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Abstract—The paper deals with recovering an unknown vector θ ∈ R
p in two simple linear models:

in the first one we observe y = b · θ + εξ and z = b + σξ′, whereas in the second one we have at
our disposal y′ = b2 · θ + εb · ξ and z = b + σξ′. Here b ∈ R

p is a nuisance vector with positive
components and ξ, ξ′ ∈ R

p are standard white Gaussian noises in R
p. It is assumed that p is large

and components bk of b are small for large k. In order to get good statistical estimates of θ in this
situation, we propose to combine minimax estimates of 1/bk and 1/b2

k with regularization techniques
based on the roughness penalty approach. We provide new non-asymptotic upper bounds for the
mean square risks of the estimates related to this method.
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1. INTRODUCTION

This paper deals with estimating an unknown vector θ ∈ R
p in two simple linear models. In the first

one θ is estimated based on the data

yk = bkθk + εξk, k = 1, . . . , p,

zk = bk + σξ′k, k = 1, . . . , p,
(1)

whereas in the second one θ is recovered from the observations

y′k = b2
kθk + εbkξk, k = 1, . . . , p,

zk = bk + σξ′k, k = 1, . . . , p,
(2)

where ξ and ξ′ are independent standard white Gaussian noises in R
p and b ∈ R

p is an unknown
nuisance vector with nonnegative components bk ≥ 0, k = 1, 2, . . . , p. In order to simplify numerous
technical details, it is assumed in what follows that the noise levels ε an σ are known.

In spite of very simple probabilistic structures of (1) and (2), estimation of θ in these statistical models
is a nontrivial problem. Principal difficulties arise when

p is large and bk are small.

The basic idea to overcome these difficulties is based on regularization methods which nowadays are
well developed in the case σ = 0. These methods are usually related to the roughness penalty approach
and the main goal in this paper is to adapt this approach to the case σ > 0.
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Linear models (1) and (2) play an important role in studying, for instance, the noisy periodic
deconvolution problem. Suppose we have at our disposal the noisy data

Y (t) =
∫ 1

0
h(t − u)X(u) du + εn(t), t ∈ [0, 1],

Z(t) = h(t) + σn′(t), t ∈ [0, 1],
(3)

where

• n(t) and n′(t) are independent standard white Gaussian noises;

• h(t), t ∈ [0, 1], is an unknown periodic function with period 1.

Our goal is to recover X(t), t ∈ [0, 1], based on the observation {Y (t), Z(t), t ∈ [0, 1]}.
The continuous time model (3) can be easily transformed into the so-called sequence space model

with the help of the standard trigonometric basis on [0, 1]

ϕ0(t) = 1, ϕk(t) =
√

2 cos(2πkt), ϕ∗
k(t) =

√
2 sin(2πkt), k = 1, 2, . . . .

Denote for brevity

X0 =
∫ 1

0
X(t)ϕ0(t) dt, Xk =

∫ 1

0
X(t)ϕk(t) dt, X∗

k =
∫ 1

0
X(t)ϕ∗

k(t) dt;

Y0 =
∫ 1

0
Y (t)ϕ0(t) dt, Yk =

∫ 1

0
Y (t)ϕk(t) dt, Y ∗

k =
∫ 1

0
Y (t)ϕ∗

k(t) dt;

Z0 =
∫ 1

0
Z(t)ϕ0(t) dt, Zk =

∫ 1

0
Z(t)ϕk(t) dt, Z∗

k =
∫ 1

0
Z(t)ϕ∗

k(t) dt;

h0 =
∫ 1

0
h(t)ϕ0(t) dt, hk =

∫ 1

0
h(t)ϕk(t) dt, h∗

k =
∫ 1

0
h(t)ϕ∗

k(t) dt.

Then with a simple algebra we arrive at the following statistical model:

Y0 = h0X0 + εξ0,

Yk =
Xkhk − X∗

kh∗
k√

2
+ εξk, Y ∗

k =
Xkh

∗
k + X∗

khk√
2

+ εξ−k;

Z0 = h0 + σξ′0,

Zk = hk + σξ′k, Z∗
k = h∗

k + σξ′−k,

(4)

which is equivalent to (3). In the above equations, ξ and ξ′ are independent white Gaussian noises.
Suppose h(·) is a symmetric function with hk > 0. This means that h∗

k = 0. In other words, we
assume that the convolution operator H : L2(0, 1) → L2(0, 1) defined by

Hx(t) =
∫ 1

0
h(t − u)x(u) du, t ∈ [0, 1],

is self-adjoint and positively defined. In this case, estimation of Xk, k = 0, 1, . . ., in (4) is equivalent to
estimation of Xk based on the data

Y0 = h0X0 + εξ0, Yk =
Xkhk√

2
+ εξk;

Z0 = h0 + σξ′0, Zk = hk + σξ′k

and to estimation of X∗
k , k = 1, 2, . . ., with the help of the observations

Y ∗
k =

X∗
khk√
2

+ εξ−k; Zk = hk + σξ′k.
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Thus we see that if H is a self-adjoint and positively defined operator, then the noisy deconvolution
is equivalent to recovering θ ∈ l2 in Model (1).

In the general case, one can rewrite (4) in the following equivalent form:

Y0 = h0X0 + εξ0,

YkZk + Y ∗
k Z∗

k =
Xk(h2

k + h∗2
k )√

2
+ ε(ξkhk + ξ−kh

∗
k) + εσ(ξ−kξ

′
k + ξ−kξ

′
−k),

Y ∗
k Zk − Y ∗

k Z∗
k =

X∗
k(h2

k + h∗2
k )√

2
+ ε(ξ−khk − ξkh

∗
k) + εσ(ξ−kξ

′
−k − ξkξ

′
−k),

Z0 = h0 + σξ′0,

Z2
k = h2

k + 2σhkξ′k + σ2ξ′2k , Z∗2
k = h∗2

k + 2σh∗
kξ′−k + σ2ξ′2−k.

(5)

Therefore, denoting for brevity

bi =
√

h2
k + h∗2

k , Ȳk = YkZk + Y ∗
k Z∗

k ,

Ȳ ∗
k = Y ∗

k Zk − Y ∗
k Z∗

k , Z̄k =
√

Z2
k + Z∗2

k

and omitting the second order terms proportional to σε and σ2, we arrive at the following approximation
of (5):

Y0 = h0X0 + εξ0, Ȳk ≈ Xkb
2
k√

2
+ εbk ξ̄k, Ȳ ∗

k ≈ X∗
kb2

k√
2

+ εbkξ̄
∗
k;

Z0 = h0 + σξ′0, Z̄k = bk + σξ̄′k,

where ξ0 ξ̄k, ξ̄∗k, ξ̄′k are mutually independent standard Gaussian random variables. So, we see that
recovering Xk and X∗

k in (4) is nearly equivalent to estimating θ ∈ l2 in Model (2).

Another example, where statistical models similar to (1) and (2) appear, is related to the probability
density deconvolution problem. Suppose we observe n i.i.d. pairs of random variables

(Yi, Zi), i = 1, . . . , n, where Yi = Z ′
i + Xi.

The random vectors (X1, . . . ,Xn)�, (Z1, . . . , Zn)� and (Z ′
1, . . . , Z

′
n)� are assumed to be independent

and the variables Zi and Z ′
i are identically distributed. The goal is to estimate the probability density of

X1. Notice also that statistical problems close to the one mentioned above are common in econometric
applications related to the instrumental variables, see for instance [7], [3] and references herein.

The problem of estimation of θ in (1) has been already addressed in several papers, see for instance [1],
[2], [4], [8], [6]. The principal idea in these papers is to estimate unknown b−1

i using a "natural" estimate
1/zi and then to correct obvious drawbacks of this method with a thresholding method.

In fact, as we will see below, estimating 1/bi is a nontrivial and interesting statistical problem from a
mathematical viewpoint. For instance, we can prove at the moment the optimality of proposed estimators
only with the help of computerized calculations.

2. MAIN RESULTS

2.1. Univariate Minimax Inversion

The main idea in estimating θ ∈ R
p in (1) and (2) is based on a solution to the following simple

statistical problem. Suppose we observe a Gaussian random variable

z = μ + σξ, (6)
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where μ ∈ R
+ is an unknown parameter and ξ is a standard Gaussian random variable. Our goal is to

estimate 1/μ. More precisely, we are looking for the so-called minimax estimator μ̄−1(z) of 1/μ and its
minimax risk defined by

r1(σ) def= inf
μ̃−1

sup
μ>0

μ4Eμ

[
μ̃−1(z) − μ−1

]2 = sup
μ>0

μ4Eμ

[
μ̄−1(z) − μ−1

]2
, (7)

where the infimum is taken over all measurable functions μ̃−1(·) : R
1 → R

+, and Eμ stands for the
expectation w.r.t. the probability measure generated by the observation (6).

Notice that the considered problem is closely related to estimating θ in Models (1) and (2) when
ε = 0.

We begin with a lower bound for the minimax risk r1(σ).

Lemma 1.

r1(σ) ≥ σ2. (8)

Proof. Inequality (8) may be proved with the help of the Van Trees inequality [10] (see also, e.g., [5])
which bounds from below the Bayesian risk of any estimate of g(μ) based on the observation z ∈ R

1

with a probability density P (·;μ), where μ ∈ [a, b] is an unknown parameter. Recall that the Bayesian
risk is defined by

R(π, P ) = inf
g̃

∫ b

a

∫
R

π(μ)P (z;μ)
[
g̃(z) − g(μ)

]2
dμ dz.

Suppose g(μ), μ ∈ [a, b], is differentiable and π(·) is a probability density on [a, b] such that π(a) =
π(b) = π′(a) = π′(b) = 0 with ∫ b

a

π′2(μ)
π(μ)

dμ < ∞.

Then

R(π, P ) ≥ 1
I(π) + I(P )

[∫ b

a
g′μ(μ)π(μ) dμ

]2

, (9)

where Fisher’s informations I(π) and I(P ) are defined as

I(π) =
∫ b

a

π′2
μ (μ)
π(μ)

dμ and I(P ) =
∫ b

a
π(μ)

∫
R

P ′2
μ (z;μ)
P (z;μ)

dz dμ.

In the considered statistical problem

g(μ) =
1
μ

and P (z;μ) =
1√

2πσ2
exp

[
−(z − μ)2

2σ2

]
.

Let us take

π(μ) =
1

b − a
π◦

[
1

b − a

(
μ − a + b

2

)]
,

where

π◦(x) = 2 cos2(πx), x ∈ [−1/2, 1/2].

Then ∫ 1/2

−1/2

π′2
◦ (x)

π◦(x)
dx = 8π2

∫ 1/2

−1/2
sin2(πx) dx = 4π2

and therefore

I(π) =
4π2

(b − a)3
. (10)
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Next, we obviously have(∫ b

a
π(μ)g′μ(μ) dμ

)2

=
(∫ b

a

π(μ)
μ2

dμ

)2

≥ 1
b4

. (11)

It is also well known that

I(P ) =
1
σ2

.

Thus, substituting this equation and (10)–(11) in (9), we obtain

R(π, P ) ≥ b−4

σ−2 + 4π2(b − a)−3

and combining this inequality with

r1(σ) ≥ a4R(π, P )

we arrive at

r1(σ) ≥ a4b−4

σ−2 + 4π2(b − a)−3
. (12)

In order to finish the proof, choose b = a +
√

a and take the limit in (12) as a → ∞.

Lemma 1 motivates the following definition.

Definition 1. An estimator μ̄−1(z) of 1/μ is called strong-minimax if the following relations hold true:

• sup
μ>0

μ2Eμ

[
μ̄−1(z)μ − 1

]2 = σ2; (13)

• sup
μ>0

Eμ[μ̄−1(z)μ]2 = 1. (14)

In order to demonstrate that strong-minimax estimators of 1/μ exist, consider the following family of
non-linear estimates

μ̄−1
β (z) =

z+

z2 + βσ2
, β > 0, (15)

where z+ = max(z, 0).
There are simple heuristic arguments which help to understand where these estimates come from.

Assume that the unknown parameter μ in (6) belongs to R. As above, our goal is to estimate 1/μ based
on Z. Consider the following Bayesian risk:

Rπ(μ̄) =
∫ ∞

−∞
π(μ)μ2Eμ[μμ̄(z) − 1]2 dμ,

where μ̄(z) is an estimate of 1/μ and π(·) is an a priory distribution density of μ. It can be checked with
the standard arguments that

arg min
μ̄

Rπ(μ̄) =
∫ ∞

−∞
μ3π(μ) exp

[
−(z − μ)2

2σ2

]
dμ

/ ∫ ∞

−∞
μ4π(μ) exp

[
−(z − μ)2

2σ2

]
dμ.

Assume that π(·) is the Cauchy density

π(μ) = πγ(μ) =
1

πγ[1 + (μ/γ)2]

with the scale parameter γ > 0. Then it is clear that as γ → 0

arg min
μ̄

Rπγ (μ̄) → z

z2 + σ2
.

Unfortunately, this estimate is not minimax, but its minimax modification is given by (15), where
β > 1 is a tuning parameter to be chosen properly. More precisely, for μ̄−1

β (z) the following fact holds.
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Lemma 2. There exist constants β◦ ≥ 3/2 and β◦ ≤
√

7 + 4 such that μ̄−1
β (z) as in (15) is a strong-

minimax estimator for any β ∈ [β◦, β◦] .

Proof. Let

Ψξ,β(x) def=
[1 + xξ]+

(1 + xξ)2 + βx2
, x ∈ R

+,

where ξ is a standard Gaussian random variable. Then Equations (14) and (13) are equivalent to the
following ones:

EΨ2
ξ,β(x) ≤ 1, x ≥ 0, (16)

E[1 − Ψξ,β(x)]2 ≤ x2, x ≥ 0. (17)

Notice that if x ≥ 1/2β, then

Ψξ,β(x) ≤ 1.

Indeed, the above condition is equivalent to

1 + xξ ≤ (1 + xξ)2 + βx2,

i.e,

0 ≤ β + ξ2 +
ξ

x
=

(
ξ +

1
2x

)2

+ β − 1
4x2

.

So, to prove (16) is remains to verify that

EΨ2
ξ,β(x) ≤ 1 for all x ∈

[
0,

1
2β

]
.

It can be checked with a simple algebra that

1 − Ψξ,β(x) =xξ + x2(β − ξ2) − 3x3ξ(ξ2 + β) − x4(ξ2 + β)2

+ [1 − Ψξ,β(x)][2xξ + x2(ξ2 + β)]2. (18)

We begin with lower and upper bounds for β. Notice that for small x we have from (18)

1 − Ψξ,β(x) = xξ + O(x2)

and so

1 − Ψξ,β(x) = xξ + x2(β − ξ2) + x3ξ(ξ2 − 3β) + O(x4).

Therefore

EΨ2
ξ,β(x) = 1 + x2(3 − 2β) + O(x4) (19)

and

E
[
Ψξ,β(x) − 1

]2 =x2 + x4(β2 − 8β + 9) + O(x6). (20)

Hence with (19) we obtain that β◦ ≥ 3/2. On the other hand, with (20) we arrive at

β◦ > 4 −
√

7 ≈ 1.35 and β◦ ≤ 4 +
√

7 ≈ 6.65.

In order to obtain more precise bounds for β, we computed numerically the following functions:

r0(β) = sup
x≥0

EΨ2
ξ,β(x) and r1(β) = sup

x≥0
x−2E

[
Ψξ,β(x) − 1

]2
.

Their plots are shown in Fig. 1. We see that 3/2 is the exact lower bound for β, i.e., β◦ = 1.5, whereas
β◦ ≈ 2.7.
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Fig. 1. Risk functions r0(β) and r1(β) for b̄−1(z).

In fact, the family of strong-minimax estimators of 1/μ is wide. For instance, along with the Bayesian
approach, such estimators can be obtained by the roughness penalty method. A simple example of such
an estimator is given by

μ̄β(z) = arg max
μ>0

{
−(z − μ)2

2σ2
+ β log(μ)

}
=

z

2
+

√
z2

4
+ βσ2. (21)

With this estimate we arrive at the following estimate of 1/μ:

μ̃−1
β (z) =

1
μ̄β(z)

=
1

βσ2

[√
z2

4
+ βσ2 − z

2

]
. (22)

For this method a fact similar to Lemma 2 holds.

Lemma 3. There exist constants β̃◦, β̃◦ such that μ̃−1
β (z) is strong-minimax for any β ∈ [β̃◦, β̃◦].

At the moment we cannot provide an analytical proof of this result. The computerized proof is based
on computing the risk functions

r0(β) = sup
μ>0

Eμ[μμ̃−1(z)]2 and r1(β) = sup
μ>0

μ2Eμ[μμ̃−1(z) − 1]2

shown in Fig. 2.
Comparing Figs. 1 and 2, we see that from a practical viewpoint the estimator (22) is strong-minimax

for a wider range of β. This is rather useful property, since the noise level σ is usually known only
approximately.

Notice also that μ̄β(Z) in (21) is the minimax estimator of μ for any β ∈ [0, 1/2], i.e.,

inf
μ̃

sup
μ>0

Eμ[μ̃(Z) − μ]2 = sup
μ>0

Eμ[μ̄β(Z) − μ]2 = σ2, β ∈ [0, 1/2].

Along with strong-minimax estimates of 1/μ we will need in the sequel strong-minimax estimates
of 1/μ2 defined as follows.
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Fig. 2. Risk functions r0(β) and r1(β) for the estimator (22).

Definition 2. An estimator μ̄−2(z) of 1/μ2 is called strong-minimax if

• sup
μ>0

μ2Eμ

[
μ̄−2(z)μ2 − 1

]2 = 4σ2; (23)

• sup
μ>0

Eμ[μ̄−2(z)μ2]2 = 1. (24)

Recall that the usual minimax estimator μ̄−2(z) of 1/μ2 and its minimax risk are defined by

r2(σ) def= inf
μ̃−2

sup
μ>0

μ6Eμ

[
μ̃−2(z) − 1

μ2

]2

= sup
μ>0

μ6Eμ

[
μ̄−2(z) − 1

μ2

]2

,

where the infimum is taken over all measurable functions μ̃−2(·) : R
1 → R

+.
The next lemma bounds from below the minimax risk r2(σ).

Lemma 4.
r2(σ) ≥ 4σ2.

The proof of this lemma is quite similar to that of Lemma 1 and therefore it is omitted.
In order to show that the set of strongly-minimax estimates of 1/μ2 is nonempty, we study numeri-

cally the family of the following estimates (see Eqs. (21) and (22) for a motivation):

μ̃−2
β (z) =

1
[μ̄β(z)]2

=
1

β2σ4

[√
z2

4
+ βσ2 − z

2

]2

.

Lemma 5. There exist constants β̃◦, β̃◦ such that μ̃−2
β (z) is strong-minimax for any β ∈ [β̃◦, β̃◦].

The risk functions

r0(β) = sup
μ>0

Eμ[μ2μ̃−2
β (z)]2 and r1(β) =

1
4

sup
μ>0

μ2Eμ[μ2μ̃−2
β (z) − 1]2

related to the estimate μ̃−2(z) are plotted in Fig. 3. From this figure we see that β̃◦ ≈ 2.5 and β̃◦ ≈ 8.8.
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Fig. 3. Risk functions r0(β) and r1(β) for μ̃−2
β (z).

2.2. Roughness Penalty Inversion
One of the most standard ways to construct good estimates of high-dimensional vectors θ in (1) is

based on the roughness penalty approach. Suppose θk are independent zero mean Gaussian random
variables with zero mean and

Eθ2
k = Σ2

k, k = 1, . . . , p.

Let b̄−1(zk) be a strong-minimax estimate of 1/bk (see (13) and (14)). Then we estimate unknown bk by
1/b̄−1(zk) and thus we estimate θk in Model (1) as follows:

θ̄k(yk, zk) = arg min
θ

{
− 1

2ε2

[
θ

b̄−1(zk)
− yk

]2

− θ2

2Σ2
k

}
.

It can be easily seen that

θ̄k(yk, zk) =
b̄−1(zk)

1 + ε2Σ−2
k [b̄−1(zk)]2

yk.

In Model (2) we estimate θ based on the same idea, i.e.,

θ̃k(y′k, zk) = arg min
θ

{
− b̃−2(zk)

2ε2

[
θ

b̃−2(zk)
− yk

]2

− θ2

2Σ2
k

}
,

or, equivalently,

θ̃k(yk, zk) =
b̃−2(zk)

1 + ε2Σ−2
k b̃−2(zk)

y′k. (25)

It is assumed that in the above equations b̃−2(zk) is a strong-minimax estimate of 1/b2
k.

Our goal is to show that θ̄(y, z) and θ̃(y, z) can mimic the pseudo-estimate in Models (1) and (2)

θ̂◦k(yk) = h◦
k

yk

bk
, (26)
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where

h◦
k =

1
1 + ε2Σ−2

k b−2
k

.

Let us emphasize that θ̂◦k(yk) is the roughness penalty estimate constructed assuming that bk are known
exactly.

Theorem 1. Let b̄−1(zk) be a strong-minimax estimate of 1/bk . Then

[
E‖θ̄(y, z) − θ‖2

]1/2 ≤
[
E‖θ̂◦(y) − θ‖2

]1/2 +
{ p∑

k=1

h◦
k

[
σ2 θ2

k

b2
k

+
ε2

b2
k

min
(

1,
σ2

b2
k

)]}1/2

. (27)

For the projection method θ̄k(y, z) = 1{k ≤ W}b̄−1(zk)yk the following inequality holds:

[
E‖θ̄(y, z) − θ‖2

]1/2 ≤
[
E‖h◦ · y − θ‖2

]1/2 + σ

[ W∑
k=1

θ2
k

b2
k

]1/2

, (28)

where h◦
k = 1{k ≤ W}.

Proof. Notice that θ̄(y, z) admits the following decomposition

θ̄k(yk, zk) =
1
bk

bk b̄
−1(zk)

1 + ε2Σ−2
k b−2

k [bk b̄−1(zk)]2
yk.

Denote for brevity

ρk = ε2Σ−2
k b−2

k , ζk = bk b̄
−1(zk), h◦

k =
1

1 + ρk
, h̄k =

ζk

1 + ρkζ
2
k

.

Let us begin with analyzing the projection method. In this case

Σ2
k =

{
∞, k ≤ W,

0, k > W,

where W is a given projection frequency. So, we obviously obtain

h◦
k = 1{k ≤ W} and h̄k = ζk1{k ≤ W}.

Therefore it can be easily seen that

E‖θ − θ̂◦k(y)‖2 =
∑
k>W

θ2
k + ε2

W∑
k=1

1
b2
k

,

and by the strong-minimax property of b̄−1
k (zk) (see (13) and (14)) we obtain

E‖θ − θ̄(y, z)‖2 =
∑
k>W

θ2
k + E

W∑
k=1

(1 − ζk)2θ2
k + ε2E

W∑
k=1

ζ2
k

b2
k

≤
∑
k>W

θ2
k + ε2

W∑
k=1

1
b2
k

+ σ2
W∑

k=1

θ2
k

b2
k

= E‖θ − θ̂◦(y)‖2 + σ2
p∑

k=1

h◦2
k

θ2
k

b2
k

,

thus proving (28).
In the general case, to control the risk of θ̄(y, z), we make use of the following equation:

E‖θ − θ̄(y, z)‖2 = E‖(1 − h̄) · θ‖2 + ε2
p∑

k=1

b−2
k Eh̄2

k.
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We begin with upper-bounding the last term in this equation. With a simple algebra one obtains

Eh̄2
k = h2

kE
[
ζk(1 + ρk)
1 + ρkζ

2
k

]2

≤ h2
kEζ2

k1{ζk ≥ 1} + h2
kE

[
ζk + (1 − ζ2

k)
ρkζk

1 + ρkζ
2
k

]2

1{ζk < 1}

≤ h2
kEζ2

k1{ζk ≥ 1} + h2
kE

[
ζk + (1 − ζk)

2ρkζk

1 + ρkζ
2
k

]2

1{ζk < 1}

≤ h2
kEζ2

k1{ζk ≥ 1} + h2
kE

[
ζk +

√
ρk(1 − ζk)

]21{ζk < 1}. (29)

In deriving the above inequality it was used that

max
x≥0

x

1 + ρkx2
=

1
2
√

ρk
.

Next we continue (29) with the help of E(1 − ζk)2+ ≤ min{1, σ2b−2
k }, which easily follows from the

strong-minimax property of b̄−1
k (zk). Using

(x + y)2 ≤ (1 + z)x2 +
(

1 +
1
z

)
y2, z > 0, (30)

we obtain for any z > 0

Eh̄2
k ≤ (1 + z)h2

k +
(

1 +
1
z

)
ρkh

2
k min{1, σ2b−2

k }

≤ (1 + z)h2
k +

(
1 +

1
z

)
hk min{1, σ2b−2

k }. (31)

Now, we proceed with upper-bounding E(1 − h̄k)2. Obviously, we have

1 − h̃k =
ρk

1 + ρk
+

1
1 + ρk

(ζk − 1)
ρkζk − 1
1 + ρkζ

2
k

. (32)

Notice also that

|ρkζk − 1|
1 + ρkζ

2
k

= ρk
|ρkζk − 1|

ρk + (ρkζk)2
≤ ρk max

x≥0

|x − 1|
ρk + x2

. (33)

One can also check with a simple algebra that

max
x≥0

x − 1
ρk + x2

=
1

2 + 2
√

1 + ρk
,

and thus

ρk max
x≥0

|x − 1|
ρk + x2

= ρk max
{

1
ρk

,
1

2 + 2
√

1 + ρk

}

= max
{

1,
√

1 + ρk − ρk

2

}
≤

√
1 + ρk. (34)

Hence, combining (32)–(34) with (30) and with the strong-minimax property of b̄−1(zk), we arrive
at the following inequality:

E[1 − h̄k]2 ≤ (1 + z)[1 − hk]2 + σ2

(
1 +

1
z

)
hkb

−2
k (35)

that holds for any z > 0.
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Thus with (35) and (31) we get

E‖θ − θ̄(y, z)‖2 ≤ (1 + z)E‖θ − h · y‖2 +
(

1 +
1
z

) p∑
k=1

hk

[
σ2 θ2

k

b2
k

+
ε2

b2
k

min
{

1,
σ2

b2
k

}]
.

Finally, minimizing the right-hand side of this equation w.r.t. z > 0, we finish the proof of (27).

The next theorem controls the performance of the roughness penalty method in Model (2).

Theorem 2. Let b̃−2(zk) be a strong-minimax estimate of 1/b2
k . Then

[
E‖θ̃(y, z) − θ‖2

]1/2 ≤
[
E‖θ̂◦(y) − θ‖2

]1/2 +
{ p∑

k=1

h◦2
k

[
4σ2 θ2

k

b2
k

+
ε2

b2
k

min
(

1,
4σ2

b2
k

)]}1/2

. (36)

For the projection estimate θ̃k(y, z) = 1{k ≤ W}b̃−2(zk)y′k the following inequality holds:

[
E‖θ̃(y, z) − θ‖2

]1/2 ≤
[
E‖h◦ · y − θ‖2

]1/2 + 2σ
[ W∑

k=1

θ2
k

b2
k

]1/2

, (37)

where h◦
k = 1{k ≤ W}.

Proof. In view of (25), we can decompose θ̃(y′, z) as follows:

θ̃k(y′k, zk) =
b̃−2(zk)b2

k

1 + ε2Σ−2
k b̃−2(zk)

· y′k
b2
k

.

Denote for brevity

ζk = b̃−2(zk)b2
k, ρk =

ε2

Σ2
kb

2
k

, h̃k =
ζk

1 + ρkζk
.

With this notation we have

E[θk − θ̃k(y′k, zk)]2 = E[1 − h̃k]2θ2
k + ε2b−2

k Eh̃2
k. (38)

We begin with upper-bounding the right-hand side of this equation for the projection estimate with
the projection frequency W . For this estimate,

h̃k = ζk1{k ≤ W}.

Therefore by the strong-minimax property of b̃−2(zk) we obtain from (38)

E‖θ − θ̃(y′, z)‖2 ≤
p∑

k=W+1

θ2
p + ε2

W∑
k=1

1
b2
k

+ 4σ2
W∑

k=1

θ2
k

b2
k

,

thus proving (37).
Let us now turn to the general case. We begin with controlling the bias term in the risk decomposition

(38). Using (30) and the strong minimax property of b̃−2(zk), we obtain

E[1 − h̃k]2 = E
[

ρk

1 + ρk
+

1 − ζk

(1 + ρkζk)(1 + ρk)

]2

≤ (1 + z)
[

ρk

1 + ρk

]2

+
(

1 +
1
z

)
E

[
1 − ζk

(1 + ρkζk)(1 + ρk)

]2

≤ (1 + z)[1 − h◦
k]

2 + 4σ2

(
1 +

1
z

)
h◦2

k

b2
k

. (39)
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With the same arguments we upper-bound the variance term

Eh̃2
k = h◦2

k E
[
ζk(1 + ρk)
1 + ρkζk

]2

≤ h◦2
k Eζ2

k1{ζk ≥ 1} + h◦2
k E

[
ζk + (1 − ζk)

ρkζk

1 + ρkζk

]2

1{ζk < 1}

≤ h◦2
k Eζ2

k1{ζk ≥ 1} + h◦2
k E

[
ζk + (1 − ζk)

]21{ζk < 1}

≤ (1 + z)h◦2
k +

(
1 +

1
z

)
h◦2

k min
{

1,
4σ2

b2
k

}
. (40)

Finally, combining (38), (40), and (39), we finish the proof.

2.3. Minimax Multivariate Inversion
Since the upper bounds in Theorems 1 and 2 are almost equivalent but Theorem 2 deals with a more

general statistical model, we will focus in what follows on Model (2). With the help of Theorem 2 one
can easily compute the maximal risk E‖θ̃(y′, z) − θ‖2 over the ellipsoid

Θ =
{

θ :
p∑

k=1

θ2
ka

2
k ≤ 1

}
,

where {a2
k, k = 1, . . . , p} is a given monotone sequence a2

1 ≤ a2
2 ≤ · · · ≤ a2

p.

Theorem 3. The maximal risk of θ̃(y′, z) in (25) is upper-bounded as follows:
{

sup
θ∈Θ

E‖θ̃(y′, z) − θ‖2
}1/2

≤
√

R(Σ,Θ) +
√

R+(Σ,Θ),

where

R(Σ,Θ) = ε4 max
k

1
(ε2 + b2

kΣ
2
k)2a

2
k

+ ε2
p∑

k=1

Σ4
kb

2
k

(ε2 + Σ2
kb

2
k)2

,

R+(Σ,Θ) = 4σ2 max
k

Σ4
kb

2
k

(ε2 + Σ2
kb

2
k)2a

2
k

+ ε2
p∑

k=1

Σ4
kb

2
k

(ε2 + Σ2
kb

2
k)2

min
{

1,
4σ2

b2
k

}
.

Proof. This follows immediately from (36) combined with

h◦
k =

b2
kΣ

2
k

ε2 + b2
kΣ

2
k

, sup
θ∈Θ

‖(1 − h◦) · θ‖2 ≤ max
k

(1 − h◦
k)

2a−2
k ,

sup
θ∈Θ

p∑
k=1

h◦2
k

θ2
k

b2
k

≤ max
k

h◦2
k

b2
ka

2
k

.

The minimax risk of the projection method can be controlled with the help of the following theorem.

Theorem 4. Let θ̃pr(y′k, zk) = 1{k ≤ W}b̃−2(zk)y′k, then
{

sup
θ∈Θ

E‖θ̃pr(y′, z) − θ‖2
}1/2

≤
√

Rpr(W,Θ) +
√

R+
pr(W,Θ),

where

Rpr(W,Θ) = a−2
W+1 + ε2

W∑
k=1

1
b2
k

, R+
pr(W,Θ) = 4σ2 max

k∈[1,W ]

1
b2
ka

2
k

.
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Proof. This follows immediately from (37).

Example. We illustrate the above theorem with a simple example, assuming that p = ∞ and

b2
k = B2k−2q, a2

k = A−2k2g, k = 1, 2, . . . .

The computation of the risk of the spectral cut-off method in this case is very simple. We have

Rpr(W,Θ) =
A2

(W + 1)2q +
ε2

B2

W∑
k=1

k2g, R+
pr(W,Θ) =

4σ2A2W 2(g−q)+

B2
,

where (x)+ = max(0, x). Very often, we are interested in the minimax projection bandwidth minimizing
Rpr(W,Θ). This bandwidth can be easily computed for small ε, namely,

W ◦ = arg min
W

Rpr(W,Θ) = (1 + o(1))
(

2qA2B2

ε2

)1/(1+2q+2g)

, ε → 0,

and therefore as ε → 0

min
W

Rpr(W,Θ) = (1 + o(1))
(

1
2q + 1

+
1
2q

)
ε2

B2

(
2qA2B2

ε2

)(1+2q)/(1+2q+2g)

.

Notice also that

R+
pr(W

◦,Θ) = (1 + o(1))
4σ2A2

B2

(
2qA2B2

ε2

)2(g−q)+/(1+2q+2g)

, ε → 0.

So, we see that when q ≥ g the excess risk R+
pr(W

◦,Θ) has a parametric order σ2.

This example shows, in particular, that one can construct good estimates of θ even in the case, where
σ2 
 ε2. This prompts, for instance, that the upper bounds in Proposition 3.2 and Theorem 5.1 in [6]
might be improved, since they are expressed in terms of max(ε2, σ2).

Let us emphasize that the minimax projection bandwidth W ◦ cannot be used in practice since it
strongly depends on A2 and q, which are hardly known. Therefore, in applications, only data-driven
projection bandwidths can be used. Constructing good data-driven bandwidths is very important in
applied statistics and we will provide a natural solution to this problem in a forthcoming paper.

Sometimes we are interested in computing Σ2
k resulting in asymptotically (as ε → 0) minimax

estimators over Θ provided that bk are assumed to be known. Recall that an asymptotically minimax
estimate θ̂ε(y) based on the observations

yk = bkθk + εξk, k = 1, . . . ,

is defined by

sup
θ∈Θ

E‖θ̂ε(y) − θ‖2 = (1 + o(1)) inf̄
θ

sup
θ∈Θ

E‖θ̄(y) − θ‖2, ε → 0,

where the infimum is taken over all estimates of θ. The theory of asymptotically minimax estimation over
ellipsoids has been developed in the pioneering paper [9]. In particular, it follows from this paper that if

b2
k = (1 + o(1))B2k2g, a2

k = (1 + o(1))A−2k−2q for A,B, q, g ∈ (0,∞),

as k → ∞, then asymptotically minimax estimate of θ is given by (26) with

Σ2
k =

ε2

b2
k

[
|ak|
μ

− 1
]

+

, where μ is a root of ε2
∞∑

k=1

a2
k

b2
k

[
|ak|
μ

− 1
]

+

= 1.
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