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Abstract—Lifetime data are usually assumed to stem from a continuous distribution supported
on [0, b) for some b ≤ ∞. The continuity assumption implies that the support of the distribution
does not have atom points, particularly not at 0. Accordingly, it seems reasonable that with an
accurate measurement tool all data observations will be positive. This suggests that the true support
may be truncated from the left. In this work we investigate the effects of adding a left truncation
parameter to a continuous lifetime data statistical model. We consider two main settings: right
truncation parametric models with possible left truncation, and exponential family models with
possible left truncation. We analyze the performance of some optimal estimators constructed under
the assumption of no left truncation when left truncation is present, and vice versa. We investigate
both asymptotic and finite-sample behavior of the estimators. We show that when left truncation is
not assumed but is, in fact present, the estimators have a constant bias term, and therefore will result
in inaccurate and inefficient estimation. We also show that assuming left truncation where actually
there is none, typically does not result in substantial inefficiency, and some estimators in this case
are asymptotically unbiased and efficient.
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1. INTRODUCTION

When modeling lifetime data it is usually assumed that the distribution is continuous and supported
on Ω1 = [0, b), b ≤ ∞. Here b is either a known constant or a parameter (Elandt-Johnson, 1999;
Lawless, 2003). However, is this the right support? The continuity assumption implies that the support
Ω1 of the distribution does not have atom points, particularly not at 0. Thus one can expect that all
observations will be positive. Indeed, when the lifetime data measure time to events such as death or
remission, it seems reasonable to assume that one observes only positive time to event values. Even
when the observed data is on events of small time scale (such as time of detection of motion sensors), as
measured with an accurate measuring tool, it is expected that all observations would be positive. This
suggests that the true support may be truncated from the left and is, in fact, of the form Ω2 = [γ, b),
γ > 0, with γ unknown.

In this work we consider models that allow the support of the distribution to be chosen adaptively
from the data by using truncation parameters. Each of these proposed models can be considered as
generalization of a model in which the support includes {0}. A natural question that arises is which of
these two models should we use? With this, we need to consider two possible errors. To describe these
errors, let Model I denote the statistical model of which the true support is Ω1 = [0, b), and let Model II
denote the truncated statistical model of which the true support is Ω2 = [γ, b) , γ > 0. We say that a False
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Model I error has occurred if Model I has been incorrectly used for inference while the correct model is
Model II. A False Model II error is defined similarly. Then the question arises: Which of the two types of
errors is more severe? The answer to this question is useful when the model’s underlying true support is
unknown.

It seems reasonable that even if Ω1 = [0, b) is the correct support, using Model II will not result in
substantial loss of information. Conversely, if Ω2 = [γ, b) for some γ > 0 is the correct support, there will
be substantial loss of information when using Model I. This claim can be justified in terms of sufficiency.
Assume that Model I depends on some unknown parameter θ (possibly a vector), and is associated with
a minimal sufficient statistic tn = t(Xn). Model II, which is obtained by a left-truncation of Model I, is
therefore parameterized by η = (γ, θ) and is associated with the minimal sufficient statistic (X(1), tn).
Note that (X(1), tn), while being a minimal and sufficient statistic for Model II, is still sufficient for
Model I; whereas tn alone, while being minimal and sufficient for Model I, is not sufficient for Model II,
hence we expect the False Model I error to be more critical. As we later show, this understanding, while
essentially correct, requires some further clarifications.

Two main settings are investigated in this work. In the first one, we assume that the density function
is known up to a right truncation parameter. In this setting, under Model I, there is only a right truncation
parameter θ. In other words, Ω1 = [0, θ). Under Model II, we assume also left truncation and hence the
support is Ω2 = [γ, θ). For this setting, two candidate estimators (Tate, 1959; Bar-Lev and Boukai 1985)
will be compared for their cross-model bias and MSE, as well as for their asymptotic efficiency. More
specifically, for the right truncation setting with a possible left truncation parameter, we are interested
in the behavior of the Bar-Lev and Boukai (1985) (hereafter abbreviated BB) estimator when there is
no left truncation, and the behavior of the Tate’s estimator (Tate, 1959) when left truncation is indeed
present.

The second setting deals with distributions having a ‘regular’ parameter with a possible left trunca-
tion. We begin with the Erlang distribution as a special case of the natural exponential family (NEF),
and illustrate the effect of the possible truncation on the estimator of the ‘regular’ parameter. We proceed
to discuss this problem in the general case of the NEF distribution, however in the asymptotic sense
only.

The question discussed in this paper can be considered as a model selection problem. One can
think about Model I as a narrow model and on Model II as a wider model since Model II includes
an additional parameter. Selecting the right model was addressed considerably in the literature for
maximum likelihood estimation, and in particular for linear regression, using tools such as AIC and
BIC (see, for example, Burnham and Anderson, 2002). The consequences of choosing a misspecified
model when using maximum likelihood estimation were discussed by White (1982), among others.
Bickel (1984) considered the effect of misspecification for linear regression model. Claeskens and Hjort
(2008) suggested criteria, such as tolerance radius, for choosing between a narrow model and a ’wider’
one. We note that since the two possible models we consider have different supports, many of the results
mentioned above do not hold for this setting (see, for example, White (1982), Assumption A7). Moreover,
the approach we consider here, at least for the first setting, does not fall under the maximum likelihood
estimation. Finally, most of our analysis is exact and not asymptotic. Hence, this paper offers a new
approach for an interesting novel problem of model selection.

The paper is organized as follows. The analysis of continuous statistical right-truncated models with
possible left truncation is presented in Section 2. In Section 3 we discuss in detail the Erlang distribution
case, and conclude with some asymptotic aspects of possible truncation in the NEF case. Concluding
remarks appear in Section 4. The proofs are presented in the Appendix.

2. RIGHT TRUNCATED MODELS WITH A POSSIBLE LEFT TRUNCATION

In Section 2.1 we present the model. We then discuss estimation in Section 2.2, and cross-model
analysis in Section 2.3. Finally, in Section 2.4, we illustrate the results by examples.
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2.1. General Setup
Let h(·) be a positive integrable function over [0,∞). For any 0 ≤ γ < θ we define

gk(γ, θ) =
∫ θ

γ
xkh(x) dx, k = 0, 1, 2, . . . . (1)

Using (1), we construct the probability density function (p.d.f.) of a continuous type random variable X
as

f(x; η) =
h(x)

g0(γ, θ)
I[γ < x < θ] . (2)

Here, I[A] is the indicator function of the set A and γ and θ are the two possibly unknown parameters of
f(x; η). Accordingly, we consider two possible models for η ≡ (γ , θ) :

• Model I: γ ≡ γ0 = 0 is known, while θ > γ0 is an unknown parameter, so that η0 ≡ (γ0, θ)
designates the model’s only unknown parameter θ.

• Model II: Both γ and θ are unknown parameters, 0 < γ < θ, so that η ≡ (γ , θ) designates the
model’s two unknown parameters.

Note that with the notation in (1), the moments of X under η are easily defined by

Eη(Xk) =
gk(γ, θ)
g0(γ, θ)

, k = 0, 1, 2, . . . . (3)

In particular, the expected value of X is Eη(X) = g1(γ, θ)/g0(γ, θ). Similarly, the cumulative distribu-
tion function (c.d.f.) of X is given, for any τ ∈ R, by

Fη(τ) ≡ Pη(X ≤ τ) =
g0(γ, τ)
g0(γ, θ)

I[γ < τ < θ] + I[θ ≤ τ ] , (4)

with the corresponding tail probability

1 − Fη(τ) ≡ Pη(X > τ) = I[τ ≤ γ] +
g0(τ, θ)
g0(γ, θ)

I[γ < τ < θ] . (5)

Following (4), the π-th quantile is given by τπ that solves the equation Fη(τπ) ≡ P (X ≤ τπ) = π for
γ < τπ < θ, and can be expressed using the inverse of the cumulative distribution function

τπ = F−1
η (π), (6)

such that π ≡ Fη(τπ) = g0(γ, τπ)/g0(γ, θ).
As before, let Xn = (X1,X2, . . . ,Xn) be a sample of n i.i.d. observations from f(x; η) in (2), and let

X(1) ≤ X(2) ≤ · · · ≤ X(n) denote the corresponding order statistics. It is a standard exercise to show
that under Model I, the minimal sufficient statistic (MSS) for η0 ≡ (0, θ) is SI = X(n), while under
Model II, with η ≡ (γ, θ), the MSS is SII = (X(1), X(n)). Under Model I, the p.d.f. of the MSS statistic
SI = X(n) is

fSI
(t; η0) =

nh(t)
(
g0(0, t)

)n−1

(
g0(0, θ)

)n I[0 < t < θ] , (7)

whereas, under Model II, the p.d.f. of SII = (X(1), X(n)) can be shown to be

fSII
(y, t; η) =

n (n − 1)h(y)h(t)
(
g0(y, t)

)n−2

(
g0(γ, θ)

)n I[γ < y < t < θ] . (8)

We finally note that under Model I, when η ≡ η0 = (0, θ), the statistic SII = (X(1), X(n)), while
sufficient for θ, is not minimal, and its p.d.f. is given by

fSII
(y, t; η0) =

n (n − 1)h(y)h(t)
(
g0(y, t)

)n−2

(
g0(0, θ)

)n I[0 ≤ y < t < θ] . (9)
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However, under Model II, η ≡ (γ, θ), and the statistic SI = X(n) is not sufficient for the unknown η, and
its p.d.f. is given by

fSI
(t; η) =

n h(t)
(
g0(γ, t)

)n−1

(
g0(γ, θ)

)n I[γ ≤ t < θ] .

Regardless of the assumed model (Model I or II), it is easy to verify that the conditional p.d.f. of X(n)

given X(1) = y (with y > γ) is given by

fX(n)|X(1)
(t; y, θ) =

(n − 1)h(t)
(
g0(y, t)

)n−2

(
g0(y, θ)

)n−1 I[y < t < θ], (10)

whereas the marginal p.d.f. of X(1) is

fX(1)
(y ; η) =

n h(y)
(
g0(y, θ)

)n−1

(
g0(γ, θ)

)n I[γ < y < θ] . (11)

2.2. UMVU Estimation

Let ξ(η) be any estimable function of the model’s unknown parameter η. For instance, ξ(η) = Eη(X),
or ξ(η) = Fη(τ), for some fixed τ ∈ R. Based on the sample data x = (x1, x2, . . . , xn), we are interested
in constructing a UMVUE ξ̂n ≡ ξ̂(S(x)) for ξ(η). Clearly, for any η, this estimator should satisfy

Eη(ξ̂n) = ξ(η). (12)

By repeatedly differentiating both sides of (12) with respect to the components of η, along with
application of Leibniz’s integral rule, one can obtain (in the case of distributions of the form in (2)),
explicit expressions for such UMVU estimators.

Tate (1959) considered this problem under Model I (i.e., η ≡ η0 = (0, θ) and SI(x) = x(n)) and
obtained that the general form of the UMVUE for ξ(θ) is

ξ̂I
n = ξ(x(n)) +

ξ′(x(n))g0(0, x(n))
nh(x(n))

, (13)

whenever the derivative ξ′(θ) = ∂ξ(θ)/∂θ exists and is continuous almost everywhere on the support
Ω1 = {(0, θ) : a < θ < b}.

Similarly, Bar-Lev and Boukai (1985) considered the same estimation problem under Model II
(i.e., η ≡ (γ, θ) and SII(x) = (x(1), x(n))). They showed that the general form of the UMVUE for any
estimable function ξ(γ, θ) is

ξ̂II
n = ξ(x(1), x(n)) −

g0(x(1), x(n))ξ1(x(1), x(n))
(n − 1)h(x(1))

+
g0(x(1), x(n))ξ2(x(1), x(n))

(n − 1)h(x(n))
−

g2
0(x(1), x(n))ξ12(x(1), x(n))
n(n − 1)h(x(1))h(x(n))

, (14)

whenever the partial derivatives ξ1 = ∂ξ/∂γ, ξ2 = ∂ξ/∂θ, and ξ12 = ∂2ξ/∂γ∂θ exist and are continuous
almost everywhere on Ω2 = {(γ, θ) : a < γ < θ < b}.

Remark 1. Assume that Model II holds, but ξ(γ, θ) ≡ ξ(θ) for some estimable function of θ alone. Then,
similarly to (13), the general form of the BB’s UMVUE for ξ(θ) is reduced to

ξ̂II
n = ξ(x(n)) +

ξ′(x(n)) g0(x(1), x(n))
(n − 1)h(x(n))

, (15)
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where ξ′ = ∂ξ/∂θ. A comparison of ξ̂I
n in (13) to ξ̂II

n in (15) reveals the extent of the bias upon
erroneously using Tate’s estimator ξ̂I

n instead of the UVMUE ξ̂II
n . In fact, it can be easily seen that

ξ̂I
n = ξ̂II

n +
ξ′(x(n))
h(x(n))

(
g0(0, x(n))

n
−

g0(x(1), x(n))
n − 1

)
≡ ξ̂II

n + bn .

Hence, since Eη(ξ̂II
n ) = ξ(θ), it immediately follows that Eη(ξ̂I

n) = ξ(θ) + Bn, where Bn ≡ Eη(bn)
represents the bias.

Remark 2. It can be shown (see (10) and (11)) that under Model II, the conditional expectation of ξ̂II
n ,

given X(1) = y, is

Eη(ξ̂II
n |X(1) = y) = ξ(y, θ) − ξ1(y, θ)g0(y, θ)

nh(y)
≡ r(y, θ) . (16)

Hence, by Remark 1 and (15), ξ̂II
n must be of the form

ξ̂II
n (y, t) = r(y, t) +

r2(y, t)g0(y, t)
(n − 1)h(t)

, (17)

where r2 = ∂r/∂θ.

In the next section we provide a more general assessment of the bias term in (15). Examples for Tate’s
and for BB’s UMVU estimators are provided below; we omit the derivations.

Example 1. Under Model I:

(a) For ξ(θ) = Eη0(X
k) = gk(γ0, θ)/g0(γ0, θ), with known γ0 = 0, it can be shown that Tate’s UMVU

estimator is

ξ̂I
n =

gk(0, x(n))
g0(0, x(n))

(
1 − 1

n

)
+

xk
(n)

n
.

(b) In particular, for k = 1, we have that ξ(θ) = Eη0(X) = g1(γ0, θ)/g0(γ0, θ), with known γ0 = 0. It
can be shown that Tate’s UMVU estimator is

ξ̂I
n =

g1(0, x(n))
g0(0, x(n))

(
1 − 1

n

)
+

x(n)

n
.

(c) For ξ(θ) = 1 − Fη0(τ) = g0(τ, θ)/g0(γ0, θ), with known γ0 = 0, and τ ≥ γ0, it can be shown that
Tate’s UMVU estimator is

ξ̂I
n = 1 −

(
1 − 1

n

) g0(0, τ)
g0(0, x(n))

.

(d) For ξ(θ) ≡ τ = F−1
η0

(g0(γ0, τ)/g0(γ0, θ)), with known γ0 = 0, and τ ≥ γ0, it can be shown that
Tate’s UMVU estimator for τ is

ξ̂I
n = F−1

η0

(
g0(0, τ)

g0(0x(n))

)
+

g2
0

(
0, F−1

η0
(x(n))

)
g0(0, x(n))

nh(x(n))g0(0, τ)h(F−1
η0 (x(n)))

. (18)

Example 2. Under Model II:

(a) For ξ(θ) = Eη(Xk) = gk(γ, θ)/g0(γ, θ), with known γ > 0, it can be shown that BB’s UMVU
estimator is

ξ̂II
n =

gk(x(1), x(n))
g0(x(1), x(n))

(
1 − 2

n

)
+

xk
(1) + xk

(n)

n
.
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(b) In particular, for k = 1, if ξ(γ, θ) = Eη(X) = g1(γ, θ)/g0(γ, θ), the general form of BB’s UMVU
estimator is

ξ̂II
n =

gk(x(1), x(n))
g0(x(1), x(n))

(
1 − 2

n

)
+

x(1) + x(n)

n
.

(c) For ξ(γ, θ) = 1 − Fη(τ) = g0(τ, θ)/g0(γ, θ), γ ≤ τ ≤ θ, one obtains that BB’s UMVU estimator is

ξ̂II
n =

(
1 − 1

n

)
−

(
1 − 2

n

) g0(x(1), τ)
g0(x(1), x(n))

.

(d) It follows from (6) that for ξ(θ) = F−1
η (g0(γ, τ)/g0(γ, θ)), with γ > 0 and τ ≥ γ, BB’s UMVU is

ξ̂II
n = F−1

η

(
g0(x(1), τ)

g0(x(1), x(n))

)
−

g0(x(1), x(n))g2
0(F

−1
η (x(1)), x(n))

(n − 1)h(x(1))h(F−1
η (x(1)))g0(F−1

η (x(1)), τ)

−
g0(x(1), x(n))g2

0(x(1), F
−1
η (x(n)))

(n − 1)h(x(n))h(F−1
η (x(n)))g0(x(1), τ)

−
g2
0(x(1), x(n))ξ12(x(1), x(2))
n(n − 1)h(x(1))h(x(n))

,

where

ξ12(x(1), x(n)) = −
Fη12(F−1

η (x(1)), x(n))

(Fη1(F−1
η (x(1)), x(n)))2Fη2(F−1

η (x(1)), F
−1
η (x(n)))

,

assuming that the partial derivatives Fη1 = ∂Fη/∂γ, Fη2 = ∂Fη/∂θ, and Fη12 = ∂2Fη/∂γ∂θ exist and
are continuous almost everywhere on Ω2 = {(γ, θ) : a < γ < θ < b}.

2.3. Cross-Model Analysis

The analysis in this section focuses on model misspecification, where the quantities of interest are
(i) the estimators’ expectations and (ii) the estimators’ MSE w.r.t. the incorrect support. In other words,
what is the reduction in efficiency (if any) when we derive the estimators w.r.t. Model I support while
actually Model II support holds, and vice versa. More specifically, we are interested in the evaluation of
E(ξ̂I

n|Model II) = Eη(ξ̂I
n) when η = (γ, θ) is the unknown parameter, and of E(ξ̂II

n |Model I) = Eη0(ξ̂
II
n )

when η0 = (0, θ) and θ is the only unknown parameter. Similar cross-evaluations will be considered for
the MSE(ξ̂I

n|Model II) = Eη((ξ̂I
n − ξ)2) and the MSE(ξ̂II

n |Model I) = Eη0((ξ̂
II
n − ξ)2). In the follow-

ing theorem we evaluate the extent of the cross-model bias by straightforward calculations.

Theorem 1. Let ξ(η) be any estimable function, i.e., any function of the unknown parameters
which possesses an unbiased estimator under both Model I and Model II (e.g., Examples 1, 2),
and let ξ̂I

n and ξ̂II
n be its respective estimators.

(i) Under False Model I misspecification we have

E(ξ̂I
n|Model II) = Eη(ξ̂I

n) = ξ(θ)(1 + a) + bn , (19)

where, with η = (γ, θ), a = g0(0, γ)/g0(γ, θ) and

bn = −a

∫ θ

γ
ξ(t)(n − 1)h(t)

(g0(γ, t))n−2

(g0(γ, θ))n−1
dt .
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(ii) Under False Model II misspecification we have

E(ξ̂II
n |Model I) = ξ(η) + d1n + d2n ,

where

d1n ≡ Eη0(ξ̂
II
n I[0 < y < t < γ]) =

∫ γ

0

∫ t

0
ξ̂II
n (y, t)fSII

(y, t; η0)dy dt

and

d2n ≡ Eη0(ξ̂
II
n I[0 < y < γ < t < θ]) =

∫ θ

γ

∫ γ

0
ξ̂II
n (y, t)fSII

(y, t; η0)dy dt .

The proof appears in Appendix A1.

Note that since ξ̂I
n and ξ̂II

n are UMVUE for ξ(θ) and ξ(η), respectively, under the correct
models, it holds that Eη(ξ̂II

n ) = ξ(η), MSE(ξ̂II
n |Model II) = Varη(ξ̂II

n ), and Eη0(ξ̂
I
n) = ξ(θ), with

MSE(ξ̂I
n|Model I) = Varη0(ξ̂

I
n). Further, since by part (i) of Theorem 1, ξ̂I

n is a biased estimator of
ξ(η) ≡ ξ(θ) under Model II, it follows immediately that it is an inconsistent estimator and that

MSE(ξ̂I
n|Model II) = Varη(ξ̂I

n) + (ξ(θ)a + bn)2 > MSE(ξ̂II
n |Model II) .

Proposition 1. Let ξ̂I
n be the Model I UMVUE of ξ(θ) as is given in (13). Then

Varη0(ξ̂
I
n) =

∫ θ

0

[
ξ′(t)g0(0, t)

nh(t)

]2

fSI
(t; η0) dt. (20)

See the proof in Appendix A2.

While the expression (20) for the Varη0(ξ̂
I
n) is exact, its explicit form depends much on the form of

ξ(θ). Examples are provided below.

Example 3. Let ξ(θ) = Eη0(X) = g1(0, θ)/g0(0, θ) as in Example 1. Then we have ξ′(θ) =
(θ − ξ(θ))h(θ)/g0(0, θ). Hence using (20), we obtain

Varη0(ξ̂
I
n) =

1
n2

∫ θ

0
(t − ξ(t))2fSI

(t; η0) dt .

Example 4. Let ξ(θ) = 1− Fη0(τ) = g0(τ, θ)/g0(0, θ) for some fixed τ , 0 < τ < θ, as in Example 2. We
have ξ′(θ) = h(θ)g0(0, τ)/g2

0(0, θ). Using (7) and (13) in (20), we obtain that

Varη0(ξ̂
I
n) =

(
1 − ξ(θ)

)2

n(n − 2)
≡

(
Fη0(τ)

)2

n(n − 2)
.

Proposition 2. Let ξ̂II
n be the Model II UMVUE of ξ(γ, θ) as is given in (15). Then

Varη(ξ̂II
n ) =

∫ θ

γ

[ ∫ θ

y

[
r2(y, t)g0(y, t)

(n − 1)h(t)

]2

fX(n)|X(1)
(t; y, θ) dt

]
fX(1)

(y; η) dy

+
∫ θ

γ

[
ξ1(y, θ)g0(y, θ)

nh(y)

]2

fX(1)
(y; η) dy,

where by (17),

r2(y, t) = ξ2(y, t) − ξ12(y, t)g0(y, t)
nh(y)

− ξ1(y, t)h(t)
nh(y)

.

See the proof in Appendix A3.
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Example 5. Let ξ(γ, θ) = 1 − Fη(τ) = g0(τ, θ)/g0(γ, θ), γ ≤ τ ≤ θ as in Example 2. Then

ξ̂II
n (y, t) =

(
1 − 1

n

)
−

(
1 − 2

n

)g0(y, τ)
g0(y, t)

.

A direct application of Propositions 1 and 2, together with Remark 2 yields that

Varη(ξ̂II
n ) =

1
(n − 1)(n − 3)

(
1 − 2

n

n − 1
ξ +

n

n − 2
ξ2

)
+

1
n(n − 2)

ξ2

≈ (1 − ξ)2

(n − 1)(n − 3)
+

ξ2

n(n − 2)
,

where ξ ≡ ξ(η) = Pη(X ≥ τ) = g0(τ, θ)/g0(γ, θ).

2.4. Examples
We illustrate the details of this analysis in the case of the truncated Beta(α, 1) (with α ≥ 1 known)

distribution. The p.d.f. of Beta(α, 1) is of the form given in (2) with h(x) = αxα−1 and g0(γ, θ) =
θα − γα for 0 < γ < θ, namely,

f(x; η) =
αxα−1

θα − γα
I[γ < x < θ] .

When Model I is assumed, γ = γ0 ≡ 0 and hence

f(x; η0) =
αxα−1

θα
I[0 < x < θ] .

We are interested in estimating ξ(η) = Pη(X > τ) for some γ < τ < θ. Note that ξ(η) is estimable under
both Model I and Model II (simply take I[X1 > τ ] as the estimator). Clearly, in this case,

ξ(η) =
θα − τα

θα − γα
I[γ < τ < θ] , (21)

which under Model I (with γ = 0) is expressed as

ξ(η0) ≡ ξ(θ) = 1 −
(

τ

θ

)α

I[0 < τ < θ] . (22)

Following Examples 1 and 2, it is straightforward to verify that the UMVU estimators of this tail
probability under Model I and Model II, respectively, are

ξ̂I
n = 1 −

(
1 − 1

n

)(
τ

x(n)

)α

for 0 < τ < x(n) ,

and

ξ̂II
n =

(
1 − 1

n

)
−

(
1 − 2

n

) τα − xα
(1)

xα
(n) − xα

(1)

for x(1) < τ < x(n) . (23)

By construction, both estimators are unbiased for ξ(η) = Pη(X > τ) under their correct models.
Furthermore, by Example 4,

MSE(ξ̂I
n|Model I) =

(
τα

θα

)2 1
n(n − 2)

,

and by Theorem 1, under Model II,

MSE(ξ̂I
n|Model II) = Varη(ξ̂I

n) + (ξ(θ)a + bn)2,

where bn is as given in (19).
Using (9) one can show that ξ̂II

n is a biased estimator w.r.t. Model I support for any finite sample size,
where the bias term is of order 1/n. Computing its MSE is complicated and an explicit expression was
found only for the case that α = 1, i.e., truncated uniform random variable.
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Fig. 1. The MSE convergence of both estimators and the empirical quantile estimator (based on 1,000 iterations) for
the tail probability w.r.t. Model I support, for τ ∈ {0.25, 0.75}, θ = 1 and α = 1.

Fig. 2. Asymptotic MSE ratio (Tate/BB) of the estimators of the tail probability w.r.t. Model I support as a function of
τ for θ = 1 and α = 1.

Lemma 1. Let ξ̂II
n be as in (23) with α = 1. Then the MSE of ξ̂II

n w.r.t. Model I support is given by

2 τ2 n + θ2(n − 1) − 2τθn

θ2n2(n − 3)
. (24)

The proof appears in Appendix A4.
Finally, using Proposition 2, it follows that under Model II

MSE(ξ̂II
n |Model II) ≈ 1

n − 1

[
(1 − ξ)2

(n − 3)
+

ξ2

(n − 2)

]
,

where ξ ≡ ξ(η) is as given in (21). Figures 1 and 2 illustrate the behavior of the MSE of both estimators
in Example 5 for finite and asymptotic sample sizes.
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3. ‘REGULAR’ MODELS WITH A POSSIBLE LEFT TRUNCATION PARAMETER
In Section 3.1 we first present the Erlang distribution as a special case of the natural exponential

family (NEF) and illustrate the effects of the possible truncation on the estimator of the ‘regular’
parameter. We then proceed, in Section 3.2 to discuss asymptotic aspects of this problem for general
NEF. Finally, in Section 3.3 we illustrate the results with examples.

3.1. Case Study: the Erlang Distribution

Let γ ∈ [0,∞) be fixed, λ > 0, and let k = 1, 2, . . . . Define

Qk(γ, λ) =
∫ ∞

γ
λk xk−1 e−λx dx. (25)

Note that Qk is the k-fold incomplete gamma function, and, in particular, Qk(0, λ) = (k − 1)! for any
λ > 0. As such, we have

Qk(γ, λ) = (k − 1)!
k−1∑
i=0

(λγ)i

i!
e−λγ . (26)

We define the truncated version of the k-stage Erlang distribution, denoted here as Erlang(k, λ, γ), by
the p.d.f.

f(x; γ, λ) =
λk xk−1

Qk(γ, λ)
e−λx I[γ < x < ∞]. (27)

Note the similarity to the definition in Section 2 that appears in (2). By (27), the jth moment of the
Erlang(k, λ, γ) distribution is

E(Xj |k, γ, λ) =
1
λj

Qk+j(γ, λ)
Qk(γ, λ)

, j = 0, 1, 2, . . . . (28)

We now consider the problem of estimating λ under Model I (i.e., γ = 0) versus Model II (i.e., γ > 0
unknown). To that end, we use (26) and (28) to calculate

μ0(λ) ≡ E(X|k, 0, λ) and μγ(λ) ≡ E(X|k, γ, λ)

and to obtain that

μ0(λ) =
k

λ
and μγ(λ) =

k

λ

[
1 +

(λγ)ke−λγ

kQk(γ, λ)

]
. (29)

It can be easily seen from (29) (see also Section 3.2) that the maximum likelihood equation based on
a sample of n observations from Erlang(k, λ, γ) should satisfy

μ0(λ̂) = X̄n and μγ(λ̂) = X̄n .

That is, the MLE λ̂I
n of λ under Model I (i.e., γ = 0) and the MLE λ̂II

n and γ̂n = X(1) of λ and γ under
Model II should satisfy, respectively,

μ0(λ̂I
n) = X̄n and μγ̂n(λ̂II

n ) = X̄n. (30)

Hence, under Model II,

λ̂I
n =

k

X̄n
=

k

μγ̂n(λ̂II
n )

PII−−→ λ

1 + (λγ)ke−λγ

k Qk(γ, λ)

	= λ ,

and thus λ̂I
n is inconsistent.

To assess the cross-model behavior of λ̂II
n under Model I, we first define the bias when estimating the

mean function. Define B(λ, γ) by

B(λ, γ) ≡ μγ(λ) − μ0(λ) =
(λγ)ke−λγ

kQk(γ, λ)
, (31)
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where the equality follows from (29). By Theorem 2 below, γ̂n ≡ X(1)
PII−−→ γ under Model II and

γ̂n
PI−→ 0 under Model I. Hence for every λ > 0 we have B(λ, γ̂n) PI−→ B(λ, 0) = 0 under Model I. Since

by (30) and (31)

μγ̂n(λ̂II
n ) = μ0(λ̂II

n ) + B(λ̂II
n , γ̂n) = X̄n,

it follows that under Model I,

μ0(λ̂II
n ) = X̄n − B(λ̂II

n , γ̂n) PI−→ μ0(λ) − B(λ, 0) = μ0(λ) . (32)

Since μ0(·) has a continuous inverse function we also obtain, by the continuous mapping theorem (van

der Vaart, 2000) that λ̂II
n

PI−→ λ. In other words, we showed that λ̂II
n is consistent and asymptotically

unbiased estimator. To conclude this case study, based on the above results, it is clearly preferable, at
least from asymptotic point of view, to use the MLE of λ w.r.t. Model II, i.e., λ̂II

n , to mitigate the possible
existence of a left-truncation parameter. The following lemma, which is a special case of Theorem 3,
summarizes the cross-model analysis of the case study presented above.

Lemma 2. Let X ∼ Erlang(k, λ, γ), where γ ∈ [0,∞) is a fixed parameter which designates the left
truncation, λ > 0 is the parameter of interest and k ∈ N. Let λ̂I

n and λ̂II
n be the MLE estimators of

λ w.r.t. Model I and Model II support respectively. Then, under Model I support

λ̂II
n

PI−→ λ,

while under Model II support

λ̂I
n

PII−−→ λ

1 + (λγ)ke−λγ

k Qk(γ,λ)

,

where Qk is the k-fold incomplete gamma function (see (26)).

In the next subsection we discuss this observation for the general case of NEF distributions, for which
the Erlang distribution is a special case.

3.2. Natural Exponential Families with Possible Left Truncation

Let γ ∈ [0,∞) be fixed, h : [0,∞) → (0,∞) be an absolutely continuous mapping with respect to the
Lebesgue measure on the real line, and denote by L(θ, γ) the Laplace transform of h(x) dx, i.e.,

L(θ, γ) =
∫ ∞

γ
eθxh(x) dx.

Assume that Θγ ≡ int{θ ∈ R;L(θ, γ) < ∞} 	= φ. Then the NEF generated by h(x) dx is given by
probability densities of the form

f(x; θ, γ) = h(x)eθx−k(θ,γ)dx, θ ∈ Θγ , (33)

where k(θ, γ) = logL(θ, γ).
For any fixed γ ∈ [0,∞), it is well known that k(θ, γ) is a strictly convex real analytic function

on Θγ and kj(θ, γ) ≡ ∂jkj(θ, γ)/∂θj , j = 1, 2, . . . , is the jth cumulant corresponding to f(x; θ, γ).
Specifically, μγ(θ) = k1(θ, γ) and σ2

γ(θ) = k2(θ, γ) are the corresponding mean and variance. Note
that if 0 ≤ γ1 < γ2 then Θγ1 ⊆ Θγ2 , and in particular, Θ0 ⊆ Θγ for all γ > 0. However, without loss of
generality, we assume that Θ0 = Θγ for all γ > 0. Note that in the NEF terminology, Mγ ≡ k1(Θγ , γ)
is the mean parameter space associated with the corresponding NEF, whereas M0 ≡ k1(Θ0, γ) satisfies
M0 ⊂ Mγ .

Unlike the Erlang distribution case, we are interested here only in the asymptotic behavior of the MLE
of the natural parameter θ under Model I (with γ = 0) and under Model II (with γ > 0), as no explicit
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relationship as in (29) generally exists. As in the previous section, the maximum likelihood equation
based on a sample of n observations from (33) should satisfy, for Model I and Model II, respectively,

μ0(θ̂) = X̄n and μγ(θ̂) = X̄n ,

provided that X̄n ∈ Mγ (a.s.). That is, the MLE θ̂I
n of θ under Model I and the MLE θ̂II

n and γ̂n = X(1)

of θ and γ under Model II should satisfy, respectively,

μ0(θ̂I
n) = X̄n and μγ̂n(θ̂II

n ) = X̄n .

More specifically, under Model II, the MLE θ̂II
n of θ satisfies k1(θ̂II

n , γ̂n) = X̄n, with γ̂n ≡ X(1), whereas

under Model I, the MLE θ̂I
n for θ satisfies k1(θ̂I

n, 0) = X̄n.
In the following theorem we restate the results of Proposition 2 of Dubinin and Vardeman (2003).

Theorem 2. If Model I holds (i.e. γ = 0) then, as n → ∞,

√
n(θ̂I

n − θ) D−→ N
(

0,
1

k2(θ, 0)

)
.

Furthermore, if Model II holds (i.e., γ > 0) and h(x) is right-continuous at 0, then
(
√

n(θ̂II
n − θ)′, n(γ̂n − γ))′ are asymptotically independent with marginal distributions

N (0, k2(θ, γ)−1) and Exp(α) with α = f(γ; θ, γ) = h(γ)eθγ−k(θ,γ), respectively.

Example 6. Let X1, . . . ,Xn ∼ Exp(λ, γ), so that λ = −θ, where θ is the natural parameter of the
distribution, and where γ is the truncation parameter. It can be shown that

k1(θ, γ) = γ − 1
θ

.

It can also be shown that k2(θ, γ) = k2(θ, 0) = 1
θ2 . This observation means that in the exponential case,

truncation is equivalent to shifting by a factor of γ. Bar-Lev and Boukai (2009) showed that this is the
only case for which this unusual property holds.

Consequently, the maximum likelihood estimating equation for Model I is −1
θ = X̄n, and for Model II

is −1
θ + X(1) = X̄n, since X(1) is the MLE of γ. Hence the MLE for the natural parameter is, under

Model I and Model II, respectively,

θ̂I
n = − 1

X̄n
and θ̂II

n =
1

X(1) − X̄n
.

Example 7. Let X1, . . . ,Xn ∼ Erlang(2, λ, γ), where λ = −θ, θ is the natural parameter, and γ is
the truncation parameter. Similarly to the exponential distribution example, k1(θ, 0) = −2

θ , hence

θ̂I
n = − 2

X̄n
. For γ > 0, we obtain that k1(θ, γ) = −2

θ + γ − γ
1−θγ . Some algebra then yields

θ̂II
n = −4

(
X̄n − 2X(1) +

√
4X(1)(X̄n − X(1)) + X̄2

n

)−1

.

Before we discuss cross-model results, we need the following notation. For every γ > 0, define the
inverse function κ−1

γ : Mγ �→ Θγ by κ−1
γ (μ) = θ for the unique θ that satisfies k1(θ, γ) = μγ . Note that

this θ is indeed unique since k1(·, γ) is strictly monotonically increasing. It follows from Proposition 2 of
Dubinin and Vardeman (2003) that

κ−1
γ1

(μ) < κ−1
γ2

(μ) (34)

for all γ1 < γ2, since k1(θ, γ) is strictly monotonically increasing in γ. Finally, we note that using this
notation we have

θ̂I
n = κ−1

0 (X̄n) and θ̂II
n = κ−1

X(1)
(X̄n) .

We first show that θ̂I
n is a biased estimator of θ under Model II, with bias that does not vanish

asymptotically. We then show that θ̂II
n is an asymptotically efficient estimator of θ under Model I.
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Theorem 3. Assume that Model II holds. Then

θ̂I
n

a.s.−−→ κ−1
0 (μγ) < κ−1

γ (μγ) = θ . (35)

If Model I holds, and h(x) is right-continuous at 0, then

√
n(θ̂II

n − θ) D−→ N
(

0,
1

k2(θ, 0)

)
.

See the proof in Appendix A5.

3.3. Examples

Consider first the scenario of the negative exponential distribution (i.e., as a special case of the k-
stage Erlang distribution discussed above, but with k = 1). Recall that when the MLE for θ was derived
under Model I, while Model II actually holds, we obtained that μγ = −1

θ + γ = μ0 + γ. Therefore,

− 1
X̄n

− θ
a.s−−→ θ2γ

1 − θγ
, (36)

which means that the sequence
√

n(− 1
X̄n

− θ) goes to infinity as n → ∞.

Fig. 3. The MSE ratio (Model II/Model I) for various sample sizes where the true model is Model I. For each sample
size n, 100,000 times n random values from Erlang(2, 1, 0) distribution were drawn and both MLEs were calculated.
The MSEs were calculated by averaging the MLEs of these 100,000 runs, for each sample size.

Consider now the case that the MLE for θ was derived under Model II, while Model I actually holds.
We start with the finite-sample behavior of the estimator θ̂II

n under Model I. It can be shown (see (32))
that its expected value under Model I is nθ

n−2 , and therefore its bias is given by 2
n−2 . Taking the limit

as n → ∞ shows that the estimator θ̂II
n is asymptotically unbiased under Model I. Furthermore, direct

calculations show that

MSE(θ̂II
n |Model I) =

(n(n + 4) − 12)θ2

(n − 2)2(n − 3)
.
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The asymptotic behavior of the MLE for the natural parameter θ follows from Theorem 3. Specifically,
we have

√
n

(
1

X(1) − X̄n
− θ

)
D−→ N (0, θ2) . (37)

We now discuss the Erlang-2 distribution discussed in Example 7. Consider, for instance, the
scenario in which the MLE was derived erroneously under Model I support, while Model II holds. It
can be shown that in such a case,

− 2
X̄n

− θ
a.s−−→ −θ3γ2

2 + θγ(θγ − 2)
. (38)

Hence, the sequence
√

n(− 2
X̄n

− θ) goes to infinity as n → ∞. We now consider the scenario in which
the MLE was derived under Model II support, but Model I holds. The asymptotic behavior of the MLE for
the natural parameter can be derived from Theorem 3 and is similar to (37). Note that the finite-sample
behavior is analytically complicated and is demonstrated using simulations, see Figure 3.

4. CONCLUSIONS

In this work we analyzed the effect of addition of a left-truncation parameter on estimation in continu-
ous distribution functions. We discussed two main settings: general continuous right-truncated models
with possible left truncation, and exponential families with possible left truncation. We investigated the
effects of model misspecification on UMVU estimators for the first setting, and on maximum likelihood
estimators for the second setting. For both settings, we discussed both finite-sample properties and
asymptotic behavior of the estimators.

In both settings we showed that mistakenly assuming Model I, when the true model is Model II,
leads to a biased estimation with bias that does not vanish asymptotically. On the other hand, assuming
Model II, when the true model is Model I, leads to an asymptotically unbiased estimation, which is, at
least for the exponential family setting, also asymptotically efficient. Nonetheless, it is important to note
that estimators constructed under Model II can be more complicated and that there can be a significant
efficiency price for estimating under Model II when Model I is correct. In conclusion, based on the
results described above, we recommend using Model II when there is a good reason to suspect that
the model involves left truncation. When there is no reason to assume left truncation, we recommend to
use Model I.

APPENDIX: PROOFS

A1. Proof of Theorem 1

Part (i): The expectation of Tate’s UMVU estimator w.r.t. False Mode II can be written as follows

E(ξ̂I
n|Model II) =

∫ θ

γ

(
ξ(t) +

ξ′(t)g0(0, t)
nh(t)

)
fSI

(t; η) dt =
∫ θ

γ
ξ(t)fSI

(t; η) dt

+
∫ θ

γ
ξ′(t)

(
g0(0, t)
nh(t)

− g0(γ, t)
nh(t)

)
fSI

(t; η) dt +
∫ θ

γ
ξ′(t)

g0(γ, t)
nh(t)

fSI
(t; η) dt.

Note that FSI
(t; η) =

( g0(γ,t)
g0(γ,θ)

)n ≡ (Fη(t))n, thus fSI
(t; η) = nh(t)

g0(γ,θ) (Fη(t))n−1. Therefore, one can
rewrite the equation above in the following way

Eη(ξ̂I
n) =

∫ θ

γ
ξ(t)fSI

(t; η) dt +
g0(0, γ)
g0(γ, θ)

∫ θ

γ
ξ′(t)

g0(γ, θ)
nh(t)

fSI
(t; η) dt +

∫ θ

γ
ξ′(t)(Fη(t))n−1 dt.
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By rearranging the equation, using the identities stated before and integration by parts for the last term,
one can show that since FSI

(γ) = 0, FSI
(θ) = 1,

Eη(ξ̂I
n) = ξ(t)FSI

(t)
∣∣θ
γ

+
g0(0, γ)
g0(γ, θ)

∫ θ

γ
ξ′(t)(Fη(t))n−1 dt = ξ(θ) + bn,

with a = g0(0,γ)
g0(γ,θ) and bn = a

∫ θ
γ ξ′(t)(Fη(t))n−1 dt. Again, by integration by parts we obtain that

bn = a

(
ξ(θ) −

∫ θ

γ
ξ(t)(n − 1)h(t)

(g0(γ, t))n−2

(g0(γ, θ))n−1 dt

)
,

which completes the proof of the first part.

Part (ii): The proof is straightforward, and is given by

E(ξ̂II
n |Model I) =

∫ θ

0

∫ t

0
ξ̂II
n (y, t)fSII

(y, t; η0) dy dt =
∫ θ

γ

∫ t

γ
ξ̂II
n (y, t)fSII

(y, t; η0) dy dt

+
∫ γ

0

∫ t

0
ξ̂II
n (y, t)fSII

(y, t; η0) dy dt +
∫ θ

γ

∫ γ

0
ξ̂II
n (y, t)fSII

(y, t; η0) dy dt

= ξ(η) + d1n + d2n .

A2. Proof of Proposition 1

The expectation of the squared Tate’s UMVU estimator w.r.t. Model I support can be explicitly
written as

E((ξ̂I
n)2|Model I) = Eη0

(
ξ2(t) +

2ξ(t)ξ′(t)g0(0, t)
nh(t)

+
(

ξ′(t)g0(0, t)
nh(t)

)2)
.

Note that since g(0,t)
nh(t) fSI

(t; η0) = FSI
(t; η0), one can show that

Eη0

(
(ξ̂I

n)2
)

=
∫ θ

0
ξ2(t)fSI

(t; η0) dt +
∫ θ

0
2ξ(t)ξ′(t)FSI

(t; η0) dt+
∫ θ

0

(
ξ′(t)g0(0, t)

nh(t)

)2

fSI
(t; η0) dt .

By using integration by parts and the facts that FSI
(0) = 0 and FSI

(θ) = 1, one can show that

Eη0

(
(ξ̂I

n)2
)

= ξ2(t)FSI
(t)

∣∣θ
0
+

∫ θ

0

(
ξ′(t)g0(0, t)

nh(t)

)2

fSI
(t; η0) dt

= ξ2(θ) +
∫ θ

0

(
ξ′(t)g0(0, t)

nh(t)

)2

fSI
(t; η0) dt .

A3. Proof of Proposition 2

Let ξ̂II
n be the Model II UMVUE of ξ(γ, θ) as is given in (15). Then using the law of total variance

we can express the variance of ξ̂II
n in the following way

Varη(ξ̂II
n ) = Eη

(
Varη(ξ̂II

n |X(1))
)

+ Varη

(
Eη(ξ̂II

n |X(1))
)
.

Starting with the first term, by using (17), we know that

ξ̂II
n (y, t) = r(y, t) +

r2(y, t)g0(y, t)
(n − 1)h(t)

,
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where r2 = ∂r/∂θ. Therefore, by using Proposition 1 we can immediately calculate Varη(ξ̂II
n |X(1) = y),

which is simply an integration of the squared second term in the expression above w.r.t. the density
function of X(n) over Model II support, i.e.,

Varη(ξ̂II
n |X(1) = y) =

∫ θ

y

(
r2(y, t)g0(y, t)
(n − 1)h(t)

)2

fX(n)
(t; η) dt .

In order to compute Eη

(
Varη(ξ̂II

n |X(1))
)

we have to integrate Varη(ξ̂II
n |X(1) = y) over all possible values

of X(1) w.r.t. Model II support. More specifically,
∫ θ

γ

[ ∫ θ

y

(
r2(y, t)g0(y, t)

(n − 1)h(t)

)2

fX(n)
(t; η) dt

]
fX(1)

(y; η) dy,

which completes the first term of Varη(ξ̂II
n ).

Proceeding to the second term, using (16) we know that

Eη(ξ̂II
n |X(1) = y) = ξ(y, θ) − ξ1(y, θ)g0(y, θ)

nh(y)
.

Utilizing Proposition 1 to calculate the variance of the expression presented above, one should integrate
the squared second term of this expression w.r.t. the density function X(1) over Model II support, i.e.,

Varη

(
Eη(ξ̂II

n |X(1))
)

=
∫ θ

γ

(
ξ1(y, θ)g0(y, θ)

nh(y)

)2

fX(1)
(y; η) dy,

which completes the computation of the second term of Varη(ξ̂II
n ) and concludes the proof.

A4. Proof of Lemma 1

Let ξ(η) be as in (22) but with α = 1, i.e., ξ(η) = θ−τ
θ . We would like to compute

MSE(ξ̂II
n |Model I) = Eη0

(
ξ̂II
n − θ − τ

θ

)2

= Eη0

(
ξ̂II
n

)2 − 2(θ − τ)
θ

Eη0 ξ̂
II
n +

(
θ − τ

θ

)2

. (39)

Since α = 1, we have h(x) = 1 and g0(0, θ) = θ. Hence, from (9), we have

fSII
(y, t; η0) =

n(n − 1)(t − y)n−2

θn
, for 0 ≤ y < t ≤ θ .

We also have

ξ̂II
n (y, t) =

(
1 − 1

n

)
−

(
1 − 2

n

)τ − y

t − y
for y < τ < t .

Hence

Eη0 ξ̂
II
n =

∫ θ

0

∫ t

0
ξ̂II
n (y, t)fSII

(y, t; η0) dy dt

=
∫ θ

0

∫ t

0

((
1 − 1

n

)
−

(
1 − 2

n

)τ − y

t − y

)
n(n − 1)(t − y)n−2

θn
dy dt

=
∫ θ

0

∫ t

0

(
C1(t − y)n−2 + C2(t − y)n−3 + C3y(t − y)n−3

)
dy dt

=
∫ θ

0

(
C1D(n − 2, 0) + C2D(n − 3, 0) + C3D(n − 3, 1)|ty=0

)
dt ,

where

C1 ≡
(
1 − 1

n

)n(n − 1)
θn

=
(n − 1)2

θn
,
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C2 ≡ −
(
1 − 2

n

)τn(n − 1)
θn

= −τ
(n − 1)(n − 2)

θn
,

C3 ≡
(
1 − 2

n

)n(n − 1)
θn

= −C2

τ
,

and where

D(n, 0) ≡
∫

(t − y)n dy = − 1
(n + 1)

(y − t)n+1,

D(n, 1) ≡
∫

(t − y)ny dy = −(t − y)n+1 (t + (n + 1)y)
(n + 1)(n + 2)

,

D(n, 2) ≡
∫

(t − y)ny2 dy = −
(t − y)n+1

(
8t2 + 8t(n + 1)y + 4(n + 1)(n + 2)y2

)
4(n + 1)(n + 2)(n + 3)

.

Hence

Eη0 ξ̂
II
n (y, t) =

C1

n − 1

∫ θ

0
tn−1 dt +

C2

n − 2

∫ θ

0
tn−2 dt +

C3

(n − 1)(n − 2)

∫ θ

0
tn−1 dt

=
(

C1

n − 1
+

C3

(n − 1)(n − 2)

)
θn

n
+

C2

n − 2
θn−1

n − 1
= 1 − τ

θ
.

We now compute Eη0

(
(ξ̂II

n )2
)
:

Eη0

(
(ξ̂II

n )2
)

=
∫ θ

0

∫ t

0

(
ξ̂II
n (y, t)

)2
fSII

(y, t; η0) dy dt

=
∫ θ

0

∫ t

0

((
1 − 1

n

)
−

(
1 − 2

n

)τ − y

t − y

)2 n(n − 1)(t − y)n−2

θn
dy dt

=
∫ θ

0

(
E1D(n − 2, 0) + E2D(n − 4, 0) + E3D(n − 4, 2)

)∣∣t
y=0

dt

+
∫ θ

0

(
E1,2D(n − 3, 0) + E1,3D(n − 3, 1) + E1,2D(n − 4, 1)

)∣∣t
y=0

dt,

where

E1 ≡
(
1 − 1

n

)2 n(n − 1)
θn

=
(n − 1)3

θn n
,

E2 ≡
(
1 − 2

n

)2 τ2n(n − 1)
θn

= −τ2 (n − 1) (n − 2)2

θn n
,

E3 ≡
(
1 − 2

n

)2 n(n − 1)
θn

=
(n − 1) (n − 2)2

θn n
,

E1,2 ≡ −2τ
(
1 − 1

n

)(
1 − 2

n

)n(n − 1)
θn

= −2 τ(n − 1)2 (n − 2)
θn n

,

E1,3 ≡ 2τ
(
1 − 1

n

)(
1 − 2

n

)n(n − 1)
θn

=
2 (n − 1)2 (n − 2)

θn n
,

E2,3 ≡ −2τ
(
1 − 2

n

)2 n(n − 1)
θn

= −2 τ(n − 2)2(n − 1)
θn n

.

Hence

Eη0

(
(ξ̂II

n )2
)

= −
∫ θ

0

(
E1

(t − y)n−1

n − 1
+ E2

(t − y)n−3

n − 3

)∣∣∣∣
t

y=0

dt

−
∫ θ

0

(
E3

(t − y)n−3(8t2 + 8(n − 3)ty + 4(n − 3)(n − 2)y2)
4(n − 3)(n − 2)(n − 1)

+E1,2
(t − y)n−2

n − 2

)∣∣∣∣
t

y=0

dt
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−
∫ θ

0

(
E1,3

(t − y)n−2(t + (n − 2)y)
(n − 2)(n − 1)

+ E2,3
(t − y)n−3(t + (n − 3)y)

(n − 3)(n − 2)

)∣∣∣∣
t

y=0

dt

=
∫ θ

0

(
E1t

n−1

n − 1
+

E2t
n−3

n − 3
+

8E3t
n−1

4(n − 3)(n − 2)(n − 1)

)
dt

+
∫ θ

0

(
E1,2t

n−2

n − 2
+

E1,3t
n−1

(n − 2)(n − 1)
+

E2,3t
n−2

(n − 3)(n − 2)

)
dt

=
(

E1

n − 1
+

2E3

(n − 3)(n − 2)(n − 1)
+

E1,3

(n − 2)(n − 1)

)
θn

n

+
(

E1,2

n − 2
+

E2,3

(n − 3)(n − 2)

)
θn−1

n − 1
+

E2θ
n−2

(n − 3)(n − 2)

=
n3 − 3n2 + n − 1

n2 (n − 3)
− 2 τ (n2 − 3n + 1)

θ n (n − 3)
+

τ2 (n − 1) (n − 2)
θ2 n (n − 3)

.

Substituting the expressions we obtained for Eη0 ξ̂
II
n and Eη0

(
(ξ̂II

n )2
)

in (39), and some simplifying
we obtain the result given in (24).

A5. Proof of Theorem 3

The first assertion follows from the continuous mapping theorem, see van der Vaart (2000). Indeed,

θ̂I
n = κ−1

0 (X̄n) a.s.−−→ κ−1
0 (μγ).

The inequality in (35) follows from (34).

We now move to the second assertion. Note that when Model I holds
√

n(θ̂II
n − θ) =

√
n(θ̂II

n − θ̂I
n) +

√
n(θ̂I

n − θ) .

Since by Theorem 2,
√

n(θ̂I
n − θ) D−→ N

(
0, 1

k2(θ,0)

)
, it is enough to show that

√
n(θ̂II

n − θ̂I
n) D−→ 0.

We define the function g : M0 × R �→ Θ0 by g(μ, γ) = θ for the unique θ that solves k1(θ, γ) = μ.
It follows from Proposition 2 of Dubinin and Vardeman (2003) that this θ is unique and that g(μ, γ) is
continuously differentiable. Note that θ̂I

n = g(X̄n, 0) and θ̂II
n = g(X̄n,X(1)). Write

√
n(θ̂II

n − θ̂I
n) =

√
n
(
g(X̄n,X(1)) − g(X̄n, 0)

)
=

√
n

∂

∂γ
g(X̄n, r)X(1)

for some 0 < r < X(1). Note that X(1) = op(n−1/2) and that ∂
∂γ g(X̄n, r) = Op(1) because the function

is bounded in the vicinity of 0. Hence we obtain that

√
n(θ̂II

n − θ̂I
n) = n1/2Op(1)op(n−1/2) PI−→ 0 ,

which concludes the proof.
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