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Abstract—In this paper, we propose a nonparametric estimator of the cumulative quantile regres-
sion (CQR) function when the response is subjected to random truncation and censorship. The
observed responses are weighted by the increments of the product-limit estimator for the underlying
response distribution. Strong Gaussian approximations of the associated weighted partial sum
process and the CQR process are established under appropriate assumptions. A functional law of
the iterated logarithm for the CQR process is also derived. The construct provides a foundation for
the asymptotic theory of functional statistics based on these processes.
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1. INTRODUCTION

Let (X,Y ) be a bivariate positive random vector with marginal distribution functions (df’s) of X
and Y denoted by F and K respectively. Assume that Y is integrable. The regression function
of Y on X is m(x) = E[Y |X = x ]. Let Q(u) := inf{x : F (x) > u }, 0 < u < 1, denote the right-
continuous quantile function (qf) associated with F (x). With U = F (X) denoting the rank variable,
Rao & Zhao [13] defined the quantile regression (QR) function of Y on X as

r(u) = E [Y |U = u ] = m ◦ Q(u), 0 ≤ u ≤ 1. (1.1)

The cumulative quantile regression function (CQR) and its standardized form are

M(u) :=
∫ u

0
m ◦ Q(t) dt =

∫ u

0
r(t) dt, M̃(u) :=

1
μ

M(u), (1.2)

for u ∈ [0, 1], where μ = M(1) = E [Y ]. We shall refer to this as the full model. In econometrics, with
(X,Y ) representing income and tax respectively, M̃(u) is the fraction of the total tax contributed by
the lowest uth fraction of income holders. In insurance, M(1) − M(u) and its standardized version are
more relevant since large claims are of more interest than small claims (Furman & Zitikis [5, 6]). More
generally, M̃(u) is the counterpart of the Lorenz curve in the presence of a covariate. In the special
case Y = X, m reduces to the identity function and M̃ is the usual Lorenz curve (Gastwirth [7, 8]).
By expressing the X values in terms of quantiles, the numbers are put into their proper context. This
is particularly useful when comparing population groups with significant difference in the ranges of X
values (see Schechtman et al. [15] for a review).

The empirical estimates of M and M̃ based on the partial sums of the Y ’s and the empirical df Fn(x)
of the X’s have been studied by several authors. Rao & Zhao [13, 14] established the uniform strong
consistency of Mn and M̃n, the weak convergence of the associated CQR process (respectively the
standardized form) in D[0, 1] under Skorohod J1 topology and a law of the iterated logarithm (LIL) for
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the empirical CQR. Davydov and Egorov [4] arrived at the same results in a more general setting via
entropy technique. Tse [19] elevated the weak convergence results to strong Gaussian approximation at
good rates, thus greatly enhancing the efficiency in application.

However, data are often imperfect. Tse [20] studied the model, where the covariate X is subjected
to random truncation and censorship (model I). Another common occurrence is when the response Y ,
instead of the covariate X, is subjected to random truncation and censorship. How should M and M̃
be estimated in this case? And what are the properties of these estimators? It is the objective of this
paper to give a definite answer to these questions. In particular, we propose the empirical estimators of
M and M̃ , denoted by Mn and M̃n, based on the empirical process of the covariate X and a weighted
partial sum process of the observed responses (subjected to truncation and censorhsip), the weights
being the increments of the product-limit (PL) estimator of the df of Y . It is the natural sequel to Tse
[19, 20], where the full model and model I were investigated. As before, we continue to work in the unified
framework of Csörgő [2] and Csörgő et al. [3]. We shall prove the strong uniform consistency of Mn and
M̃n and construct strong Gaussian approximations of the associated empirical processes. Almost sure
statements like the LIL follow as easy consequences. The results broaden the scope of applications in
econometics, insurance, medical and health sciences among others. Along the way, we also establish
the strong Gaussian approximation of the weighted partial sum process mentioned above. The result is
of independent interest and finds applications in other areas. Ultimately, the basis of our constructions
are the strong approximation results of Komlós et al. [11, 12] for the partial sum and empirical processes
of i.i.d. random variables. The other essential ingredient is the LIL of the PL-estimator from Tse [17].

In Section 2, we formulate the model and define the appropriate estimators. Section 3 states the main
results of this paper. Auxiliary results and proofs are relegated to Section 4.

2. THE MODEL
Let (T, S) be independent positive random variables with continuous df’s G and L respectively.

Assume that (T, S) are independent of (X,Y ) defined in the Introduction. Let Z := min(Y, S) and
δ := I{Y ≤ S}. If Z ≥ T , one observes (X,Z, T, δ). If Z < T , only X is observed, the quadruplet is
incomplete. In other words, the response Y is subjected to left truncation, T , and right censorship, S,
mechanisms, while δ indicates whether or not the observed Z is censored. We shall call this model II,
to distinguish it from the full model and model I, where the truncation and censorship apply to the
covariate X rather than the response Y . In the absence of the covariate, (Z, Y, δ) reduces to the usual
left truncation and right censorship (LTRC) model, and the df of Y is estimated by the product-limit
estimator. In the presence of the covariate, the existence of a truncated response can now be detected.
This marks a deviation from the plain LTRC model. Denote the df of Z by J . By the independence
assumption, we have 1 − J = (1 − K) (1 − L). For any df H , let aH := inf{z : H(z) > 0} and bH :=
sup{z : H(z) < 1} denote the left and right endpoints of its support. We assume aG = aJ = 0 and
bG ≤ bJ throughout.

Let (X̃k, Ỹk, T̃k, S̃k), k = 1, . . . , n0, be independent and identically distributed as (X,Y, T, S). Define
Z̃k := min(Ỹk, S̃k) and δ̃k := I{Ỹk ≤ S̃k}, k = 1, . . . , n0. Following the rule above, the observed data
are (X̃ki

, Z̃ki
, T̃ki

, δ̃ki
), i = 1, . . . , n, where n is the number of observed complete quadruplets among

the n0. To avoid the complication of double layers of subscripts, we denote these observed quadruplets
by (Xi, Zi, Ti, δi), i = 1, . . . , n. By the truncation mechanism, n is a Bin(n0, α) random variable with
α := P (T ≤ Z). The ratio n/n0 provides a natural estimator for α. Other than that, the incomplete
quadruplets have little role to play in our model. The product-limit (PL) estimator of K, the distribution
of Y , proposed by Tsai et al. [16] is

1 − Kn(y) =
∏

i : Zi≤y

[
1 − 1

n Cn(Zi)

]δi

(2.1)

assuming no ties in the data, where n Cn(z) =
∑n

i=1 I{Ti ≤ z ≤ Zi} counts the number of items among
the n that are actually at risk at the point z. Then Cn(z) is a consistent estimator of

C(z) :=
1
α

P (T ≤ z ≤ S ) [ 1 − K(z−) ] =
1
α

G(z) [ 1 − L(z) ] [ 1 − K(z) ], (2.2)

since L and K are assumed to be continuous.
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Let X(1), . . . ,X(n) denote the order statistics of X1, . . . ,Xn and denote the Z associated with X(i)

by Z(i). The Z(i)’s are called induced order statistics or concomitants (see Greselin et al. [10] for
a review). Let ΔKn(y) = Kn(y) − Kn(y−) be the jump of the PL estimator Kn at y and Qn(u) :=
inf{x : Fn(x) > u } be the empirical qf for the covariate X. The empirical CQR for our model II is defined
for u ∈ [0, 1] by

Mn(u) =
n∑

i=1

Zi ΔKn(Zi) I{Xi ≤ Qn(u) } =
s(u)∑
i=1

Z(i) δ(i)

1 − Kn(Z(i)−)
n Cn(Z(i))

, (2.3)

where s(u) = max{ i : Xi ≤ Qn(u)}, applying (2.1) in the second equality. We shall work with the
first representation in the following analysis. The second representation is more convenient for data
analysis. As u goes from zero to one, n Mn(u) gives the weighted partial sums of the induced ordered
statistics Z(i)’s. In the absence of truncation and censorship, δi = 1, Zi = Yi, and then Kn is replaced by
the usual empirical df, so that ΔKn(Zi) becomes 1

n for all i = 1, . . . , n, Mn(u) reduces to the empirical
CQR for the full model. However, in model II, the presence of Kn and Cn couples the summands in
Mn(u). We are no longer dealing with the sum of i.i.d. random variables. Similarly, the standardized
counterpart of Mn(u) is

M̃n(u) =
1

Mn(1)

n∑
i=1

Zi ΔKn(Zi) I{Xi ≤ Qn(u) }, 0 ≤ u ≤ 1, (2.4)

where Mn(1) is the empirical counterpart of μ = E Y . The associated CQR process and the standardized
version are defined respectively as

ζn(u) :=
√

n
[
Mn(u) − M(u)

]
and ζ̃n(u) :=

√
n

[
M̃n(u) − M̃(u)

]
. (2.5)

The analysis thus involves the weighted partial sum process for the Zi’s, the PL-estimator of K and the
empirical process for the Xi’s simultaneously.

3. BASIC AUXILIARY RESULTS AND MAIN THEOREMS

This section presents the main theorems of this paper. Theorem 3.1 gives the strong uniform
consistency of Mn and M̃n in the form of a LIL. Theorems 3.2 and 3.3 are the strong approximation
theorems for ζn(u) and ζ̃n(u). Theorem 3.4 derives a functional LIL for the CQR process. Theorems 3.2
and 3.4 contain the strong Gaussian approximation of a weighted partial sum process and the associated
LIL. The constructions in Theorems 3.2 and 3.3 are based upon the strong approximation results of
Komlós et al. [11, 12] for the partial sum and empirical processes for i.i.d. random variables in terms of
Wiener and Kiefer processes. They are stated as Theorems A and B in Tse [19]. We shall refer to them
by the same names throughout this paper. We shall build our strong approximation constructions of ζn

and ζ̃n on the probability spaces of Theorems A and B.
Here, we simply recall that if {W (t), 0 ≤ t < ∞} is a standard Wiener process, then for n = 1, 2, . . .

and 0 ≤ t ≤ 1,

Wn(t) =
1√
n

W (nt), (3.1)

is a sequence of standard Wiener processes with well-defined covariance structure. Also, the two-
parameter Kiefer process {K(u, y) : 0 ≤ u ≤ 1, 1 ≤ y ≤ 1 } (see, e.g., Csörgő & Révész [1] for its
definition) has covariance

EK(u1, y1)K(u2, y2) = (u1 ∧ u2 − u1 u2) (y1 ∧ y2),

and for any positive number n,

Bn(u) =
K(u, n)√

n
for 0 ≤ u ≤ 1, (3.2)

is a Brownian Bridge.
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Returning to our model II, for j = 1, 2, . . . , n, let

Dj := Zj δj
1 − K(Zj)

C(Zj)
. (3.3)

Since Zj = Yj when δj = 1, Dj have the same distribution as

D(Yj) := Yj δj
1 − K(Yj)

C(Yj)
. (3.4)

Think of the Dj ’s as the surrogates of the Yj ’s when the observed Zj ’s are weighted by the increments
of Kn. Next, we introduce the following modified conditional variance of D(Y ):

Ṽ (x) = E
[
(D(Y ) − m(X))2 |X = x

]
. (3.5)

We shall see that this modified conditional variance marks the price that we have to pay when the
response variable is subjected to truncation and censorship. In the absence of these mechanisms, δ = 1
and C(z) = 1 − K(z), so D(Y ) reduces to Y and Ṽ to the true conditional variance of Y :

V (x) = E
[
(Y − m(X))2 |X = x

]
. (3.6)

We shall assume that the following smoothness conditions hold for the distribution of (X,Y, T, S) in our
theorems:

A1. E |Dj |3 < ∞, j = 1, . . . , n.
A2. F and K are continuous and strictly increasing.

A3. m ◦ Q and
√

Ṽ ◦ Q are functions of bounded variation on [0, 1], so that we can write

m ◦ Q = h1 − h2,

√
Ṽ ◦ Q = h3 − h4,

where hi, i = 1, 2, 3, 4, are nondecreasing differentiable functions on [0, 1]. Moreover, we assume that
Ṽ ◦ Q(u) > 0 for all u ∈ (0, 1].

A4. The functions hi, i = 1, 2, 3, 4, satisfy

sup
u∈(0,1)

uα (1 − u)β h′
i(u) < ∞ for some 0 < α, β < 1,

and similarly for the function Q.
A5. With J1(z) := P (Z ≤ z, δ = 1 |T ≤ Z ), the following condition is satisfied:∫ ∞

0

dJ1(u)
C3(u)

< ∞. (3.7)

Also, the function

l(z) :=
∫ z

0

d J1(u)
C2(u)

(3.8)

is strictly increasing and uniformly continuous.
Comparing A1–A4 to their counterparts in the full model (Tse [19]) reveals the adjustment needed

for model II. In particular, the finite third moment of the Y ’s is replaced by that of the D’s and the
conditional variance of Y by that of the D(Y ). A5 is the assumption for the Gaussian approximation of
the PL process γn(z) :=

√
n [Kn(z) − K(z) ], which gives rise to an LIL for Kn that plays a key role in

the following analysis. The other assumptions remain the same.

Theorem 3.1. Suppose that conditions A1–A5 are satisfied. We have, almost surely,

sup
u∈[0,1]

∣∣ Mn(u) − M(u)
∣∣ = O

(√
log log n

n

)
,

(3.9)
sup

u∈[0,1]

∣∣ M̃n(u) − M̃(u)
∣∣ = O

(√
log log n

n

)
.
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The following theorems hold in the probability spaces of Theorems A and B.

Theorem 3.2. Suppose that conditions A1–A5 are satisfied. On a sufficiently rich probability
space, there exists a sequence of Gaussian processes

ψn(u) = Γn1(u) +
∫ u

0
Bn(t) dm ◦ Q(t) (3.10)

on [0, 1], where Γn1 is a mean zero Gaussian process defined in terms of Wn’s in (3.1) with the
covariance function

Cov [ Γn1(u),Γn2(v) ] =
∫ u∧v

0
Ṽ ◦ Q(t) dt := J1(u, v), (3.11)

Bn is the Brownian Bridge from a Kiefer process as in (3.2), and the two are independent of each
other, such that, for any τ < 1/6, we have

sup
u∈[0,1]

∣∣ ζn(u) − ψn(u)
∣∣ = O(n−τ ) (3.12)

almost surely.

We shall see in the next section that Γn1(u) is the Gaussian approximation to a properly centered and
weighted partial sum process of censored and truncated data. That result is of independent interest. The
corresponding statement for the standardized version ζ̃n is:

Theorem 3.3. Suppose that conditions A1–A5 are satisfied. On a sufficiently rich probability
space, there exists a sequence of Gaussian processes

ψ̃n(u) =
1
μ

[
Γn1(u) − Γn1(1) M̃ (u)

]
+

1
μ

∫ 1

0
[ I(t ≤ u) − M̃(u) ]Bn(t) dm ◦ Q(t)

on [0, 1], where Vn and Bn are the same as in Theorem 3.2, such that, for any τ < 1/6, we have

sup
u∈[0,1]

∣∣ ζ̃n(u) − ψ̃n(u)
∣∣ = O(n−τ ) (3.13)

almost surely.

In the absence of truncation and censorship, Theorems 3.2 and 3.3 reduce properly to those of the
full model in Tse [19], and Remarks 1 and 2 there apply. They also imply that ζn and ζ̃n converge weakly
to Gaussian processes with the distributions of ψn and ψ̃n respectively. More importantly, the strong
construction renders inference in the strong sense feasible. Thus, we have the following LIL for ζn. Let
D[0, 1] be the space of left limit, right continuous functions over [0, 1]. Let bn =

√
2 log log n . Define the

following set of absolutely continuous functions that originates from Strassen:

K =
{

k | k : [0, 1] → R, k(0) = 0,
∫ 1

0

(
k′(t)

)2
dt ≤ 1

}
,

H =
{

h |h : [0, 1] → R, h(0) = h(1) = 0,
∫ 1

0

(
h′(t)

)2
dt ≤ 1

}
.

Theorem 3.4. Suppose that conditions A1–A5 are satisfied. Then the sequence ζn/bn is almost
surely relatively compact in the function space D[0, 1] endowed with the Skorohod topology, and
its set of limit points is the following set of absolutely continuous functions:

G =
{

g | g : [0, 1] → R, g(u) = σ k
(
η(u)/σ2

)
−

∫ u

0
h(t) dr(t), k ∈ K, h ∈ H

}
, (3.14)

where

η(u) =
∫ u

0
Ṽ ◦ Q(t) dt and η(1) ≡ σ2. (3.15)

A similar result holds for the standardized form of the CQR process. These LILs are particularly
useful aids in studying the asymptotic properties of functionals of the ζn and ζ̃n processes.
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4. AUXILIARY RESULTS AND PROOFS

Since F is continuous and strictly increasing, so is its inverse Q. The empirical process pertaining
to F can be expressed in terms of the uniform empirical process. For u ∈ [0, 1], let En(u) and Un(u) be
the empirical df and the associated qf of i.i.d. unif[0, 1] random variables. Let

βn(u) :=
√

n
[
u − Fn ◦ Q(u)

]
=

√
n

[
u − En(u)

]
, u ∈ [0, 1]. (4.1)

Also, for the empirical CQR function, we define the following processes over [0, 1]:

αn1(u) =
√

n

n∑
i=1

[
ZiΔKn(Zi) −

1
n

m(Xi)
]

I
(
Xi ≤ Qn(u)

)
,

(4.2)
αn2(u) =

√
n

[ n∑
i=1

1
n

m(Xi) I
(
Xi ≤ Qn(u)

)
− M(u)

]
.

In terms of αn1 and αn2, the CQR process is

ζn(u) = αn1(u) + αn2(u), 0 ≤ u ≤ 1. (4.3)

By the observation at the beginning of this section, vn2 can be represented by an integration with
respect to βn process as in the full model. But αn1 is a very different process. Hence, the analysis of αn2

remains unchanged. Our consideration concentrates on αn1.
The summands in αn1 are neither independent nor identically distributed. There are two sources for

their dependence. The first one comes from the empirical qf Qn of the covariate. This can be treated by
observing that

I(Xi ≤ Qn(u) ) = I
(
F (Xi) ≤ (F ◦ Qn)(u)

)
= I

(
Ui ≤ Un(u)

)
, (4.4)

where Ui’s are i.i.d. unif[0, 1] random variables, and then approximating Un(u) by u within error bound.
The second source of dependence among the summands in αn1 comes from the factor Δ Kn, where the
presence of Kn and Cn couples all the items. To deal with that dependence, recall that under A5, the
strong Gaussian approximation of the PL-process γn(z) leads to a LIL for Kn. For our purpose, the
following simplified version suffices:

lim sup sup
z∈[0,b]

|Kn(z) − K(z) | = O

(√
log log n

n

)
(4.5)

almost surely, where b < bJ . Under the same assumption, we also have

lim sup sup
z∈[0,b]

∣∣∣∣ 1
Cn(z)

− 1
C(z)

∣∣∣∣ = O

(√
log log n

n

)
(4.6)

almost surely (Zhou & Yip [21], Tse [18]). Thus we can replace Kn and Cn by K and C within error
bounds. Applying (4.4), (4.5) and (4.6) in αn1, we get almost surely, within an error term of O(n−τ ),
τ < 1/2,

αn1(u) =
1√
n

n∑
i=1

[
Zi δi

1 − K(Zi)
C(Zi)

− m(Xi)
]

I
(
Ui ≤ Un(u)

)

=
1√
n

n∑
i=1

[
Di − m(Xi)

]
I
(
Ui ≤ Un(u)

)
. (4.7)

Note that when u = 1, all the indicator variables in (4.7) are equal to one, and we get the weighted partial
sum process of the plain LTRC model

Sn =
1√
n

n∑
i=1

[Di − m(Xi) ]. (4.8)
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Since a proper understanding of this process would facilitate our analysis and also the process is
interesting in its own right, we make a detour to consider this process first.

Conditionally on n, the summands in (4.8) are now independent. To check the proper centering of the
summands in (4.8), we note that an observed Zi implies Ti ≤ Zi. Smoothing then gives

E

[
Zi δi

1 − K(Zi)
C(Zi)

]
= E

{
E

[
Zi δi

1 − K(Zi)
C(Zi)

∣∣∣Yi, Ti ≤ Zi

]}
. (4.9)

The conditional expectation in the right-hand side is non-vanishing only if δi = 1, which occurs with
conditional probability

P ( δi = 1 |Yi ) = P (Yi ≤ Si ) = 1 − L(Yi−) = 1 − L(Yi),

by the continuity assumption of L in the last step. But δi = 1 implies Zi = Yi. So, recalling that the df
of T is G, (4.9) becomes

E

{
Yi

[1 − L(Yi)] [1 − K(Yi)]
C(Yi)

I{Ti≤Yi}

}
1

P (T ≤ Z)

=
1
α

∫ ∞

0
y

[1 − L(y)] [1 − K(y)]
C(y)

G(y) dK(y) =
∫ ∞

0
y dK(y) = μ, (4.10)

applying (2.2) in the last line. We have shown that the summands in Sn are centered properly.
The second moments of the summands can be computed in a similar manner. The result is

E D2
i = E

[(
Ziδi

1 − K(Zi)
C(Zi)

)2 ]
=

∫ ∞

0
y2 α

G(y) [1 − L(y)]
dK(y),

which differs from the second moment of Y , but reduces to it properly in the absence of censorship and
truncation (α = 1, G(t) = 1 and L(t) = 0 for all t ≥ 0). Thus, if we let

σ2 = Var(Di) =
∫ ∞

0
y2 α

G(y) [1 − L(y)]
dK(y) − μ2, (4.11)

then σ is the scale parameter for the weighted summands in the LTRC model. It is also the modified
conditional variance Ṽ introduced in (3.5).

To summarize, we have reduced the weighted partial sum process for the LTRC model to a sum of
i.i.d. random variables with proper mean μ but adjusted variance σ2 defined in (4.11). We can now invoke
Theorem A to obtain the strong Gaussian approximation of this process.

Theorem 4.1. Consider the data (Zi, Ti, δi), i = 1, . . . , n, in the LTRC model. Assume that
E Dp

i < ∞ for some p > 2, where Di defined in (3.3) have mean μ = E Y and variance σ2 defined
in (4.11). There exists a Wiener process such that

sup
t∈[0,T ]

∣∣∣n
[t]∑

i=1

Zi ΔKn(Zi) − μt − σ W (t)
∣∣∣ = O(T 1/p ) (4.12)

almost surely.

This result generalizes the classical strong approximation result of KMT [11, 12] for regular partial
sum process to summands subjected to random truncation and/or censorship mechanisms. In particu-
lar, it enables us to transplant many properties of the Wiener process to the weighted partial sum process
with the minimum effort.

We now end our detour and return to αn1(u) in our model II. Introduce the standardized form of the
weighted observed responses:

ξi :=
1√

Ṽ (Xi)

[
Zi δi

1 − K(Zi)
C(Zi)

− m(Xi)
]

=
Di − m(Xi)√

Ṽ (Xi)
(4.13)
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and its associated partial sum process {Sn(t) : 0 ≤ t ≤ 1 } by

Sn(t) =
1√
n

[nt]+1∑
i=1

ξi, n = 1, 2, . . . . (4.14)

To deal with the last dependence among the summands of αn1(u), we replace Un(u) in the summands
of αn1(u) by u, the difference thus incurred is:

Δn(u) = αn1(u) − 1√
n

n∑
i=1

[Di − m(Xi) ] I(Ui ≤ u ),

|Δn(u) | =
∣∣∣∣αn1(u) −

∫ u

0

√
Ṽ ◦ Q(t) dSn(t)

∣∣∣∣
=

∣∣∣∣
∫ u∨Un(u)

u∧Un(u)

√
Ṽ ◦ Q(t) dSn(t)

∣∣∣∣ (4.15)

≤
∣∣∣∣
∫ u∨Un(u)

u∧Un(u)
h3(t) dSn(t)

∣∣∣∣ +
∣∣∣∣
∫ u∨Un(u)

u∧Un(u)
h4(t) dSn(t)

∣∣∣∣
=: Δn1(u) + Δn2(u),

with the help of A3 in the next to last step. Luckily, it takes the same form as in the full model and the
analysis there carries over. From the proof of Lemma 3.1 in Tse [19], we have

sup
0≤u≤1

|Δn1(u) | + sup
0≤u≤1

|Δn2(u) | = O(n−τ )

almost surely for any τ < 1/6. Thus, we have succeeded in representing αn1(u) by a scaled partial sum
process within error bounds.

Now, we are ready for the strong Gaussian approximation for the CQR process defined in (4.3). For
0 ≤ u ≤ 1, let

Γn1(u) =
∫ u

0

√
(Ṽ ◦ Q)(t) dWn(t), Γn2(u) =

∫ u

0
Bn(t) dm ◦ Q(t), (4.16)

where Wn(t) are the Wiener processes defined in (3.1) and Bn(t) are the Brownian Bridges defined in
terms of the Kiefer process in (3.2).

Proof of Theorem 3.2. Observe that ψn(u) = Γn1(u) + Γn2(u). Hence, writing sup for supu∈[0,1], we
have

sup | ζn(u) − ψn(u) | ≤ sup |Γn1(u) − αn1(u) | + sup |Γn2(u) − αn2(u) | (4.17)

almost surely. The second term is exactly the same as in the full model. So Lemma 3.2 in Tse [19] gives
O(n−τ ) almost surely for any τ < 1/6. The first term is also analogous to that of the full model except
that Ṽ replaces V . The analysis in Lemma 3.1 there carries over, with the role of Theorem A there taken
by our Theorem 4.1 with p = 3. Again, we get the same order O(n−τ ) almost surely for any τ < 1/6.

The proof of Theorem 3.3 is similar. Theorem 3.4 follows from Theorem 3.2 and the standard
functional LIL for the Wiener and Kiefer processes (see Theorems 1.3.2 and 1.15.1 of [1]). Finally, noting
that M(u) is continuous, Theorem 3.1 follows easily from Theorem 3.4.

Proof of Theorem 3.1. Recalling that h ∈ H satisfies |h(t)| ≤ t1/2 on (0, 1) (Lemma 1.7.1 in [1]), we
have

lim sup
n→∞

√
n

log log n
sup

u∈[0,1]
|Mn(u) − M(u) | ≤ v, (4.18)

MATHEMATICAL METHODS OF STATISTICS Vol. 24 No. 2 2015



THE CUMULATIVE QUANTILE REGRESSION FUNCTION 155

where

v2 = σ2 +
∣∣∣∣
∫ 1

0
d r(t)

∣∣∣∣
2

< ∞. (4.19)

This gives the first statement of Theorem 3.1. The second statement follows easily.
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