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Abstract—A central problem in time series analysis is prediction of a future observation. The theory
of optimal linear prediction has been well understood since the seminal work of A. Kolmogorov
and N. Wiener during World War II. A simplifying assumption is to assume that one-step-ahead
prediction is carried out based on observing the infinite past of the time series. In practice, however,
only a finite stretch of the recent past is observed. In this context, Baxter’s inequality is a fundamental
tool for understanding how the coefficients in the finite-past predictor relate to those based on the
infinite past. We prove a generalization of Baxter’s inequality for triangular arrays of stationary
random variables under the condition that the spectral density functions associated with the different
rows converge. The motivating examples are statistical time series settings where the autoregressive
coefficients are re-estimated as new data are acquired, producing new fitted processes — and new
predictors — for each n.
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1. INTRODUCTION

Baxter’s inequality ([1], [2]) provides a fundamental tool for understanding the behavior of linear
predictors based on a finite observed history. In particular, let (Xt)t∈Z be a mean zero, weakly stationary
time series. Under reasonably general conditions (see, for example, [9], [10], [11]), such a process admits
an AR(∞) representation

Xt =
∞∑

k=1

akXt−k + εt,

where (εt)t∈Z is a white noise, stationary innovation process.
In principle, the sequence of autoregressive (AR) coefficients (ak)∞k=1 describes the optimal coeffi-

cients for the prediction of Xt based on an infinite observed history (Xt−k)∞k=1. Of course, in practice
only a finite history X0,X1, . . . ,Xt−1 is observed, and predictions are made based only on the p most
recent observations — with p typically much smaller than t.

It is well known ([3, p.167]) that the optimal prediction coefficients for the one-step-ahead linear
predictor based on the p most recent observations are the solutions to the Yule–Walker equations

⎛

⎜⎜⎜⎝

γ(0) . . . γ(p − 1)
...

. . .
...

γ(p − 1) . . . γ(0)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a1(p)
...

ap(p)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

γ(1)
...

γ(p)

⎞

⎟⎟⎟⎠ ,

*E-mail: marco.meyer@tu-bs.de
**E-mail: tmcmurry@virginia.edu

***E-mail: dpolitis@ucsd.edu

135



136 MEYER et al.

where γ(k) = E[XtXt−k] is the autocovariance function of (Xt)t∈Z at lag k. Baxter’s inequality provides
a bound on the vector difference between the finite-past predictor sequence (ak(p))pk=1 and the infinite-
past predictor sequence (ak)

p
k=1; the bound depends on the tail decay of (ak)∞k=p+1. The original result

already contains weighting functions which ensure sufficiently fast rates of convergence, as p → ∞, if
certain conditions are met.

Since Baxter’s early work the result has been generalized to different scenarios. Hannan and Deistler
(see [7]) give a proof in the context of vector-valued processes which contains the same weighting
functions as in the univariate setting. Cheng and Pourahmadi (see [4]) discuss L1- and L2-versions
for vector-valued processes which are, however, unweighted. In this work, we will introduce another
important generalization to situations which occur naturally in many applications.

In statistical problems, the coefficients a1(p), . . . , ap(p) must be estimated from the data, and in
principle will be re-estimated if/when additional data accumulates. For example, when a time series
is observed on a regular basis, e.g., daily or monthly, then the observed sample size n increases as time

goes by. The result is a triangular array of predictor coefficients
(
a

(n)
k (p)

)p

k=1
, where both the coefficients

and the order p depend on n.
As another example, consider a practitioner that wants to resample a given time series of length n.

There are many bootstrap methods available in the literature; see the review by [8]. In each of these
methods, notably, the resampling mechanism is done via a probability measure that depends on n; hence,
the bootstrap time series represents the nth row of a triangular array.

In the present paper we establish a version of Baxter’s inequality appropriate for this setting. Our
inequality concerns a triangular array of observations

X1,n, . . . ,Xn,n (1)

from a sequence of processes with autocovariance functions γn(·) and spectral densities fn(·) converging
to a limiting autocovariance function γ(·) and spectral density f(·).

The remainder of the paper is structured as follows: Section 2 describes our assumptions and contains
the statements of our main results. We will also state an auxiliary result that might be of its own
interest. It transfers convergence of the Fourier coefficients of functions (in our case spectral densities) to
convergence of the optimal factors of these functions in the spectral decomposition. Section 3 contains
our proofs.

2. MAIN RESULTS

Consider a triangular array of observations

X1,n, . . . ,Xn,n, n ≥ 1, (2)

where, for each n ∈ N, the data Xt,n = X
(n)
t are generated by a weakly stationary, real-valued process

(X(n)
t )t∈Z with autocovariance function γn(·) and spectral density fn(·). We impose the following

assumptions.

Assumption 2.1. The weakly stationary processes (X(n)
t ) have finite second moments and are

purely non-deterministic for each n ∈ N.

Assumption 2.2. For a nondecreasing weighting function ν : N0 → [1,∞) which fulfils the norm
condition ν(k) ≤ ν(j) · ν(|k − j|) for all j, k ≥ 0, as well as the so-called GRS-condition

lim
n→∞

ν(nx)1/n = 1, ∀x ∈ R,

cf. [6], the autocovariances fulfil
∞∑

h=−∞
ν(|h|) (1 + |h|) · |γn(h)| ≤ C < ∞, ∀ n ∈ N. (3)
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BAXTER’S INEQUALITY FOR TRIANGULAR ARRAYS 137

Furthermore, the autocovariance functions γn converge towards a limiting autocovariance func-
tion γ in the sense that

∞∑

h=−∞
ν(|h|) (1 + |h|) · |γn(h) − γ(h)| −→ 0 as n → ∞. (4)

Assumption 2.3. Assumption 2.2 immediately implies that the spectral densities fn(ω) =
(2π)−1

∑∞
h=−∞ γn(h) e−ihω , ω ∈ (−π, π], converge uniformly to a limiting spectral density func-

tion f(ω) = (2π)−1
∑∞

h=−∞ γ(h) e−ihω. Assume that this limit is bounded away from zero, i.e.,
there exists c > 0 such that f(ω) ≥ c for all ω ∈ (−π, π].

The weighting function ν in Assumption 2.2 allows for more flexibility in our results. Typical examples
for ν, fulfilling the conditions stated in Assumption 2.2, are ν(h) = 1 for all h, ν(h) = (1 + |h|)r for some
r > 0 and ν(h) = ρa|h|b , ρ > 1, a ≥ 0, 0 ≤ b < 1.

We introduce the following notation: For any fixed norm function ν which fulfils Assumption 2.2, we
denote by Cν the space of all complex-valued integrable functions on (−π, π], with Fourier coefficients
f̃k = (2π)−1

∫ π
−π f(ω) e−ikω dω such that

‖f‖ν :=
∞∑

k=−∞
ν(|k|) |f̃k| < ∞.

Clearly, due to the norm property ν(k) ≤ ν(j) · ν(|k − j|), ‖ · ‖ν is a submultiplicative norm on the
space Cν . If f ∈ Cν and all Fourier coefficients with negative index vanish, i.e., f̃k = 0 for all k < 0, then
we say f ∈ C+

ν . Analogously, if f ∈ Cν and f̃k = 0 for all k > 0, then f ∈ C−
ν . Furthermore, for any fixed

norm ν, we define the modified norm function ν∗ : N0 → [1,∞) via

ν∗(k) := ν(k) · (1 + k), (5)

which also fulfils the norm conditions stated in Assumption 2.2.

Since the processes (X(n)
t ) fulfill Assumptions 2.1–2.3, there exists n0 ∈ N such that the spectral

densities fn are bounded from above and away from zero for n ≥ n0. Therefore it is known, cf. among

others [4], (2.1), and Theorem 6.5 in [10], that the processes (X(n)
t ) possess one-sided autoregressive

representations

X
(n)
t =

∞∑

k=1

a
(n)
k X

(n)
t−k + ε

(n)
t , n ≥ n0, (6)

where (ε(n)
t )t∈Z are the innovation processes. It is also known that the summability condition on the

autocovariances in Assumption 2.2 carries over to the autoregressive coefficients (a(n)
k ), i.e.,

∞∑

k=1

ν(|k|) (1 + |k|) · |a(n)
k | < ∞, (7)

cf. [4], Theorem 1.1 and (2.1), and also [11], Theorem 5.5 (for the connection of the autoregressive
coefficients to the optimal factor stated in [4]).

Since the autoregressive coefficients in (6) are not observable, one is usually interested in finite-order
prediction coefficients. For an arbitrary stationary process (Yt)t∈Z with finite second moments and some
p ∈ N, the coefficients a1(p), . . . , ap(p) minimizing the expression

E
(
Yt −

p∑

k=1

ak(p)Yt−k

)2

are called the prediction coefficients of order p for (Yt). They are determined by the L2-projection of Yt

onto its finite past Yt−1, . . . , Yt−p which is given by the solution of the minimization problem above. In
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the present setting of observations from a triangular array as in (2) it is particularly interesting to look at

predictors with p depending on n, i.e., p = p(n) ≤ n− 1 for (X(n)
t ) since there are only n observations of

(X(n)
t ) at hand. Since we are interested in convergence of the finite-order prediction coefficients towards

the infinitely many coefficients (a(n)
k ) from (6), we need p(n) → ∞ as n → ∞. Therefore, we assume the

following:

Assumption 2.4. Let (p(n))n∈N be a sequence of positive integers with p(n) ≤ n − 1 for all n and
p(n) → ∞ as n → ∞.

In order to simplify the notation we will suppress the dependence of p on n in the following and denote

the prediction coefficients of order p of (X(n)
t ) by a

(n)
1 (p), . . . , a(n)

p (p) which are the minimizers of

E
(
X

(n)
t −

p∑

k=1

a
(n)
k (p)X

(n)
t−k

)2
.

It is well known that the solution of this minimization problem is given by the solution of the Yule–
Walker equations, i.e., it holds in the present setting

⎛

⎜⎜⎜⎝

γn(0) . . . γn(p − 1)
...

. . .
...

γn(p − 1) . . . γn(0)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a
(n)
1 (p)

...

a
(n)
p (p)

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

γn(1)
...

γn(p)

⎞

⎟⎟⎟⎠ . (8)

Under the stated assumptions the finite-order predictors a
(n)
1 (p), . . . , a(n)

p (p) and the autoregressive

coefficients (a(n)
k ) from (6) converge to a common limit at a rate that is determined by the growth of

the weighting function ν. The precise result is given by the following theorem and is a generalization of
Baxter’s inequality, cf. [1], Theorem 2.2.

Theorem 2.1. Let ν be a norm function as defined in Assumption 2.2 and ν∗ be the modified

norm function as defined in (5). Let (X(n)
t ) be a sequence of stationary processes fulfilling

Assumptions 2.1–2.3 and (p(n))n∈N a sequence fulfilling Assumption 2.4 with the finite predictor

coefficients a
(n)
1 (p), . . . , a(n)

p (p) given by (8) and the autoregressive coefficients given by (6). Then,
there exist n0 ∈ N and C < ∞, both not depending on n, such that

p∑

k=1

ν∗(k) |a(n)
k (p) − a

(n)
k | ≤ C ·

∞∑

k=p+1

ν∗(k) |a(n)
k |, ∀ n ≥ n0. (9)

This bound remains true if one replaces ν∗ with ν on both sides.

Note that the RHS of (9) is summable and therefore converges to zero as n → ∞ due to Assump-
tion 2.4 which yields convergence to zero for the LHS as well.

Remark 2.1. The bound (9) is the strong version of Baxter’s inequality for triangular arrays. It is worth
mentioning that the last statement of Theorem 2.1 ensures that the weaker version

p∑

k=1

ν(k) |a(n)
k (p) − a

(n)
k | ≤ C ·

∞∑

k=p+1

ν(k) |a(n)
k |, ∀ n ≥ n0,

also holds. Since ν can be chosen to be ν(k) = 1 for all k, this yields an unweighted version of the Baxter
inequality.
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BAXTER’S INEQUALITY FOR TRIANGULAR ARRAYS 139

The proof of Theorem 2.1 can be found in Section 3 and depends heavily on two auxiliary results. In
order to state the first auxiliary result we first have to introduce the term optimal factor: Each function
g ∈ Cν∗ which is bounded away from zero can be decomposed as g(ω) = A(ω)A(ω), where A ∈ C+

ν∗ ,
A ∈ C−

ν∗ and the complex-valued function A is called the optimal factor of g, cf. Theorem 1.1 in [4]. Here,
x denotes conjugate transpose of x.

The following result transfers convergence of functions in the ‖ · ‖ν∗-sense to convergence of the
respective logarithms and the optimal factors, and might be of its own interest.

Lemma 2.1. Let ν be a norm function as defined in Assumption 2.2 and ν∗ be the modified
norm function as defined in (5). Let f ∈ Cν∗ and (fn)n∈N be a sequence of functions in Cν∗ with
‖fn‖ν∗ ≤ C for all n ∈ N and some C < ∞. Furthermore, let f , fn be uniformly bounded away
from zero, i.e., there exists c > 0 such that f(ω) ≥ c, fn(ω) ≥ c for all ω ∈ (−π, π] and all n ∈ N.
Then, f and fn can be decomposed as

f(ω) = A(ω)A(ω), fn(ω) = An(ω)An(ω), n ∈ N, (10)

where A, An are the optimal factors defined above and it holds true:

(a) log f, log fn ∈ Cν∗ and the sequence ‖ log fn‖ν∗ is bounded.

Furthermore, if ‖fn − f‖ν∗ → 0, as n → ∞, it follows

(b) ‖ log fn − log f‖ν∗ → 0.

(c) ‖An − A‖ν∗ → 0, ‖An − A‖ν∗ → 0, ‖A−1
n − A−1‖ν∗ → 0,

∥∥An
−1 − A

−1 ∥∥
ν∗ → 0.

With this result we can prove the following lemma which is essential for our main Theorem 2.1 and
provides a generalization of Theorem 1.1 of [2].

Lemma 2.2. Let ν be a norm function as defined in Assumption 2.2 and ν∗ be the modified norm
function as defined in (5). Let (fn)n∈N be a sequence of spectral densities of stationary processes

(X(n)
t )n∈N which fulfil Assumptions 2.1–2.3 and (p(n))n∈N a sequence fulfilling Assumption 2.4,

again suppressing the dependence of p on n for simplicity. Furthermore, let h
(n)
1 , . . . , h

(n)
p be some

real-valued coefficients for each n ∈ N, and let g
(n)
1 , . . . , g

(n)
p be defined by

g
(n)
j :=

∫ π

−π

( p∑

k=1

h
(n)
k eikω

)
fn(ω) e−ijω dω, ∀ j = 1, . . . , p (11)

for each n ∈ N. Then, there exists n0 ∈ N and M < ∞, both not depending on the coefficients

h
(n)
j , g

(n)
j , and M not depending on n, such that

p∑

k=1

ν∗(k) |h(n)
k | ≤ M ·

p∑

k=1

ν∗(k) |g(n)
k |, ∀ n ≥ n0. (12)

The bound (12) remains true if one replaces ν∗ with ν on both sides.
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3. PROOFS

Proof of Theorem 2.1. The autoregressive coefficients from (6) are determined by the L2-projection of

X
(n)
t onto its infinite past sp{X(n)

t−k, k ∈ N}. Therefore, the coefficients satisfy the system of equations
⎛

⎜⎜⎜⎜⎜⎜⎝

γn(0) γn(1) γn(2) . . .

γn(1) γn(0) γn(1) . . .

γn(2) γn(1) γn(0) . . .
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a
(n)
1

a
(n)
2
...

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

γn(1)

γn(2)
...

⎞

⎟⎟⎟⎠ , (13)

which can be interpreted as the “limit” of the Yule–Walker equations (8), cf. Theorem 6.6 in [10].
Comparing the first p rows of this system with (8) it is obvious that the right-hand sides are identical
which yields

p∑

k=1

a
(n)
k (p) γn(k − j) =

∞∑

k=1

a
(n)
k γn(k − j), ∀ j = 1, . . . , p,

because γn(h) = γn(−h) for all n, h. Expressing the autocovariances in terms of the spectral densities
via γn(h) =

∫ π
−π fn(ω) eihω dω, these equations can be written as

∫ π

−π

( p∑

k=1

a
(n)
k (p) eikω

)
fn(ω) e−ijω dω =

∫ π

−π

( ∞∑

k=1

a
(n)
k eikω

)
fn(ω) e−ijω dω, ∀ j = 1, . . . , p.

Splitting up the sum on the right-hand side and using linearity of the integral, this system is equivalent
to

∫ π

−π

( p∑

k=1

(a(n)
k (p) − a

(n)
k ) eikω

)
fn(ω) e−ijω dω = g

(n)
j , ∀ j = 1, . . . , p, (14)

where we used the abbreviation g
(n)
j :=

∫ π
−π(

∑∞
k=p+1 a

(n)
k eikω)fn(ω) e−ijω dω. We can now apply

Lemma 2.2 to the system (14) which ensures that there exists n0 ∈ N and M < ∞ such that
p∑

k=1

ν∗(k) |a(n)
k (p) − a

(n)
k | ≤ M ·

p∑

k=1

ν∗(k) |g(n)
k |, ∀ n ≥ n0. (15)

Inserting the definition of g
(n)
k and again using γn(h) =

∫ π
−π fn(ω) eihω dω, the right-hand side of (15)

can be bounded by

M ·
p∑

k=1

ν∗(k)
∣∣
∫ π

−π

( ∞∑

j=p+1

a
(n)
j eijω

)
fn(ω) e−ikω dω

∣∣∣∣ ≤ M ·
p∑

k=1

∞∑

j=p+1

ν∗(k) |a(n)
j | |γn(j − k)|. (16)

Using the norm condition ν∗(k) ≤ ν∗(j) · ν∗(|j − k|) and (3), the right-hand side of (16) can further be
bounded by

M ·
∞∑

j=p+1

ν∗(j) |a(n)
j |

p∑

k=1

ν∗(|j − k|) |γn(j − k)|

≤ M ·
∞∑

k=−∞
ν∗(|k|) |γn(k)| ·

∞∑

j=p+1

ν∗(j) |a(n)
j | ≤ MC ·

∞∑

j=p+1

ν∗(j) |a(n)
j |. (17)

Altogether, with C ′ := MC (not depending on n, cf. (3)), we get from (15)–(17)
p∑

k=1

ν∗(k) |a(n)
k (p) − a

(n)
k | ≤ C ′ ·

∞∑

k=p+1

ν∗(k) |a(n)
k |, ∀ n ≥ n0.
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which gives (9). The entire proof remains true if one replaces ν∗ with ν, even with the same constant C ′

because ν ≤ ν∗. This completes the proof.

Proof of Lemma 2.1 (a) and (b). We will prove assertion (b) first and then get (a) as a by-product at
the end of the proof. Per assumption, f and each fn are equal to their absolutely convergent Fourier
series, i.e.,

f(ω) =
∞∑

k=−∞
bk eikω, fn(ω) =

∞∑

k=−∞
b
(n)
k eikω,

say. Since

∞∑

k=−∞
|(ik)bk eikω| ≤

∞∑

k=−∞
|k| |bk| ≤

∞∑

k=−∞
ν∗(|k|) |bk | = ‖f‖ν∗ ≤ C < ∞

is fulfilled (the same being true for b
(n)
k instead of bk), it is well known that f and fn are continuously

differentiable and the derivatives have absolutely convergent Fourier series

f ′(ω) =
∞∑

k=−∞
(ik)bk eikω, f ′

n(ω) =
∞∑

k=−∞
(ik)b(n)

k eikω,

respectively, as can be obtained from termwise differentiation. Moreover, it is easy to see that f ′
n ∈ Cν

because ‖f ′
n‖ν ≤ ‖fn‖ν∗ < ∞. Also, ‖fn‖ν ≤ ‖fn‖ν∗ ≤ C < ∞ and fn is bounded away from zero.

Therefore, the weighted version of Wiener’s lemma, cf. Theorem 6.2 from [6] (note that ν and ν∗ fulfil
the GRS-condition required there), implies (1/fn) ∈ Cν . Lemma 1 in §2 of [5] shows that on the set of
all functions g ∈ Cν with (1/g) ∈ Cν , taking the inverse of any function is a continuous operation in the
sense of the topology implied by ‖ · ‖ν . Therefore, since fn → f in Cν , we also get (1/fn) → (1/f) in Cν .
Thus, we can choose C ′ < ∞ such that

∥∥∥
1
f

∥∥∥
ν
≤ C ′,

∥∥∥
1
fn

∥∥∥
ν
≤ C ′ ∀n ∈ N. (18)

Submultiplicativity of ‖ · ‖ν gives

∥∥ f ′
n

fn

∥∥
ν
≤ ‖ f ′

n ‖ν ·
∥∥ 1

fn

∥∥
ν

< ∞,

as well as (f ′/f) ∈ Cν . The strategy is to infer ‖ log fn − log f‖ν → 0 from
∥∥∥

f ′
n

fn
− f ′

f

∥∥∥
ν
−→ 0, n → ∞. (19)

Hence, we prove (19) first. We have
∥∥∥

f ′
n

fn
− f ′

f

∥∥∥
ν

=
∥∥∥

f ′
nf − fnf ′

fnf

∥∥∥
ν
≤

∥∥ f ′
nf − fnf ′ ∥∥

ν
·
∥∥∥

1
f

∥∥∥
ν
·
∥∥∥

1
fn

∥∥∥
ν
.

Thus, (18) implies (19), if we can show
∥∥ f ′

nf − fnf ′ ∥∥
ν
−→ 0, n → ∞. (20)

The Fourier series of f ′
nf and fnf ′ can be obtained from straightforward multiplication of the Fourier

series from above which yields

f ′
n(ω)f(ω) =

∞∑

k=−∞

( ∞∑

j=−∞
ij b

(n)
j bk−j

)
eikω, fn(ω)f ′(ω) =

∞∑

k=−∞

( ∞∑

j=−∞
ij bjb

(n)
k−j

)
eikω.
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Hence, using ν(|k|) ≤ ν(|j|) ν(
∣∣|k| − |j|

∣∣) ≤ ν(|j|) ν(|k − j|) (recall that ν is nondecreasing), as well as
ν(|j|) |j| ≤ ν∗(|j|) and ν(|k − j|) ≤ ν∗(|k − j|), we can derive

∥∥ f ′
nf − fnf ′ ∥∥

ν
=

∞∑

k=−∞
ν(|k|)

∣∣∣
∞∑

j=−∞
ij (b(n)

j bk−j − bjb
(n)
k−j)

∣∣∣

≤
∞∑

k,j=−∞
ν(|k|) |j|

∣∣bj(bk−j − b
(n)
k−j) + (b(n)

j − bj)bk−j

∣∣

≤
∞∑

k,j=−∞
ν∗(|j|) ν∗(|k − j|)

(
|bj |

∣∣bk−j − b
(n)
k−j

∣∣ +
∣∣b(n)

j − bj

∣∣ |bk−j |
)

= 2 · ‖f‖ν∗ · ‖fn − f‖ν∗

which converges to zero as n → ∞ according to the assumptions of Lemma 2.1 (b). This proves (20)
and therefore also (19).

Now, let β
(n)
k and βk be the Fourier coefficients of f ′

n/fn and f ′/f , respectively. In fact, it holds

β
(n)
0 = 0 since f ′

n/fn is the derivative of log fn(ω) and therefore, per definition,

β
(n)
0 = (2π)−1(log fn(π) − log fn(−π)) = 0.

Thus, the Fourier series are given by

f ′
n(ω)

fn(ω)
=

∑

k∈Z\{0}
β

(n)
k eikω,

f ′(ω)
f(ω)

=
∑

k∈Z\{0}
βk eikω.

We have already shown that these series are absolutely convergent. Hence, it is well known that the
Fourier series of their antiderivatives, log fn(ω) and log f(ω), are given by

log fn(ω) =
∑

k∈Z\{0}

β
(n)
k

ik
eikω, log f(ω) =

∑

k∈Z\{0}

βk

ik
eikω, (21)

and it follows

‖ log fn − log f‖ν∗ =
∑

k∈Z\{0}
ν(|k|) 1 + |k|

|k|
∣∣β(n)

k − βk

∣∣ ≤ 2 ·
∥∥∥

f ′
n

fn
− f ′

f

∥∥∥
ν
,

which converges to zero due to (19). This completes the proof for Lemma 2.1] (b). From this calculation
it can also be seen that ‖ log f‖ν∗ < ∞ and ‖ log fn‖ν∗ ≤ ‖f ′

n‖ν · ‖ (1/fn) ‖ν ≤ C̃ for some C̃ < ∞, even
if ‖fn − f‖ν∗ → 0 is not fulfilled, which gives assertion (a) of Lemma 2.1.

Proof of Lemma 2.1 (c). We first show ‖An − A‖ν∗ → 0 as n → ∞. Lemma 2.1 (a) guarantees that
log f, log fn ∈ Cν∗ , i.e., the functions are equal to their absolutely convergent Fourier series given in (21).

In the following we abbreviate the Fourier coefficients by d
(n)
k := β

(n)
k /ik and dk := βk/ik. Also, we get

from Lemma 2.1 (b) ‖ log fn − log f‖ν∗ → 0 as n → ∞, i.e.,
∑

k∈Z\{0}
ν∗(|k|) |d(n)

k − dk| −→ 0 as n → ∞. (22)

Now define

B(ω) :=
∞∑

k=1

dk eikω, Bn(ω) =
∞∑

k=1

d
(n)
k eikω.

The optimal factors A,An are then given by A(ω) = exp (B(ω)), An(ω) = exp (Bn(ω)), as can be seen
from Chapter 2 in [11]. Therefore, A(ω), An(ω) 	= 0 for all ω and

A−1(ω) = exp (−B(ω)), A−1
n (ω) = exp (−Bn(ω)).
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Since A,An ∈ C+
ν∗ , the weighted version of Wiener’s lemma implies A−1, A−1

n ∈ Cν∗ , cf. Theorem 6.2
in [6]. In this case we also get A−1, A−1

n ∈ C+
ν∗ because the Fourier series of A−1 can be derived using

the fact that the exponential function is equal to its (absolutely convergent) power series expansion

A−1(ω) = exp (−B(ω)) =
∞∑

j=0

1
j!

( ∞∑

k=1

(−dk) eikω
)j

.

Expanding the right-hand side gives the Fourier series of A−1 and it can easily be seen that it has the
form A−1(ω) =

∑∞
k=0 ck eikω, for some ck, i.e., the Fourier coefficients with negative index vanish. With

the same arguments we get A−1
n ∈ C+

ν∗ .

From (22) we immediately get

‖Bn − B‖ν∗ −→ 0 as n → ∞. (23)

We will now carry this result over to ‖An − A‖ν∗ . Using the power series expansion of the exponential
function we get

‖An − A‖ν∗ = ‖ exp (Bn) − exp (B)‖ν∗ ≤
∞∑

k=0

1
k!

∥∥ Bk
n − Bk

∥∥
ν∗ ,

which converges to zero according to Lebesgue’s dominated convergence theorem if we can show that

‖Bk
n − Bk ‖ν∗ −→ 0 as n → ∞ for each k ∈ N, (24)

‖Bk
n − Bk ‖ν∗ ≤ Ck for some C < ∞ and ∀n, k ∈ N. (25)

Of course, (24) follows from (23) inductively because

‖Bk
n − Bk ‖ν∗ = ‖ (Bn − B)Bk−1 + Bn(Bk−1

n − Bk−1) ‖ν∗

≤ ‖Bn − B ‖ν∗ · ‖B ‖k−1
ν∗ + ‖Bn ‖ν∗ · ‖Bk−1

n − Bk−1 ‖ν∗ ,

as ‖Bn ‖ν∗ ≤ ‖ log fn ‖ν∗ ≤ C̃ for some C̃ < ∞ and all n, cf. Lemma 2.1 (a). Furthermore,

‖Bk
n − Bk ‖ν∗ ≤ ‖Bn ‖k

ν∗ + ‖B ‖k
ν∗ ≤ (C̃ + ‖B ‖ν∗)k

yields (25) with C = C̃ + ‖B ‖ν∗ < ∞. Therefore, it holds

‖An − A‖ν∗ −→ 0 as n → ∞. (26)

Since A(ω) = exp (B(ω)), An(ω) = exp (Bn(ω)) and

B(ω) :=
∞∑

k=1

dk e−ikω, Bn(ω) =
∞∑

k=1

d
(n)
k e−ikω,

due to dk, d
(n)
n ∈ R (log f, log fn are even functions), the same argument as above delivers A,An ∈ C−

ν∗

and ‖An − A‖ν∗ → 0. Also, exactly as for A−1, A−1
n above we get A

−1
, An

−1 ∈ C−
ν∗ and

‖A−1
n − A−1‖ν∗ → 0,

∥∥ An
−1 − A

−1 ∥∥
ν∗ → 0 as n → ∞.

This completes the proof.

Proof of Lemma 2.2. For each n ∈ N we define the complex-valued functions hn, gn to be the finite
Fourier series

hn(ω) =
p∑

k=1

h
(n)
k eikω, gn(ω) =

p∑

k=1

g
(n)
k eikω. (27)
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Since f , fn fulfil the assumptions of Lemma 2.1, the functions can be decomposed as in (11). We can

observe that g
(n)
1 , . . . , g

(n)
p are exactly the first p Fourier coefficients with positive index of the function

2π hnfn. To be more precise, the Fourier series of 2π hnfn is given by

2π hn(ω)fn(ω) =
0∑

k=−∞
G̃

(n)
k eikω +

p∑

k=1

g
(n)
k eikω +

∞∑

k=p+1

G̃
(n)
k eikω

=: G
(n)
1 (ω) + gn(ω) + G

(n)
2 (ω), (28)

for some coefficients G̃
(n)
k . Using (10), and suppressing dependence on ω, we can write

2π hnAn = G
(n)
1 · An

−1 + gn · An
−1 + G

(n)
2 · An

−1
. (29)

We introduce the following notation: For an arbitrary function z, represented by its Fourier series
z(ω) =

∑∞
k=−∞ z̃k eikω, we define the following truncated Fourier series:

(z)− :=
0∑

k=−∞
z̃k eikω, (z)p+ :=

∞∑

k=p+1

z̃k eikω, (z)p− :=
−p−1∑

k=−∞
z̃k eikω,

which will be used in the remainder of this proof. Since An ∈ C+
ν∗ , i.e., An(ω) =

∑∞
k=0 Ã

(n)
k eikω

for some Ã
(n)
k , the Fourier series of 2π hnAn can be obtained by straightforward multiplication of

∑∞
k=0 Ã

(n)
k eikω with hn as given in (27), which shows that 2π hnAn has only Fourier coefficients with

strictly positive index, i.e., (2π hnAn)− = 0. We now get from (29)

0 = (2π hnAn)− =
(
G

(n)
1 · An

−1)− +
(
gn · An

−1)− +
(
G

(n)
2 · An

−1)−

= G
(n)
1 · An

−1 +
(
gn · An

−1)− +
(
G

(n)
2 · An

−1)−
, (30)

because multiplication of the series for G
(n)
1 and An

−1 ∈ C−
ν∗ shows that all Fourier coefficients of

G
(n)
1 · An

−1
with positive index vanish. Now (30) yields

−G
(n)
1 An

−1 =
(
gnAn

−1)− +
(
G

(n)
2 An

−1)− =
(
gnAn

−1)− +
(
G

(n)
2 (An

−1)p−
)−

. (31)

The last equation holds because An
−1 − (An

−1)p− =
∑0

k=−p α
(n)
k eikω for some α

(n)
k , and therefore

its product with G
(n)
2 has only Fourier coefficients with strictly positive index. Applying the Cν∗-norm

to (31), and using the submultiplicativity and the obvious relation ‖(z)−‖ν∗ ≤ ‖z‖ν∗ , we get

‖G(n)
1 An

−1‖ν∗ ≤ ‖An
−1‖ν∗ · ‖gn‖ν∗ + ‖G(n)

2 A −1
n ‖ν∗ · ‖An(An

−1)p−‖ν∗ . (32)

From Lemma 2.1 (c) we deduce ‖An‖ν∗ −→ ‖A‖ν∗ and ‖An
−1‖ν∗ −→ ‖A −1‖ν∗ as n → ∞. In partic-

ular, the sequences ‖An‖ν∗ , ‖An
−1‖ν∗ are bounded. Denoting the Fourier coefficients of A

−1
, An

−1

by αk, α
(n)
k , respectively, it also holds

‖An(An
−1)p−‖ν∗ ≤ ‖An‖ν∗ ·

(
‖(A −1)p−‖ν∗ + ‖(An

−1 − A
−1)p−‖ν∗

)

= ‖An‖ν∗ ·
( −p−1∑

k=−∞
ν∗(|k|) |αk | +

−p−1∑

k=−∞
ν∗(|k|) |α(n)

k − αk|
)

−→ 0 as n → ∞,

because of p = p(n) → ∞, Lemma 2.1 (c) and the boundedness of ‖An‖ν∗ . Therefore, for arbitrary ε ∈
(0, 1), we can obviously find n1 ∈ N and C < ∞ such that ‖An

−1‖ν∗ ≤ C and ‖An(An
−1)p−‖ν∗ ≤ ε

for all n ≥ n1. Then, (32) becomes

‖G(n)
1 An

−1‖ν∗ ≤ C · ‖gn‖ν∗ + ε · ‖G(n)
2 A −1

n ‖ν∗ , n ≥ n1. (33)
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In the next part of the proof we start again by using decomposition (10) in (28), but this time multiplying

both sides with A−1
n instead of An

−1
. Analogously to (29) this yields

2π hnAn = G
(n)
1 · A−1

n + gn · A−1
n + G

(n)
2 · A−1

n .

This time around, it holds (2π hnAn)p+ = 0 and we get

0 = (2π hnAn)p+ =
(
G

(n)
1 · A−1

n

)p+ +
(
gn · A−1

n

)p+ + G
(n)
2 · A−1

n ,

because all Fourier coefficients of G
(n)
2 · A−1

n vanish except for those with index p + 1 or larger.
Analogously as from (30) to (32), this yields

−G
(n)
2 A−1

n =
(
G

(n)
1 A−1

n

)p+ +
(
gnA−1

n

)p+ =
(
G

(n)
1 (A−1

n )p+
)p+ +

(
gnA−1

n

)p+

and finally

‖G(n)
2 A−1

n ‖ν∗ ≤ ‖G(n)
1 An

−1‖ν∗ · ‖An (A−1
n )p+‖ν∗ + ‖A−1

n ‖ν∗ · ‖gn‖ν∗ .

As above, we can show that ‖A−1
n ‖ν∗ is bounded and ‖An (A−1

n )p+‖ν∗ −→ 0 as n → ∞. Hence, for the
same ε ∈ (0, 1) as in (33), we can find C ′ < ∞ and n2 ≥ n1 such that

‖G(n)
2 A−1

n ‖ν∗ ≤ ε · ‖G(n)
1 An

−1‖ν∗ + C ′ · ‖gn‖ν∗ , n ≥ n2. (34)

Note that for n ≥ n2 both inequalities (33) and (34) hold and we can insert the latter into the former to
derive

‖G(n)
1 An

−1‖ν∗ ≤ C · ‖gn‖ν∗ + εC ′ · ‖gn‖ν∗ + ε2 · ‖G(n)
1 An

−1‖ν∗ , n ≥ n2,

which yields

‖G(n)
1 An

−1‖ν∗ ≤ C + εC ′

1 − ε2
· ‖gn‖ν∗ , n ≥ n2. (35)

The other way around, inserting (34) into (33) leads to

‖G(n)
2 A−1

n ‖ν∗ ≤ C ′ + εC

1 − ε2
· ‖gn‖ν∗ , n ≥ n2. (36)

From (29) we get that 2π ‖hn‖ν∗ can be bounded by

‖G(n)
1 An

−1‖ν∗‖A−1
n ‖ν∗ + ‖gn‖ν∗‖An

−1‖ν∗‖A−1
n ‖ν∗ + ‖G(n)

2 A−1
n ‖ν∗‖An

−1‖ν∗ .

Since ‖A−1
n ‖ν∗ −→ ‖A−1‖ν∗ , ‖An

−1‖ν∗ −→ ‖A −1‖ν∗ , we can find n0 ≥ n2 such that

‖A−1
n ‖ν∗ ≤ 2 ‖A−1‖ν∗ , ‖An

−1‖ν∗ ≤ 2 ‖A −1‖ν∗ for all n ≥ n0. Thus, inserting (35) and (36) we get

‖hn‖ν∗ ≤ Mν∗ · ‖gn‖ν∗ , n ≥ n0,

where

Mν∗ =
1
π

(
‖A−1‖ν∗ · C + εC ′

1 − ε2
+ ‖A −1‖ν∗ · C ′ + εC

1 − ε2
+ 2 ‖A−1‖ν∗ ‖A −1‖ν∗

)

does not depend on n. Since ‖g‖ν ≤ ‖g‖ν∗ for all functions g, the entire proof from (26) onwards remains
valid if one replaces ‖ · ‖ν∗ with ‖ · ‖ν . This gives

‖hn‖ν ≤ Mν · ‖gn‖ν , n ≥ n0,

where Mν again does not depend on n and defining M := max{Mν∗ ,Mν} completes the proof.
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