd+1

hd
T (1 + ‖x − u‖h−1

T )d+1

)
ϕ2(v)

(
1
hd

T

K
( x

hT
,

u
hT

))
du dv

)1/2

≤ h
1/2
T

∥∥∥∥ 1
T

∫ T

0
gGt−δ dt − g

∥∥∥∥
L2

‖ϕ‖L2

(∫
Rd

∣∣∣K
( x

hT
, z

)∣∣∣ dz
)1/2

≤ h
1/2
T C2

(d+1)G
1//2
1 (d)‖ϕ‖L2

∥∥∥∥ 1
T

∫ T

0
gGt−δ dt − g

∥∥∥∥
L2

.

Under condition (N.3), we obtain

sup
x∈D

|KT,2(x)| = sup
x∈D

∣∣HT (x) − E(ĤT (x))
∣∣ = O(h1/2

T ) a.s. (6.31)
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By change of variables, it follows that

∣∣E(ĤT (x)) − H(x)
∣∣ =

1
Thd

T

∫ T

0
E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

)]
dt − H(x)

=
1

Thd
T

∫ T

0
E

[
E[ϕ(Yt) | Xt]K

( x
hT

,
Xt

hT

)]
− H(x)

=
1

Thd
T

∫ T

0
E

[
m(ϕ,Xt)K

( x
hT

,
Xt

hT

)]
− m(ϕ,x)f(x)

=
1
hd

T

∫
Rd

m(ϕ,u)K
( x

hT
,

u
hT

)
f(u) du − m(ϕ,x)f(x)

=
∫

[−2L,2L]d
m(ϕ,x + hT v)f(x + hT v)K

( x
hT

,
x
hT

+ v
)

dv − m(ϕ,x)f(x)

=
∫

[−2L,2L]d

(
m(ϕ,x + hTv)f(x + hT v) − m(ϕ,x)f(x)

)
K

( x
hT

,
x
hT

+ v
)

dv.

Making use of Conditions (C.2), (N.2) and using the same arguments, we infer that∣∣E(ĤT (x)) − H(x)
∣∣

≤ 1
r!

sup
x∈D

∣∣∣∣∂
rm(ϕ,x)f(x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣
∑

k1+···+kd=r

hk1
T . . . hkd

T

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |K
( x

hT
,

x
hT

+ v
)

dv

= O(hr
T ).

Therefore

sup
x∈D

∣∣KT,3(x)
∣∣ = sup

x∈D

∣∣E(ĤT (x)) − H(x)
∣∣ = O(hr

T ). (6.32)

The proof of Theorem 4.2 is completed by combining (6.30), (6.31) and (6.32).

Proof of Theorem 4.3

Consider the decomposition

sup
x∈D

∣∣mT (x, ϕ) − m(x, ϕ)
∣∣

= sup
x∈D

∣∣∣∣ĤT (x, ϕ)

f̂T (x)
− H(x, ϕ)

f̂T (x)
+

H(x, ϕ)

f̂T (x)
− H(x, ϕ)

f(x)

∣∣∣∣

≤ sup
x∈D

∣∣∣∣ĤT (x, ϕ) − H(x, ϕ)

f̂T (x)

∣∣∣∣ + sup
x∈D

∣∣∣∣H(x, ϕ)
f(x)

f(x) − f̂T (x)

f̂T (x)

∣∣∣∣

≤
sup
x∈D

|ĤT (x, ϕ) − H(x, ϕ)|

inf
x∈D

|f̂T (x)|
+ sup

x∈D
|m(x, ϕ)|

sup
x∈D

|f̂T (x) − f(x)|

inf
x∈D

|f̂T (x)|
. (6.33)

Observe that

inf
x∈D

|f̂T (x)| ≥ inf
x∈D

|f(x)| − sup
x∈D

|f̂T (x) − f(x)|.

Theorem 3.2 combined with Condition (N.4) (i) imply that

inf
x∈D

|f̂T (x)| ≥ inf
x∈D

|f(x)| > λ > 0. (6.34)

MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 3 2015



MULTIVARIATE WAVELET DENSITY 185

Under Condition (N.4) (ii) we have

sup
x∈D

|m(x, ϕ)| ≤ Λ < ∞. (6.35)

Theorems 3.2 and 4.2 combined with statements (6.34) and (6.35) finish the proof of Theorem 4.3.

Proof of Theorem 4.4
Let us define some notation needed:

f̃T (x) =
1

Thd
T

∫ T

0
E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt,

QT (x) = ĤT (x) − HT (x) + m(x, ϕ)
(
f̂T (x) − f̃T (x)

)
, (6.36)

BT (x) = mT (x, ϕ) − m(x, ϕ) =
HT (x)

f̃T (x)
− m(x, ϕ), (6.37)

RT (x) = −BT (x)
(
f̂T (x) − f̃T (x

)
. (6.38)

We may consider then the decomposition

mT (x, ϕ) − m(x, ϕ) =
{
mT (x, ϕ) − mT (x, ϕ)

}
+

{
mT (x, ϕ) − m(x, ϕ)

}

=
QT (x) + RT (x)

f̂T (x)
+ BT (x). (6.39)

By using Condition (N.5), we obtain

BT (x) = mT (x, ϕ) − m(x, ϕ) =
H̃T (x)

f̃T (x)
− m(x, ϕ)

=
1

f̃T (x)

{
1

Thd
T

∫ T

0
E

[(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt

}

=
1

f̃T (x)

{
1

Thd
T

∫ T

0
E

[
E

[(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣St−δ,δ

] ∣∣∣Gt−δ

]
dt

}

=
1

f̃T (x)

{
1

Thd
T

∫ T

0
E

[(
E[ϕ(Yt) | Xt] − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt

}

=
1

f̃T (x)

{
1

Thd
T

∫ T

0
E

[(
m(Xt, ϕ) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt

}
.

A simple change of variable combined with the continuity of the conditional density fGt−δ and Assump-
tions (N.2) and (N.6) allow us to infer that

BT (x)| ≤ 1

f̃T (x)

{
1

Thd
T

∫ T

0

∫
Rd

(
m(u, ϕ) − m(x, ϕ)

)
K

( x
hT

,
u
hT

)
f
Gt−δ
t (u) du dt

}

=
1

f̃T (x)

{
1
T

∫ T

0

∫
Rd

(
m(x + hTv, ϕ) − m(x, ϕ)

)
K

( x
hT

,
x
hT

+ v
)
f
Gt−δ
t (x + hT v) dv dt

}

≤ 1

δf̃T (x)

{(
1
n

∫ T

0
fGt−δ(x) dt + o(1)

)
sup
x∈D

∣∣∣∣ ∂rm(ϕ,x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣
×

∑
k1+···+kd=r

hk1
n . . . hkd

n

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |K(0,v) dv
}

≤ 1

f̃T (x)

{
c3h

r
n(f(x) + o(1))

}
. (6.40)
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It remains to know that under Assumption (N.6) we obtain

f̃T (x) =
1

Thd
T

∫ T

0

∫
Rd

K
( x

hT
,

u
hT

)
fGt−δ(u) du dt

=
1
T

∫ T

0

∫
[−2L,2L]d

K
( x

hT
,

x
hT

+ v
)
fGt−δ(x + hTv) dv dt

=
(

1
T

∫ T

0
fGt−δ(x) dt + o(1)

) ∫
[−2L,2L]d

K(0,v) dv

= f(x) + o(1). (6.41)

Hence, combining (6.40) and (6.41) we obtain

(Thd
T )1/2BT (x) = O(hr

T (Thd
T )1/2). (6.42)

Using a similar argument as for equation (6.8), we may show that

f̂T (x) − f̃T (x) =
( log T

ThT

)1/2
a.s. (6.43)

Combining decomposition (6.38) and equation (6.43) together with (6.42) we get

(Thd
T )1/2RT (x) = O

(
hr

T (log T )1/2
)
. (6.44)

Making use of Theorem 3.1 and the same steps of the proof implies that, in probability,

|f̂T (x) − Ef̂T (x)| = o(1). (6.45)

By combining (6.12) and (6.45), we have, in probability, as n → ∞,

f̂T (x) → f(x). (6.46)

Making use of (6.42), (6.44) and (6.46), we infer that√
Thd

T

(
mT (x, ϕ) − mT (x, ϕ)

)
=

1
f(x)

√
Thd

TQT (x) + oP(1).

Consider the decomposition√
Thd

T

f(x)
QT (x) =

1

f(x)
√

Thd
T

∫ T

0

{(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

ht

)

− E

[(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]}
dt

=
n∑

i=1

{
ξT,i(x, ϕ) − ξT,i(x, ϕ)

}
=

n∑
i=1

χT,i(x, ϕ),

where T = δn, i = 1, . . . , n,

ξT,i(x, ϕ) =
1

f(x)
√

Thd
T

∫ iδ

(i−1)δ

(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

ht

)
dt,

and

ξT,i(x, ϕ) =
1

f(x)
√

Thd
T

∫ iδ

(i−1)δ
E

[(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
dt,

where χT,i(x, ϕ) is a triangular array of martingale differences with respect to the σ-field Gi (see Didi
(2014)). This allows us to apply the central limit theorem for discrete time arrays of martingales (see
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Hall and Heyde (1980)) to establish the asymptotic normality of
√

Thd
TQT (x). This can be done if we

establish the following statements:

(a) Lyapunov’s condition:
n∑

i=1

E
[
χ2

T,i(x, ϕ) | Gi−2

] P→ Σ2
ϕ(x);

(b) Lindeberg’s condition:

nE
[
χ2

T,i(x, ϕ)1{|χT,i(x, ϕ)| > ε}
]

= o(1) for any ε > 0.

Proof of part (a). Observe that∣∣∣∣
n∑

i=1

E
[
ξ2
T,i(x, ϕ) | Gi−2

]
−

n∑
i=1

E
[
χ2

T,i(x, ϕ) | Gi−2

]∣∣∣∣ =
n∑

i=1

(
E[ξT,i(x, ϕ) | Gi−2]

)2
.

Under Assumptions (N.2) and (N.5), one has∣∣E[ξT,i(x, ϕ) | Gi−2]
∣∣

=
1

f(x)
√

Thd
T

∣∣∣∣
∫ iδ

(i−1)δ
E

[(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
XT

ht

) ∣∣∣Gi−2

]
dt

∣∣∣∣

≤ 1

f(x)
√

Thd
T

∣∣∣∣
∫ iδ

(i−1)δ
E

[(
m(Xt, ϕ) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

∣∣∣∣

=
1

f(x)
√

Thd
T

∫ iδ

(i−1)δ

∫
Rd

(
m(u, ϕ) − m(x, ϕ)

)
K

( x
hT

,
u
hT

)
f
Gi−2

t (u) du dt

≤
√

hT

f(x)
√

T d

{(∫ iδ

(i−1)δ
f
Gi−2
t (x) dt + o(1)

)
sup
x∈D

∣∣∣∣ ∂rm(ϕ,x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣
×

∑
k1+···+kd=r

hk1
T . . . hkd

T

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |K(0,v) dv
}

≤ c3h
r+d/2
T

f(x)
√

T

(∫ iδ

(i−1)δ
f
Gi−2
t (x) dt + o(1)

)
. (6.47)

Let

g
Gi−2

i−1 (x) =
( ∫ Ti

Ti−1

f
Gi−2
t (x) dt

)2

.

Making use of the Riemann sum, the quantity g
Gi−2

i−1 (x) may be approximated, whenever δ is small

enough, by δf
Gi−2

Ti−1
. It is then clear from the discussion above that the process (fGi−2

Ti−1
)i≥1 is stationary

and ergodic. So the sum 1
n

∑n
i=1 g

Gi−2

i−1 (x) has a finite limit (see Krengel (1985), Theorem 4.4), which is

E
[
g
G−δ

0 (x)
]

=
(∫ δ

0
f(x) dt

)2

= δ2f2(x). (6.48)

Therefore by using Condition (6.48) we infer that
n∑

i=1

(
E

[
ξT,i(x, ϕ) | Gi−2

])2 =
c3h

2r+d
n

δf(x)

(
1
n

n∑
i=1

(∫ iδ

(i−1)δ
f
Gi−2

t (x) dt

)2

+ o(1)
)
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= O(h2r+d
T ).

The statement (a) follows then from

lim
n→∞

n∑
i=1

E
[
ξ2
T,i(x, ϕ) | Gi−2

] P= Σ2
ϕ(x).

Observe that under Condition (N.7) (i) we have

E
[
ξ2
T,i(x, ϕ) | Gi−2

]

≤ 1
f2(x)Thd

T

∫ iδ

δ(i−1)
E

[
E

[
(ϕ(Yt) − m(x, ϕ))2 | St−δ,δ

]
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
1

f2(x)Thd
T

∫ iδ

δ(i−1)
E

[
σ2

ϕ(Xt)K2
( x

hT
,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
1

f2(x)Thd
T

∫ iδ

δ(i−1)
E

[(
σ2

ϕ(Xt) − σ2
ϕ(x)

)
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

+
1

f2(x)Thd
T

∫ iδ

δ(i−1)
E

[
σ2

ϕ(x)K2
( x

hT
,
Xi

hT

) ∣∣∣Gi−1

]
dt

≤ 1
f2(x)Thd

T

∫ iδ

δ(i−1)
E

[
sup

{u : ‖x−u‖<h}
sup

∣∣σ2
ϕ(Xt) − σ2

ϕ(x)
∣∣K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

+
1

f2(x)Thd
T

∫ iδ

δ(i−1)
E

[
σ2

ϕ(x)K2
( x

hT
,
Xt

hT

) ∣∣∣Gi−2

]
dt

= IT,1(x) + IT,2(x). (6.49)

Considering Condition (N.7) (ii) it follows that
∣∣∣

n∑
i=1

IT,1(x)
∣∣∣ =

1
f2(x)Thd

T

∣∣∣∣
n∑

i=1

∫ iδ

δ(i−1)
E

[
sup

{u : ‖x−u‖<hn}

∣∣σ2
ϕ(Xt) − σ2

ϕ(x)
∣∣K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

∣∣∣∣

= o(1)
1

f2(x)
1

Thd
T

∣∣∣∣
n∑

i=1

∫ iδ

δ(i−1)
E

[
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

∣∣∣∣

= o(1)
1

δf2(x)

∣∣∣∣ 1n
n∑

i=1

∫ iδ

δ(i−1)

∫
[−2L,2L]d

K2
( x

hT
,

x
hT

+ v
)
f
Gi−2
t (x + hTv) dv dt

∣∣∣∣

= o(1)
Cd+1

f2(x)

∣∣∣∣ 1n
n∑

i=1

∫ iδ

δ(i−1)

∫
[−2L,2L]d

K
( x

hn
,

x
hn

+ v
)
f
Gi−2
t (x + hnv) dv dt

∣∣∣∣

= o(1)
Cd+1

f2(x)

∣∣∣∣ 1n
n∑

i=1

(∫ iδ

δ(i−1)
f
Gi−2

t (x) dt

)
+ o(1)

∣∣∣∣
= o(1)

Cd+1

f2(x)
|f(x)|

= o(1). (6.50)

Recall that

K(u,v) = K(u + k,v + k) for k ∈ Z
d.

Set, for x ∈ D,

xm =
(
�2mx1�

2m
, . . . ,

�2mxd�
2m

)
,
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with �u� ≤ u < �u� + 1 denoting the integer part of u. Now, we turn our attention to the second term of
equation (6.49), it follows then, from Condition (N.6), that

n∑
i=1

IT,2(x) =
1

f2(x)Thd
T

n∑
i=1

∫ Ti

Ti−1

E

[
σ2

ϕ(x)K2
( x

hT
,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
σ2

ϕ(x)
f2(x)Thd

T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

K2
( x

hT
,

u
hT

)
f
Gi−2
t (u) du dt

=
σ2

ϕ(x)

f2(x)Thd
T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

K2
(
0,

u
hT

− xm

hT

)
f
Gi−2
t (u) du dt

+
σ2

ϕ(x)
f2(x)Thd

T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

{
K2

( x
hT

,
u
hT

)
− K2

(xm

hT
,

u
hT

)}
f
Gi−2
t (u) du dt

=
σ2

ϕ(x)
δnf2(x)

n∑
i=1

∫
Rd

K2(0,v)
( ∫ Ti

Ti−1

f
Gi−2

t (xm + hTv) dt

)
dv + o(1)

=
σ2

ϕ(x)
δf2(x)

(
1
n

n∑
i=1

∫ Ti

Ti−1

f
Gi−2

t (x) dt

) ∫
Rd

K2(0,v) dv + o(1)

=
σ2

ϕ(x)
δf2(x)

(δf(x) + o(1))
∫

Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv + o(1)

=
σ2

ϕ(x)
f(x)

∫
Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv + o(1). (6.51)

Combining equations (6.50) and (6.51) we get

lim
n→∞

n∑
i=1

E
[
ξ2
T,i(x, ϕ) | Gi−2

] P= Σ2
ϕ(x) ≤

σ2
ϕ(x)
f(x)

∫
Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv. (6.52)

Proof of part (b). The Lindeberg condition results from Corollary 9.5.2 in Chow and Teicher (1997)
which implies that

nE
[
χ2

T,i(x, ϕ)1{|χT,i(x, ϕ)| > ε}
]
≤ 4nE

[
ξ2
T,i(x, ϕ)1{|ξT,i(x, ϕ)| > ε/2}

]
.

Let a > 1 and b > 1 be such that

1
a

+
1
b

= 1.

Making use of Hölder’s and Markov’s inequalities one can write, for all ε > 0,

E
[
ξ2
T,i(x, ϕ)1{|ξT,i(x, ϕ)| > ε/2}

]
≤ E|ξT,i(x, ϕ)|2a

(ε/2)2a/b
.

Therefore by using condition (6.2) we obtain

4nE
[
ξ2
T,i(x, ϕ)1{|ξni(x, ϕ)| > ε/2}

]

≤ 4
δT a−1had

T (ε/2)2a/b
E

∣∣∣∣
∫ Ti

Ti−1

(
ϕ(Yt) − m(x, ϕ)

)
K

( x
hT

,
Xt

hT

)
dt

∣∣∣∣
2a

≤ 4

δT a−1h
(a−1)d
T (ε/2)2a/b

∫ Ti

Ti−1

E

∣∣∣∣
(
ϕ(Yt) − m(x, ϕ)

) Cd+1

hd
T (1 + ‖x − Xt‖h−1

T )d+1

∣∣∣∣
2a

dt.
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Using Jensen’s and Cauchy–Schwarz’s inequalities in combination with Condition (N.0), we infer that

4nE
[
ξ2
T,i(x, ϕ)1{|ξni(x, ϕ)| > ε/2}

]
≤ 4

δT a−1h
(a−1)d
T (ε/2)2a/b

( ∫ Ti

Ti−1

E
[(

ϕ(Yt) − m(x, ϕ)
)]2a

dt

)

= O

((
1

Thd
T

)a−1)
. (6.53)

Combining statements (6.52) and (6.53) we achieve the proof of Theorem 4.4.

Proof of Theorem 4.5

Observe that√
Thd

T (ĤT (x) − HT (x))

=
1√
Thd

T

∫ T

0

(
ϕ(Yt)K

( x
hT

,
Xt

hT

)
− E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])
dt

=
1√
Thd

T

n∑
i=1

∫ Ti

Ti−1

(
ϕ(Yt)K

( x
hT

,
Xt

hT

)
− E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])
dt

=
n∑

i=1

(
ξT,i(x, ϕ) − ξ̃T,i(x, ϕ)

)
=

n∑
i=1

χT,i(x, ϕ),

where

χT,i(x, ϕ) =
1√
Thd

T

∫ Ti

Ti−1

(
ϕ(Yt)K

( x
hT

,
Xt

hT

)
− E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

])
dt,

is a triangular array of martingale differences with respect to the σ-field Gi (see Didi (2014)). Observe
that ∣∣∣∣

n∑
i=1

E
[
ξ2
T,i(x, ϕ) | Gi−2

]
−

n∑
i=1

E
[
χ2

T,i(x, ϕ) | Gi−2

]∣∣∣∣ =
n∑

i=1

(
E[ξT,i(x, ϕ) | Gi−2]

)2
.

By combining Conditions (N.0)–(N.1) with (6.2), we readily infer that

E
[
ξT,i(x, ϕ) | Gi−2

]
=

1√
Thd

T

∫ Ti

Ti−1

E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]

≤

√
hd

T√
T

∫ Ti

Ti−1

E

[
ϕ(Yt)

Cd+1

hd
T (1 + ‖x − Xt‖h−1

T )d+1

∣∣∣Gi−2

]
dt

=

√
hd

T Cd+1
√

T

∫ Ti

Ti−1

E[ϕ(Yt) | Gi−2] dt,

Therefore by Jensen’s and Cauchy–Schwarz’s inequalities we infer that
n∑

i=1

(
E[ξT,i(x, ϕ) | Gi−2]

)2 ≤ hd
T Cd+1

T

n∑
i=1

(∫ Ti

Ti−1

E
[
ϕ(Yt) | Gi−2

]
dt

)2

≤ hd
T Cd+1

T

n∑
i=1

∫ Ti

Ti−1

E
[
ϕ2(Yt) | Gi−2

]
dt
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≤ hd
T Cd+1

T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

ϕ2(y)ρGi−2

t (y)dv dt

≤ hd
T Cd+1

δ

∥∥∥∥ 1
nρ

n∑
i=1

(∫ Ti

Ti−1

ρ
Gi−2

t dt

)∥∥∥∥
∫

Rd

ϕ2(y)ρ(y) dv

≤ hd
T Cd+1

δ

∥∥∥∥ 1
nρ

n∑
i=1

(∫ Ti

Ti−1

ρ
Gi−2

t dt

)∥∥∥∥E[ϕ2(Y )]

= O(hd
T ).

To establish then the asymptotic normality, we have to prove the following statements:

(a) Lyapunov’s condition:
n∑

i=1

E
[
ξ2
T,i(x, ϕ) | Gi−2

] P→ Σ∗2(x, ϕ);

(b) Lindeberg’s condition:

nE
[
χ2

T,i(x, ϕ)1{|χT,i(x, ϕ)| > ε}
]

= o(1) for any ε > 0.

Proof of part (a). Observe that under Assumption (N.2), we obtain

E
[
ξ2
T,i(x, ϕ) | Gi−2

]
≤ 1

Thd
T

∫ Ti

Ti−1

E

[
ϕ2(Yt)K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
1

Thd
T

∫ Ti

Ti−1

E

[
E

[
ϕ2(Yt) | Si−1,δ

]
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
1

Thd
T

∫ Ti

Ti−1

E

[
E

[
ϕ2(Yt) | Xt

]
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
1

Thd
T

∫ Ti

Ti−1

E

[
m2(ϕ,Xt)K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
1

Thd
T

∫ Ti

Ti−1

E

[(
m2(ϕ,Xt) − m2(ϕ,x)

)
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

+
m2(ϕ,x)

Thd
T

∫ Ti

Ti−1

E

[
K2

( x
hT

,
Xt

hT

)
| Gi−2

]
dt

= E1,i(x) + E2,i(x). (6.54)

Using the continuity of the conditional density fGi−1(·) and Conditions (N.6) and (N.8) and considering
a similar argument as for (6.50), we obtain

n∑
i=1

E1,i(x) =
1

Thd
T

n∑
i=1

∫ Ti

Ti−1

E

[(
m2(ϕ,Xt) − m2(ϕ,x)

)
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

≤ 1
Thd

T

n∑
i=1

∫ Ti

Ti−1

E

[
sup

u∈B(x,hT )
|m2(ϕ,u) − m2(ϕ,x)|K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

≤ o(1)
Thd

T

n∑
i=1

∫ Ti

Ti−1

E

[
K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
o(1)
T

n∑
i=1

∫ Ti

Ti−1

∫
[−2L,2L]d

K2
( x

hT
,

x
hT

+ v
)
f
Gi−2

t (x + hTv) dv dt
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≤ o(1)Cd+1

δn

n∑
i=1

∫ Ti

Ti−1

∫
[−2L,2L]d

K
( x

hT
,

x
hT

+ v
)
f
Gi−2

t (x + hT v) dv dt

≤ o(1)Cd+1

δ

(
1
n

n∑
i=1

(∫ Ti

Ti−1

f
Gi−2

t (x) dt

)
+ o(1)

)
= o(1)Cd+1f(x)

= o(1). (6.55)

Now, we turn our attention to the second term in (6.54), it follows, from Assumption (N.6), that
n∑

i=1

E2,i(x) =
1

Thd
T

n∑
i=1

∫ Ti

Ti−1

E

[
m2(ϕ,x)K2

( x
hT

,
Xt

hT

) ∣∣∣Gi−2

]
dt

=
m2(ϕ,x)

Thd
T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

K2
( x

hT
,

u
hT

)
f
Gi−2
t (u) du dt

=
m2(ϕ,x)

Thd
T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

K2
(
0,

u
hT

− xm

hT

)
f
Gi−2
t (u) du dt

+
m2(ϕ,x)

Thd
T

n∑
i=1

∫ Ti

Ti−1

∫
Rd

{
K2

( x
hT

,
u
hT

)
− K2

(xm

hT
,

u
hT

)}
f
Gi−2
t (u) du dt

=
m2(ϕ,x)

δn

n∑
i=1

∫
Rd

K2(0,v)
( ∫ Ti

Ti−1

f
Gi−2

t (xm + hnv) dt

)
dv + o(1)

=
m2(ϕ,x)

δ

(
1
n

n∑
i=1

(∫ Ti

Ti−1

f
Gi−2

t (x) dt

))∫
Rd

K2(0,v) dv + o(1)

= m2(ϕ,x)
(
f(x) + o(1)

) ∫
Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv + o(1)

= m2(ϕ,x)f(x)
∫

Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv + o(1). (6.56)

Combining equations (6.55) and (6.56) we get

lim
n→∞

n∑
i=1

E
[
ξ2
T,i(x, ϕ) | Gi−2

] P= Σ∗2
ϕ (x) ≤ m2(ϕ,x)f(x)

∫
Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv. (6.57)

Proof of part (b). The Lindeberg condition results from Corollary 9.5.2 in Chow and Teicher (1997),
which implies that

nE
[
χ2

T,i(x, ϕ)1{|χT,i(x, ϕ)| > ε}
]
≤ 4nE

[
ξ2
T,i(x, ϕ)1{|ξT,i(x, ϕ)| > ε/2}

]
.

Let a > 1 and b > 1 be such that
1
a

+
1
b

= 1.

Making use of Hölder’s and Markov’s inequalities one can write, for all ε > 0,

E
[
ξ2
T,i(x, ϕ)1{|ξT,i(x, ϕ)| > ε/2}

]
≤ E|ξT,i(x, ϕ)|2a

(ε/2)2a/b
.

Therefore by Condition (6.2) we have

4nE
[
ξ2
T,i(x, ϕ)1{|ξT,i(x, ϕ)| > ε/2}

]

≤ 4
δT a−1had

T (ε/2)2a/b
E

∣∣∣∣
∫ Ti

Ti−1

ϕ(Yt)K
( x

hT
,
Xt

hT

)
dt

∣∣∣∣
2a
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≤ 4

δT a−1h
(a−1)d
T (ε/2)2a/b

∫ Ti

Ti−1

E

∣∣∣∣ϕ(Yt)
Cd+1

hd
T (1 + ‖x − Xt‖h−1

T )d+1

∣∣∣∣
2a

dt.

Using Jensen’s and Cauchy–Schwarz’s inequalities and Condition (N.0), we infer that

4nE
[
ξ2
T,i(x, ϕ)1{|ξT,i(x, ϕ)| > ε/2}

]
≤ 4

δT a−1h
(a−1)d
T (ε/2)2a/b

(∫ Ti

Ti−1

E[ϕ2a(Yt)] dt

)

= O

((
1

Thd
T

)a−1)
. (6.58)

Combining statements (6.57) and (6.58) we achieve the proof of the theorem.

Proof of Corollary 4.6

Consider the following decomposition√
Thd

T

(
ĤT (x) − H(x)

)
=

√
Thd

T

(
ĤT (x) − HT (x)

)
+

√
Thd

T

(
HT (x) − E(ĤT (x))

)

+
√

Thd
T

(
E(ĤT (x)) − H(x)

)
= UT (x, ϕ) + WT (x, ϕ) + VT (x, ϕ).

Concerning the convergence in distribution of the term UT (x, ϕ), the result follows from Theorem 4.5.
On the other hand, observe that

1√
Thd

T

WT (x, ϕ) = HT (x) − E
(
ĤT (x)

)

=
1

Thd
T

∫ T

0

(
E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

) ∣∣∣Gt−δ

]
− E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

)])
dt

=
1

Thd
T

∫ T

0

∫
Rd+1

ϕ(y)K
( x

hT
,

u
hT

)(
g
Gt−δ
t (u, y) − g(u, y)

)
du dy dt

≤ 1
T

∫ T

0

∫
Rd+1

ϕ(y)
Cd+1

hd
T (1 + ‖x − u‖h−1

T )d+1

(
g
Gt−δ
t (u, y) − g(u, y)

)
du dy dt

= hT Cd+1

∫
Rd+1

ϕ(y)
(

T−1

∫ T

0
g
Gt−δ
t (u, y) dt − g(u, y)

)
u dy.

The Cauchy–Schwarz inequality combined with Assumptions (N.0) and (N.5) implies that

1√
Thd

T

WT (x, ϕ) ≤ hT Cd+1‖ϕ‖L2

∥∥∥∥T−1

∫ T

0
g
Gt−δ
t dt − g

∥∥∥∥
L2

= O(hT ).

Condition (4.8) completes the proof. By change of variables, it follows that
1√
Thd

T

VT (x, ϕ) =
∣∣E(

ĤT (x)
)
− H(x)

∣∣

=
1

Thd
T

∫ T

0
E

[
ϕ(Yt)K

( x
hT

,
Xt

hT

)]
dt − H(x)

=
1

Thd
T

∫ T

0
E

[
E

[
ϕ(Yt) | Xt

]
K

( x
hT

,
Xt

hT

)]
dt − H(x)

=
1

Thd
T

∫ T

0
E

[
m(ϕ,Xt)K

( x
hT

,
Xt

hT

)]
dt − m(ϕ,x)f(x)
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=
1

hd
T

∫
Rd

m(ϕ,u)K
( x

hT
,

u
hT

)
f(u) du − m(ϕ,x)f(x)

=
∫

[−2L,2L]d
m(ϕ,x + hTv)f(x + hT v)K

( x
hT

,
x
hT

+ v
)

dv − m(ϕ,x)f(x)

=
∫

[−2L,2L]d
(m(ϕ,x + hT v)f(x + hTv) − m(ϕ,x)f(x))K

( x
hT

,
x
hT

+ v
)

dv.

Making use of Conditions (C.3), (N.4) and using the same previous arguments, we infer that

|VT (x, ϕ)| ≤

√
Thd

T

r!
sup
x∈D

∣∣∣∣∂
rm(ϕ,x)f(x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣
×

∑
k1+···+kd=r

hk1
T . . . hkd

T

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |K
( x

hT
,

x
hT

+ v
)

dv

= O
(
hr

T

(√
Thd

T

))
.

Therefore

VT (x, ϕ) =
√

Thd
T

(
E(ĤT (x)) − H(x)

)
= O

(
hr

T

(√
Thd

T

))
.

We achieve then the proof of the Corollary.

Proof of Theorem 4.7

Recall that√
Thd

T

(
f̂T (x) − f(x)

)
=

1√
Thd

T

∫ T

0

(
K

( x
hT

,
Xt

hT

)
− E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

])
dt

=
n∑

i=1

(
ηT,i(x) − η̃T,i(x)

)
=

n∑
i=1

θT,i(x),

where

ηT,i(x) =
1√
Thd

T

∫ Ti

Ti−1

K
( x

hT
,
Xt

hT

)
dt,

η̃T,i(x) =
1√
Thd

T

∫ Ti

Ti−1

E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

]
dt,

θT,i(x) =
(
ηT,i(x) − η̃T,i(x)

)
.

The sequence {θT,i(x)} is a triangular array of martingale differences with respect to the σ-field Fi (see
Didi (2014)). Observe that

∣∣∣∣
n∑

i=1

E
[
η2

T,i(x) | Fi−2

]
−

n∑
i=1

E
[
θ2
T,i(x) | Fi−2

]∣∣∣∣ =
n∑

i=1

(
E

[
ηT,i(x) | Fi−2

])2
.

By a simple change of variable, we obtain

E
[
ηT,i(x) | Fi−2

]
=

1√
Thd

T

∫ Ti

Ti−1

E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Fi−2

]
dt
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=

√
hd

T√
T

∫ Ti

Ti−1

∫
Rd

K
( x

hT
,

u
hT

)
f
Fi−2
t (u) du dt

=

√
hd

T√
T

∫
[−2L,2L]d

K
( x

hT
,

x
hT

+ v
)
f
Fi−2

t (x + hT v) dv dt

=

√
hd

T√
T

(∫ Ti

Ti−1

f
Fi−2
t (x) dt + o(1)

)
a.s.

Considering Assumption (C.2) and recalling that the function x �→ x2 is measurable we have

lim
n→∞

1
n

n∑
i=1

(∫ Ti

Ti−1

f
Fi−2
t (x) dt

)2

= δ2f2(x) in the a.s. and L2 sense.

Hence we obtain
n∑

i=1

(
E[ηT,i(x, ϕ) | Fi−2]

)2 ≤ hd
T

T

n∑
i=1

(∫ Ti

Ti−1

f
Fi−2

t (x) dt + o(1)
)2

≤ hd
T

δn

n∑
i=1

(∫ Ti

Ti−1

f
Fi−2

t (x)
)2

+ o(hd
T )

(
1
n

n∑
i=1

(∫ Ti

Ti−1

f
Fi−2

t (x) dt

))
+ o(h2d

T )

= O(hd
T ).

To establish the asymptotic normality of
√

Thd
T

(
f̂T (x) − f(x)

)
we have to show the following state-

ments:

(a) Lyapunov’s condition:
n∑

i=1

E
[
η2

T,i(x) | Fi−2

] P→ Σ∗∗2(x);

(b) Lindeberg’s condition:

nE
[
θ2
T,i(x)1{|θT,i(x)| > ε}

]
= o(1) for any ε > 0.

Proof of part (a). Using a change of variable and the continuity of the conditional density f
Fi−2

t (·),
t ∈ [Ti−1, Ti], we obtain

E
[
η2

T,i(x) | Fi−2

]
≤ 1

Thd
T

∫ Ti

Ti−1

E

[
K2

( x
hT

,
Xt

hT

) ∣∣∣Fi−2

]
dt

=
1
δn

∫ Ti

Ti−1

∫
[−2L,2L]d

K2
( x

hT
,

x
hT

+ v
)
f
Fi−2
t (x + hTv) dv dt

=
1
δn

(∫ Ti

Ti−1

f
Fi−2

t (x) dt + o(1)
) ∫

[−2L,2L]d
K2

( x
hT

,
x
hT

+ v
)

dv.

Recall that

K(u,v) = K(u + k,v + k) for k ∈ Z
d.

Moreover, the ergodicity of the process {fFt−δ
t } implies the ergodicity of {fFTi−2

t } for t ∈ [Ti−1, Ti]. We
obtain then

1
n

n∑
i=1

(
1
δ

∫ Ti

Ti−1

f
Fi−2

t (x) dt

)
=

T→∞
f(x) in a.s. and L2 sense.
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Assumption (C.2) allows us to write
n∑

i=1

E
[
η2

T,i(x) | Fi−1

]
≤

(
1
n

n∑
i=1

(
1
δ

∫ Ti

Ti−1

f
Fi−2

t (x) dt

)
+ o(1)

) ∫
[−2L,2L]d

K2(0,v) dv

= f(x)
∫

[−2L,2L]d
K2(0,v) dv + o(1)

= f(x)
∫

Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv + o(1).

Therefore

lim
n→∞

n∑
i=1

E
[
η2

T,i(x) | Fi−2

]
P= Σ∗∗2(x) ≤ f(x)

∫
Rd

{ ∑
k∈Zd

φ(k)φ(v + k)
}2

dv. (6.59)

Proof of part (b). We observe that

nE
[
θ2
T,i(x)1{|θT,i(x)| > ε}

]
≤ 4nE

[
η2

T,i(x)1{|ηT,i(x)| > ε/2}
]
.

Let a > 1 and b > 1 such that
1
a

+
1
b

= 1.

Making use of Hölder’s and Markov’s inequalities one can write, for all ε > 0,

E
[
η2

T,i(x)1{|ηT,i(x)| > ε/2}
]
≤ E|ηT,i(x)|2a

(ε/2)2a/b
.

Therefore by Jensen’s inequality

4nE
[
η2

T,i(x)1{|ηT,i(x)| > ε/2}
]

≤ 4
δT a−1had

T (ε/2)2a/b

∫ Ti

Ti−1

E

∣∣∣K
( x

hT
,
Xt

hT

)∣∣∣2a
dt

=
4

δ(Thd
T )a−1(ε/2)2a/b

∫ Ti

Ti−1

∫
[−2L,2L]d

K2a
( x

hT
,

x
hT

+ v
)
f(x + hT v) dv dt

=
4

(Thd
T )a−1(ε/2)2a/b

(
f(x) + o(1)

) ∫
[−2L,2L]d

K2a
( x

hT
,

x
hT

+ v
)

dv

= O
(( 1

nhd
n

)a−1)
. (6.60)

Combining statements (6.59) and (6.60) we complete the proof of Theorem 4.7.

Proof of Corollary 4.8
Consider the following decomposition√

Thd
T

(
f̂T (x) − f(x)

)
=

√
Thd

T

(
f̂T (x) − fT (x)

)
+

√
Thd

T

(
fT (x) − E(f̂T (x))

)

+
√

Thd
T

(
E(f̂T (x)) − f(x)

)
= FT,1(x) + FT,2(x) + FT,3(x).

Theorem 4.7 shows the convergence in distribution of FT,1(x) to a normal distribution. Secondly, by
combining Condition (C.1) with (6.2), we obtain

1√
Thd

T

FT,2(x, ϕ) = fT (x) − E
(
f̂T (x)

)
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=
1

Thd
T

∫ T

0

(
E

[
K

( x
hT

,
Xt

hT

) ∣∣∣Ft−δ

]
− E

[
K

( x
hT

,
Xt

hT

)])
dt

=
1

Thd
T

∫ T

0

∫
Rd

K
( x

hT
,

u
hT

)(
f
Ft−δ
t (u) − f(u)

)
du dt

≤ 1
T

∫ T

0

∫
Rd

Cd+1

hd
T (1 + ‖x − u‖h−1

T )d+1

(
f
Ft−δ
t (u) − f(u)

)
du dt

= hT Cd+1

∫
Rd

(
T−1

∫ T

0
f
Ft−δ
t (u) dt − f(u)

)
du.

Using the fact that ∫
Rd

fFt−δ(u) du = 1 and
∫

Rd

f(u) du = 1,

we infer that
1√
Thd

T

FT,2(x) ≤ 2hT Cd+1 = O(hT ).

Condition (4.9) implies readily that

lim
T→∞

FT,2(x) = 0.

Under assumption (C.3), we get

FT,3(x) =
√

Thd
T |Ef̂T (x) − f(x)|

=
∣∣∣∣
√

Thd
T

1
hd

T

∫
Rd

K

(
x
hT

,
v
hT

)
f(v) dv − f(x)

∣∣∣∣
=

∣∣∣∣
√

Thd
T

∫
[−2L,2L]d

K
( x

hT
,

x
hT

+ v
)(

f(x + hTv) − f(x)
)
dv

∣∣∣∣
=

∣∣∣∣
√

Thd
T

∫
[−2L,2L]d

K
( x

hT
,

x
hT

+ v
)(

1
r!

∑
k1+···+kd=r

hk1
T vk1

1 . . . hkd
T vkd

d

∂rf(vhT θ + x)

∂vk1
1 . . . ∂vkd

d

)
dv

∣∣∣∣

≤

√
Thd

T

r!
sup
x∈D

∣∣∣∣ ∂rf(x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣
∑

k1+···+kd=r

hk1
T . . . hkd

T

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |K
( x

hT
,

x
hT

+ v
)

dv

=

√
Thd

T

r!
sup
x∈D

∣∣∣∣ ∂rf(x)

∂vk1
1 . . . ∂vkd

d

∣∣∣∣hr
T

∑
k1+···+kd=r

∫
[−2L,2L]d

|vk1
1 . . . vkd

d |
∣∣∣K

( x
hT

,
x
hT

+ v
)∣∣∣ dv

= O
(
hr

T

(√
Thd

T

))
.

Therefore

lim
T→∞

FT,3(x) = 0.

The proof of Corollary 4.8 is completed.

ACKNOWLEDGEMENTS

The authors are indebted to the Editor and the referee for their constructive criticism, very valuable
comments and suggestions which led to a considerable improvement of the manuscript. The authors
also thank their colleague Professor Djalil KATEB for his help and discussions.

MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 3 2015



198 BOUZEBDA et al.

REFERENCES
1. D. W. K. Andrews, “Nonstrong Mixing Autoregressive Processes”, J. Appl. Probab. 21 (4), 930–934 (1984).
2. G. Banon, “Nonparametric Identification for Diffusion Processes”, SIAM J. Control Optim. 16 (3), 380–395

(1978).
3. A. Beck, “On the Strong Law of Large Numbers”, in Ergodic Theory (Proc. Internat. Sympos., Tulane

Univ., New Orleans, La., 1961), (Academic Press, New York, 1963), pp 21–53.
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