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Abstract—In this paper we study the asymptotic properties of the adaptive Lasso estimate in
high-dimensional sparse linear regression models with heteroscedastic errors. It is demonstrated
that model selection properties and asymptotic normality of the selected parameters remain valid
but with a suboptimal asymptotic variance. A weighted adaptive Lasso estimate is introduced and
investigated. In particular, it is shown that the new estimate performs consistent model selection
and that linear combinations of the estimates corresponding to the non-vanishing components are
asymptotically normally distributed with a smaller variance than those obtained by the “classical”
adaptive Lasso. The results are illustrated in a data example and by means of a small simulation
study.
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1. INTRODUCTION

In recent years the use of penalized likelihood or penalized least squares methods has become
very popular in analyzing parametric regression models. An important advantage of some of these
methods is that they can be applied in very high-dimensional settings, that is models, where the number
of parameters p is larger than the sample size n. Under sparseness assumptions on the true data
generating process the use of these estimators can be theoretically justified, in particular, consistency
and asymptotic normality can be established. Here “sparseness” means that only a small fraction of
the predictors (say k < n, where n is the sample size) in the model influences the true data generating
process. Some penalized estimators are able to correctly identify the corresponding k non-vanishing
coefficients in a linear model and give a reasonable estimate of these, which means that they perform
model selection and estimation in a single step. For obtaining asymptotic considerations the high-
dimensionality is modeled by a p = pn dimensional parameter depending on the sample size, which
converges to infinity with n.

In recent years substantial progress has been made in analyzing the theoretical and practical
properties of these methods. Penalized estimators include bridge estimators (Frank and Friedman
(1993)) with the special cases of Lasso (Tibshirani (1996)) and ridge regression (Hoerl and Kennard
(1970)), the SCAD (Fan and Li (2001)) or the adaptive Lasso (Zou (2006)). Knight and Fu (2000)
established asymptotic properties of bridge estimators (that is least squares estimators with Lq penalty
[0 < q < ∞]) in the case where the dimension p of the model is fixed. Fan and Li (2001) argued that
a reasonable estimator should correctly identify the k important parameters which are influential with
probability converging to one and the estimators of these should have the same asymptotic distribution
as an estimator which would be used if the k important parameters were known in advance. So the
estimator should consistently select a model and the estimators of the parameters of the true model
should be asymptotically efficient. They called this the “oracle property”. Fan and Li (2001) established
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this property for the SCAD in the context of likelihood models and Zou (2006) proved it for the adaptive
Lasso in the context of linear models.

The results for the SCAD were generalized to the case, where the dimension of the parameter
p = pn is increasing with the sample size so that pn = o(n) (see Fan and Peng (2004)), while Kim
et al. (2008) showed the oracle property for the SCAD also in the case pn > n. Asymptotic results
for bridge estimators with 0 < q ≤ 1 were established in Huang et al. (2008), where oracle properties
were shown for pn = o(n) and 0 < q < 1. For the case pn > n a two-stage approach is suggested using
marginal bridge estimators, which were shown to consistently select the true model. Although the Lasso
does not satisfy the oracle property in the case of fixed p (see Zou (2006)) it can identify the correct model
and consistently estimate the important variables in high-dimensional settings (see, e.g., Zhao and Yu
(2006) and Wainwright (2009)). Huang et al. (2008) showed that the adaptive Lasso satisfies the oracle
property also in high-dimensional linear models under some assumptions (we will sometimes also cite
the technical report Huang et al. (2006) foregoing the last mentioned article, because some assumptions
are formulated in a more transparent way there). For a broader overview of penalized estimators in high-
dimensional models and further references we refer the reader to the recent article of Fan and Lv (2010).

Much of the aforementioned literature concentrates on the case of linear models with independent
identically distributed errors. To our best knowledge there has been no attempt to investigate bridge
estimators and the adaptive Lasso in high-dimensional linear models with heteroscedastic errors. In the
case of fixed p such results were established in Wagener and Dette (2012) who analyzed both bridge
estimators with 0 < q ≤ 1 and the adaptive Lasso in the case of heteroscedasticity. Generally speaking
the model selection properties of the analyzed estimators still persist under heteroscedasticity. The
bridge estimators with 0 < q < 1 and the adaptive Lasso estimators of the k important parameters are
asymptotically normally distributed, but with a suboptimal variance. As a consequence, these authors
introduced weighted versions of the bridge and adaptive Lasso estimators, which were shown to have
the optimal asymptotic variance.

The present article is devoted to an investigation of problems of this type in the case, where the
number of parameters in the model varies with the sample size. It turns out that the analysis differs
substantially from the case of fixed p and we concentrate our investigations on the adaptive Lasso
estimator, which satisfies the oracle property in homoscedastic linear models and has the advantage of
being a solution of a convex minimization problem in contrast to bridge estimators. We will analyze
both the “ordinary” adaptive Lasso under heteroscedasticity and a weighted version taking scale
information into account. Model selection consistency and asymptotic normality will be established for
both estimators and the weighted adaptive Lasso will be shown to satisfy the oracle property.

The remaining part of this paper is organized as follows. In the next section we will introduce some
basic notation and define weighted Lasso estimators. In Section 3 we will prove that the weighted adap-
tive Lasso satisfies the oracle property. The weighted adaptive Lasso requires a preliminary estimator for
the determination of the “optimal” weights. Therefore the fourth section is devoted to an investigation of
the asymptotic behavior of the “classical” (i.e., unweighted) adaptive Lasso. In particular, we show that
under general heteroscedasticity the adaptive unweighted Lasso is still sign consistent and estimates
the non-vanishing parameters with an optimal rate, so that it can be used in the weighted procedure
as initial estimator. In the last section we present some simulation results and an application of both
estimators to a real dataset.

2. PRELIMINARIES

We consider the linear regression model

Y = Xβ0 + Σ(β0)ε, (2.1)

where Y = (Y1, . . . , Yn)T is an n-dimensional vector of observed random variables, X is a matrix
of covariates, β0 is a vector of unknown parameters and Σ(β0) = diag(σ(x1, β0), . . . , σ(xn, β0)) is a
diagonal matrix with positive entries. We denote by xT

1 , . . . , xT
n the rows of the matrix X and assume

that ε = (ε1, . . . , εn) is a vector of independent identically distributed random variables with E[ε1] = 0
and Var(ε1) = 1. We further assume that the model is sparse, that is, β0 = (β0(1)T , β0(2)T )T , where
β0(1) ∈ R

kn and β0(2) = 0 ∈ R
pn−kn , but we do not know which components of β0 are 0 (naming

the nonzero components β0(1)T and assuming them to be the first kn components of β0 is only for
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notational convenience). The dimension pn of the vector β0 is permitted to grow with the sample
size n. Note that Huang et al. (2008) and Huang et al. (2008) considered this model with Σ = In

(the n-dimensional identity matrix), that is under homoscedasticity. Throughout this paper we will use
the following notation. We partition the matrix X = (X(1),X(2)), where X(1) ∈ R

n×kn and X(2) ∈
R

n×(pn−kn). The columns of X are denoted by x(1), . . . , x(pn) and the kn-dimensional rows of X(1)
by x1(1)T , . . . , xn(1)T . We assume X to be nonrandom but with random X all results presented in this
paper hold conditionally on the covariates. Let xij denote the (i, j)th entry of the matrix X and let β0,j

denote the jth coordinate of the vector β0. Define the kn × kn matrices

C
(n)
11 =

1
n

X(1)T X(1) and D
(n)
11 (β) =

1
n

X(1)T Σ(β)−2X(1)

and let λmax(M) and λmin(M) denote the maximal and the minimal eigenvalues of the matrix M
respectively. In the following discussion we will investigate the estimators

̂βlse = argminβ

[ n
∑

i=1

(Yi − xT
i β)2 + λn

pn
∑

j=1

|βj ||β̃j |−1

]

,

̂βwlse = argminβ

[ n
∑

i=1

(

Yi − xT
i β

σ(xi, β)

)2

+ λn

pn
∑

j=1

|βj ||β̃j |−1

]

(2.2)

for the parameter β0 in model (2.1), where β̃ and β are preliminary estimators for β0. Here βj denotes the
jth component of the pn-vector β (j = 1, . . . , pn). Note that ̂βlse is the (unweighted) adaptive Lasso esti-
mator proposed by Zou (2006) and ̂βwlse is a weighted version of it, which addresses the heteroscedastic
structure in the data. The parameter λn is a tuning parameter which has to be prespecified by the data
analyst. It can also be determined by using a data dependent method like cross-validation (Craven and
Wahba (1979)).

Following Zhao and Yu (2006) an estimator ̂β for β0 is called sign consistent if

lim
n→∞

P (̂β =s β0) = 1,

where ̂β =s β0 means that each component of ̂β has the same sign as the corresponding component of
β0. Because the sign of 0 is defined as 0, a sign consistent estimator for β0 estimates all zero components
of β0 as exactly 0 with probability converging to 1 and thus performs consistent model selection. In the
following we will use the notation sign(x) for the sign of x ∈ R and ‖ · ‖2 for the l2-norm in R

kn . For
a vector v ∈ R

pn and a function f : R → R we use the shorthand notation f(v) = (f(v1), . . . , f(vpn))T
and inequalities between vectors are understood componentwise. Similarly, a multiplication of column
vectors of the same length is also understood componentwise.

3. WEIGHTED ADAPTIVE LASSO

In this section we investigate the asymptotic properties of the weighted adaptive Lasso estimator
̂βwlse. Throughout this section we assume that the following conditions hold:

(i) The covariates are scaled so that

1
n

n
∑

i=1

x2
ij = 1 for j = 1, . . . , pn.

(ii) There exists a constant b > 0 such that the preliminary estimator β̃ satisfies

lim
n→∞

P (b min
1≤j≤kn

|β̃j | < bn) = 0,
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where

bn = min{|β0,j | | j ≤ kn} (3.1)

is the minimum of the absolute values of the non-vanishing components of the parameter β0.

(iii) There exists a sequence rn → ∞ such that the preliminary estimator β̃ satisfies

lim
n→∞

P
(

max
kn+1≤j≤pn

|β̃j | ≥
1
rn

)

= 0.

(iv) There exist positive constants K and K̃ and a constant d with 1 ≤ d ≤ 2 such that the errors in
model (2.1) satisfy

P (|ε1| > x) ≤ K exp(−K̃xd).

(v) The sequences λn, kn, pn, bn and rn satisfy

(a)
kn(log n)I{d=1}

√
nbn

→ 0, (b)
λn√
nknbn

→ k ∈ R,

(c)
(log(pn − kn))1/d(log n)I{d=1}√n

λnrn
→ 0, (d)

kn
√

n

λnrn
→ 0.

(vi) There exist constants λ1, λ2 such that the inequalities

0 < λmin(C
(n)
11 ) ≤ λmax(C

(n)
11 ) ≤ λ1 < ∞

and

0 < λ2 ≤ λmin(D
(n)
11 (β0)) ≤ λmax(D

(n)
11 (β0)) < ∞

hold.

(vii) There exist constants σ and σ such that the variance function satisfies

0 < σ ≤ σ(x, β) ≤ σ < ∞
for all x in the range of xi and for all β in a neighborhood of β0.

(viii) The mapping β 	→ σ(x, β) is two times differentiable in a neighborhood of β0 and the first and
second partial derivatives with respect to the first kn coordinates of β are bounded uniformly with
respect to x.

(ix) The preliminary estimator β is sign consistent for β0 and its first kn coordinates β(1) satisfy

‖β(1) − β0(1)‖2 = Op

(
√

kn

n

)

.

Conditions (i)–(iv) are the same as in Huang et al. (2006). The properties (ii) and (iii) together were
called zero consistency with rate rn and mean that the preliminary estimator β̃ can distinguish between
zero and non-zero components of the parameter vector well. If pn = o(n1/2), the least squares estimate
is consistent, which implies zero consistency with rate rn, see Huang et al. (2006). These authors also
proposed a marginal regression estimate and proved its zero consistency in the case pn > n under a
partial orthogonality condition. For the Lasso estimate condition (iii) can easily be derived from estimates
for the probability of sign consistency [see, for example, Theorems 3 and 4 in Zhao and Yu (2006)],
while condition (ii) follows from sharp thresholds for the Lasso estimate [see, for example, Theorem 1 in
Wainwright (2009)]. In both cases some additional assumptions are required, which are not elaborated
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here for the sake of brevity. Condition (iv) excludes heavy-tailed errors. It can be relaxed if we modify
condition (v) appropriately (see Remark 3.1 for details). In order to better understand condition (v)
assume bn to be fixed and d > 1. Then condition (v) (a) permits kn ∼ √

nan for a sequence an converging
to 0. With such a sequence kn we can choose λn ∼ n3/4√an by condition (v) (b) and this choice requires

rn ∼ n1/4a
1/2−δ
n for an arbitrary small δ > 0. Note that this is not a strong assumption, because under

some conditions on the covariates we can obtain rn ∼ n1/2−δ (compare Huang et al. (2006)). With these

choices pn can grow with every polynomial order and even of order exp(nd/2a
d(1−δ+ε)
n ), where ε > 0. The

first part of condition (vi) is standard in high-dimensional regression models (see, for example, Fan and

Pen (2004), where it is imposed on the Fisher information matrix instead of C
(n)
11 ). The second part of

condition (vi) is needed to address heteroscedasticity and reduces to a standard condition on C
(n)
11 in the

case of homoscedasticity. Condition (vi) can be relaxed in that way that the rates of growth of λmax(C
(n)
11 )

and of decay of λmin(D
(n)
11 (β0)) are not too fast provided that condition (v) is modified appropriately.

Conditions (vii) and (viii) are standard in heteroscedastic regression. Condition (ix) is a critical one and
it is, for example, satisfied for the estimator ̂βlse as shown in Theorems 4.1 and 4.2 in the following
section.

Theorem 3.1. If assumptions (i)–(ix) are satisfied then the weighted adaptive Lasso estimator
̂βwlse is sign consistent for β0.

Remark 3.1. Theorem 3.1 also holds without assumption (iv) of light-tailed errors if condition (v) (c) is
replaced by the stronger assumption

(pn − kn)n
λ2

nr2
n

→ 0 (3.2)

on the number of covariates. If we assume bn to be fixed, kn =
√

nan for some sequence an converging
to 0 and λn ∼ n3/4√an, we require

(pn − kn)
an

√
nr2

n

→ 0. (3.3)

Thus even if rn is almost “optimal”, that is rn ∼ n1/2−δ for some small δ > 0, the dimension of the model
pn cannot grow polynomially in this case. Nevertheless the case pn > n growing faster than linearly with
n is still covered here.

To obtain the validity of Theorem 3.1 under these different assumptions we recall that condition (iv)
was only used in the proof of Theorem 3.1 to obtain estimates for the probabilities P (A1) and P (A3) in
(6.8). If (3.2) holds we use the inequality

P (A1) ≤
kn
∑

j=1

P

(

1
n
|χj(β0)| ≥

bn

4

)

+ P

(

1
n

max
1≤j≤kn

|χj(β0) − χj(β)| ≥ bn

4

)

.

The second term on the right-hand side of this equation converges to zero by the same arguments as in
the proof of Theorem 3.1. For the first one we use the Chebychev inequality and obtain

kn
∑

j=1

P

(

1
n
|χj(β0)| ≥

bn

4

)

≤ 16
n2b2

n

kn
∑

j=1

E[χj(β0)2] = O

(

kn

nb2
n

)

.

Thus condition (v) (a) yields P (A1) → 0. For the probability P (A3) we use a similar argument and
E[ηj(β0)2] = O(n) to obtain

P (A3) = O

(

(pn − kn)n
λ2

nr2
n

)

+ o(1).

Therefore the sign consistency of ̂βwlse under these different assumptions follows.
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Theorem 3.2. Let conditions (i)–(ix) or condition (3.2) instead of (iv) and (v) (c) be satisfied and
additionally let

(x)
λn

√
kn√

nbn
→ 0,

k5
n

n
→ 0,

(xi)
1
n

max
1≤i≤n

‖xi(1)‖2
2 → 0

hold. Then for all αn ∈ R
kn with ‖αn‖2 = 1 the following weak convergence holds

√
n

sn
αT

n

(

̂βwlse(1) − β0(1)
) D−→ N (0, 1), (3.4)

where s2
n = αT

n

(

D
(n)
11 (β0)

)−1
αn.

Assumption (x) is a stronger condition than conditions (v) (a) and (v) (b). In the case, where bn is
constant and d > 1, it requires kn = n1/5an for some sequence an converging to 0. With this maximal
choice of kn it is satisfied for λn ∼ n2/5an. Thus conditions (v) (c) and (v) (d) yield stronger assumptions
on pn and rn than in the case, where only (v) (b) gives a condition on the rate of growth of λn.
Nevertheless, pn still can grow exponentially fast. Condition (xi) is needed for the application of the
Lindeberg central limit theorem. In view of condition (i) and the second part of (x) it is a very weak
assumption because the dimension of the vectors xi(1) is kn = o(n−1/5).

Remark 3.2. Theorems 3.1 and 3.2 indicate that the weighted adaptive Lasso estimator ̂βwlse is able
to perform consistent model selection and consistent estimation of the non-null parameters simultane-
ously. Moreover the estimators of the non-null parameters are unbiased and asymptotically normal with
the same asymptotic variance as the generalized least squares estimator, which would be used if the true
model and Σ(β0) were known in advance. Thus ̂βwlse satisfies the oracle property in the sense of Fan and
Li (2001).

Leeb and Pötscher (2008) showed that an estimator performing consistent model selection must have
an unbounded (scaled) risk function although the risk function of the optimal estimator in the “true”
model is bounded. As a consequence, they criticized the “oracle concept” of Fan and Li (2001) because
it identifies estimators as optimal although their properties do not hold uniformly over the parameter
space. We expect that these problems do not disappear in a high-dimensional setting and some results
in this direction can be found in Pötscher and Schneider (2011).

4. UNWEIGHTED ADAPTIVE LASSO

In the previous section the asymptotic properties of the estimator ̂βwlse were derived. A critical
assumption in the asymptotic theory in Theorems 3.1 and 3.2 is the existence of a preliminary estimator β
for β0 which is sign consistent and estimates the non-null parameters with the optimal rate. In this
section we will establish that the unweighted adaptive Lasso estimator ̂βlse satisfies these requirements.
Moreover we will derive the asymptotic distribution of its non-null components and show that it is
asymptotically dominated by ̂βwlse. For this purpose we use the same notation as in the previous section
and assume that assumptions (i)–(v) hold. Moreover, we replace conditions (vi) and (vii) by the following
ones.

(vi′) There exist constants λ1, λ2 such that the inequality

0 < λ1 ≤ λmin(C
(n)
11 ) ≤ λmax(C

(n)
11 ) ≤ λ2 < ∞

holds.
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(vii′) There exists a constant σ such that the inequality

0 < σ(x, β) ≤ σ < ∞
holds for all x in the range of xi and for all β in a neighborhood of β0.

Note that condition (vi) is slightly modified and condition (vii) is relaxed. Our first result establishes the
sign consistency of the unweighted adaptive Lasso estimate in the heteroscedastic model (2.1).

Theorem 4.1. Under conditions (i)–(v), (vi′) and (vii′) the unweighted adaptive Lasso estima-
tor ̂βlse is sign consistent for β0.

As a consequence of Theorem 4.1 we obtain that ̂βlse is a candidate for a preliminary estimate in the
weighted adaptive Lasso because it satisfies the first part of condition (ix). As explained in Remark 3.1
one can drop condition (iv) at the cost of requiring (3.2) instead of (v) (c). The sign consistency of ̂βlse also
holds under these different assumptions, which directly follows from the proof of Theorem 4.1. Moreover,
it also satisfies the second part of condition (ix) as shown in the next theorem. Thus ̂βlse can be used
instead of β for the calculation of ̂βwlse. The proof of Theorem 4.2 is obtained from Theorem 4.1 and the
representation (6.23) analogously to the proof of Theorem 3.2 and is therefore omitted.

Theorem 4.2. Let conditions (i)–(v), (vi′) and (vii′) or condition (3.2) instead of (iv) and (v) (c) be
satisfied and additionally let (x) and (xi) hold. Then for all αn ∈ R

kn with ‖αn‖2 = 1 the following
weak convergence holds

√
n

s̃n
αT

n

(

̂βlse(1) − β0(1)
) D−→ N (0, 1), (4.1)

where s̃2
n = n−1αT

n

(

C
(n)
11

)−1
X(1)Σ(β0)X(1)T

(

C
(n)
11

)−1
αn.

Theorem 4.2 also shows that ̂βwlse dominates ̂βlse in terms of asymptotic variance because ̂βlse has
to be scaled by s̃n, which is the same scaling needed for the ordinary least squares estimator if the true
model were known. But in a heteroscedastic model the ordinary least squares estimator is dominated by
a generalized one, which has the same scaling as ̂βwlse. Thus ̂βlse consistently selects a model and has
the optimal rate for estimating the non-null parameters but it yields a suboptimal variance.

5. FINITE-SAMPLE PROPERTIES

5.1. Simulation Study

In order to investigate the small sample performance of the adaptive Lasso estimators ̂βwlse and
̂βlse in models with heteroscedastic errors we present the results of a small simulation study. All
calculations were performed using the package “penalized” available for R on http://www.R-project.org
(R Development Core Team (2008)). The data were generated using a linear model of the form (2.1).
We followed Huang et al. (2008) and considered a design matrix X with n = 100 rows and p = 200
columns in the following way: the n rows of X are independent normally distributed random vectors.
The first 15 covariates (xi,1, . . . , xi,15) are independent of the remaining 185 covariates. The pairwise
correlation between xi,k and xi,l is 0.5|k−l| both if k, l ∈ {1, . . . , 15} or if k, l ∈ {16, . . . , 200}. The first
five coordinates of β0 were set to 2.5, the coordinates 6–10 were set to 1.5 and the coordinates 11–15
to 0.5; all remaining coordinates of β0 were 0. The entries of the diagonal matrix Σ were chosen as

(a) σ(xi, β0) =
1
2

√

xT
i β0, (b) σ(xi, β0) =

1
4
|xT

i β0|,

(c) σ(xi, β0) =
1
25

exp |xT
i β0|, (d) σ(xi, β0) =

1
50

exp (xT
i β0)2.

The preliminary estimator β̃ was a Lasso estimator in our simulation study. We also investigated the
marginal regression estimator proposed in Huang et al. (2008) but all results based on the last mentioned
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method were inferior to the ones using a Lasso estimator and are therefore not depicted. The estimator β

needed for the calculation of ̂βwlse was the adaptive Lasso estimator ̂βlse, which was shown to satisfy
the requirements of Theorems 3.1 and 3.2. The tuning parameters λn for ̂βlse and ̂βwlse were chosen
as 0.95 times the values obtained by cross-validation. In general we observed that the performance of
the procedures was not very sensitive with respect to the choice of λn. All reported results are based
on 100 simulation runs. We expect that results based on a larger number of simulation runs would look
very similar. Because such simulation studies are very time consuming we restrict ourselves to the case
of 100 simulation runs.

Table 1. Mean number of correctly zero and correctly non-zero estimated parameters in model (2.1)
(the ideal values are 185 and 15, respectively)

σ

(a) (b) (c) (d)

̂βlse = 0 159.66 161.09 142.45 145.79

�= 0 14.1 12.73 12.27 13.65

̂βwlse = 0 166.67 172.66 164.66 163

�= 0 14.34 13.67 12.23 13.70

The model selection properties of the investigated estimators are reported in Table 1. We observe that
both estimators perform quite good model selection. The weighted estimator ̂βwlse always excludes more
variables correctly from the model than the “classical” adaptive Lasso estimator ̂βlse. In all cases except
of example (c) it also includes slightly more variables correctly in the model. Thus the estimator ̂βwlse

was superior to ̂βlse in terms of model selection in our simulations.

Table 2. Averaged mean squared error of the estimators of the non-zero coefficients in model (2.1)
with β0,1 = · · · = β0,5 = 2.5, β0,6 = · · · = β0,10 = 1.5, β0,11 = · · · = β0,15 = 0.5

σ

(a) (b) (c) (d)

̂βlse β1, . . . , β5 0.0641 0.2374 0.4827 0.1346

β6, . . . , β10 0.0742 0.2741 0.5583 0.1569

β11, . . . , β15 0.1016 0.2085 0.2812 0.1394

̂βwlse β1, . . . , β5 0.0410 0.2514 0.4614 0.1173

β6, . . . , β10 0.0458 0.1456 0.4858 0.1345

β11, . . . , β15 0.0760 0.1101 0.2150 0.1396

In Table 2 we present the mean squared error (MSE) for the estimators of the non-zero components
of β0. The displayed values are MSEs averaged over the first five (big) components of β0, over the sixth to
tenth (moderately sized) components of β0 and over the eleventh to fifteenth (small) components of β0,
respectively. For most cases we observe that the weighted Lasso estimator ̂βwlse yields more precise
estimates of the non-zero components of β0 than ̂βlse in terms of mean squared error. In several cases
the improvement is substantial (see, for example, model (a) and model (b) for the parameters β6, . . . , β10

and β11, . . . , β15). Only in model (b) the estimators for the large components β1, . . . , β5 of the parameter
β0 have a slightly smaller mean squared error if no scaling is used, while the estimators for the small
components in model (d) perform nearly identically. Thus the simulations in these examples support our
theoretical findings.
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5.2. Data Example

In this section we illustrate the different properties of the estimators ̂βlse and ̂βwlse in a real data
example. We use the diabetes data considered in Efron et al. (2004). The data consist of a response
variable Y which is a quantitative measure of diabetes progression one year after baseline and of ten
covariates (age, sex, body mass index, average blood pressure and six blood serum measurements).
Further, we consider the squares of all covariates and their interactions. This finally results in p = 65
covariates (including an intercept), while there are n = 442 observations.

First we calculated the unweighted adaptive Lasso estimate ̂βlse using a cross-validated (conserva-
tive) tuning parameter λn. We used an unweighted Lasso estimator in the place of β̃ to calculate the
weights of the adaptive Lasso estimator. This solution included eight variables in the model, namely, an
intercept, the body mass index, the blood pressure, the blood serums HDL, LTG, and the square of GLU
and the interactions between age and sex and body mass index and blood pressure. At the next step we
calculated the resulting residuals

ε = Y − X ̂βlse,

which are plotted in the left panel of Figure 1.
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Fig. 1. Left panel: residuals obtained by Lasso; Center: Squared residuals together with a piecewise linear fit, Right
panel: rescaled residuals

This picture suggests a heteroscedastic nature of the residuals. In fact the hypothesis of homoscedas-
ticity was rejected at level 5% by the test of Dette and Munk (1998) (p-value 0.033). Next we computed
an estimator of the conditional variance σ(xT

i β) of the residuals. We used the ad-hoc chosen piecewise
linear function

σ2(y) = (86.1y − 3110.4)I
{

y ≤ X ̂βlse
}

+ (−63.1y + 19606.9)I
{

y > X ̂βlse
}

(see the middle panel in Figure 1 which shows the squared residuals plotted against the values xT
i

̂βlse
together with the estimator). In the right panel of Figure 1 we present the rescaled residuals ε̃i = (Yi −
xT

i
̂βlse)/σ(|xT

i
̂βlse|)sd(ε). These look “more homoscedastic” than the unscaled residuals and the test of

Dette and Munk (1998) yields a p-value of 0.173, thus not rejecting the hypothesis of homoscedasticity.
The weighted adaptive Lasso estimator ̂βwlse was calculated by (2.2) on the basis of the weights
σ(xT

i
̂βlse). This estimator included the same variables as ̂βlse and additionally the interactions between

age and blood pressure, between BMI and GLU and between HDL and LTG.

In Figure 2 we present the data plotted against the fitted values xT
i

̂βlse and xT
i

̂βwlse and the residuals
in the weighted model. The final residuals look very homoscedastic and both fits are of comparable
(moderate) quality.
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Fig. 2. Left panel: scatterplot of Y and X ̂βlse; Center: scatterplot Y and X ̂βwlse; Right panel: residuals in the weighted
model

6. APPENDIX: PROOF OF THE MAIN RESULTS

6.1. Proof of Theorem 3.1

Throughout this paper let ‖M‖op = max{‖Mx‖2 | ‖x‖2 = 1} and ‖M‖2 =
√

tr(MT M) denote the
operator and the Frobenius norm of the matrix M respectively. Further, for a random variable X let

‖X‖ψd
= inf{C > 0 | E[ψd(|X|/C)] ≤ 1} (6.1)

denote its Orlicz norm with respect to the function ψd(x) = exp(xd) − 1 (1 ≤ d ≤ 2). In the following
we make frequent use of the inequalities

‖AB‖op ≤ ‖A‖op‖B‖op (6.2)

for arbitrary matrices A,B and

‖Av‖2 ≤ ‖A‖op‖v‖2 (6.3)

for a vector v. Define ŵj = |β̃j |−1, then the Karush–Kuhn–Tucker (KKT) conditions directly imply that
the vector β = (β(1)T , 0T

pn−kn
) minimizes

n
∑

i=1

(

Yi − xT
i β

σ(xi, β)

)2

+ λn

pn
∑

j=1

|βj ||β̃j |−1 = (Y − Xβ)T Σ(β)−2(Y − Xβ) + λn

pn
∑

j=1

|βj |ŵj

if and only if the conditions

x(j)T Σ(β)−2(Y − Xβ) =
λn

2
ŵj sign(βj) if βj �= 0, (6.4)

|x(j)T Σ(β)−2(Y − Xβ)| <
λn

2
ŵj if βj = 0, (6.5)

are satisfied. We define

̂β(1) = β0(1) +
1
n

(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2Σ(β0)ε −

1
n

(

D
(n)
11 (β)

)−1 λn

2
ŝ(1), (6.6)

where ŝ(1) = (sign(β0,1)ŵ1, . . . , sign(β0,kn)ŵkn)T and β0 = (β0,1, . . . , β0,pn). If ̂β(1) =s β0(1) one eas-

ily obtains from the representation (6.6) that the vector ̂β = (̂β(1)T , 0T
pn−kn

)T satisfies (6.4). Note that
̂β(1) =s β0(1) if sign(β0,j)(β0,j − ̂βj) < |β0,j | for j = 1, . . . , kn. It also follows by similar arguments as
in Huang et al. (2008) that the KKT condition (6.5) is satisfied if

|ηj(β) + ζj(β)| <
λn

2
ŵj for all j > kn, (6.7)
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where the quantities ηj are defined by

ηj(β) = x(j)T Σ(β)−2
(

In − 1
n

X(1)
(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2

)

Σ(β0)ε

and

ζj(β) =
λn

2n
x(j)T Σ(β)−2X(1)

(

D
(n)
11 (β)

)−1
ŝ(1).

Thus we obtain by the representation (6.6) and by (6.7)

P (̂β �=s β0) ≤ P (A1) + P (A2) + P (A3) + P (A4), (6.8)

where the events A1, . . . , A4 are given by

A1 =
{ 1

n
|χj(β)| ≥ |β0,j |

2
for some j ≤ kn

}

, A2 =
{λn

n
|φj(β)| ≥ |β0,j | for some j ≤ kn

}

,

A3 =
{

|ηj(β)| ≥ λn

4
ŵj for some j > kn

}

, A4 =
{

|ζj(β)| ≥ λn

4
ŵj for some j > kn

}

and we use the notation

χj(β) = eT
j

(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2Σ(β0)ε, φj(β) = eT

j

(

D
(n)
11 (β)

)−1
ŝ(1)

(here ej denotes the jth unit vector in R
kn). In the following we show

P (Aj) → 0 for j = 1, . . . , 4, (6.9)

which implies the assertion of the theorem. By the definition of bn in (3.1) we obtain

P (A1) ≤ P
( 1

n
max

1≤j≤kn

|χj(β)| ≥ bn

2

)

≤ P
( 1

n
max

1≤j≤kn

|χj(β0)| ≥
bn

4

)

+ P
( 1

n
max

1≤j≤kn

|χj(β0) − χj(β)| ≥ bn

4

)

.

The definition of the operator norm and (6.2) yield
∥

∥

∥

1√
n

Σ(β0)−1X(1)
(

D
(n)
11 (β0)

)−1
ej

∥

∥

∥

2
≤

∥

∥

∥

1√
n

Σ(β0)−1X(1)
∥

∥

∥

op

∥

∥

∥

(

D
(n)
11 (β0)

)−1
∥

∥

∥

op

=
∥

∥D
(n)
11 (β0)

∥

∥

1/2

op

∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op ≤
∥

∥C
(n)
11

∥

∥

1/2

op

∥

∥Σ(β0)−2
∥

∥

1/2

op

∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op

≤ λ−1
2

√

λ1σ
−1,

where the last inequality follows from assumptions (vi) and (vii). Thus condition (iv) and Lemma 1 of
Huang et al. (2006) (which is a slight generalization of Lemma 1 of Huang et al. (2008)) yield

∥

∥

∥

1√
n

χj(β0)
∥

∥

∥

ψd

≤ c(log n)I{d=1}

for some constant c independent of n and j. Now an application of the results in Section 2.2 of Vaart and
Wellner (1996) gives

P

(

1
n

max
1≤j≤kn

|χj(β0)| ≥
bn

4

)

≤
(

exp
( √

n
d
bd
n

4dCd(log n)I{d=1} log(1 + kn)

)

− 1
)−1

for some constant C > 0 and we obtain by assumption (v) (a)

P

(

1
n

max
1≤j≤kn

|χj(β0)| ≥
bn

4

)

→ 0.

Using the definition of χj(β) it follows from the Cauchy–Schwarz inequality for each j ≤ kn

|χj(β0) − χj(β)| =
∣

∣

∣eT
j

[

(

D
(n)
11 (β0)

)−1
X(1)T

(

Σ(β0)−2 − Σ(β)−2
)
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+
(

(

D
(n)
11 (β0)

)−1 −
(

D
(n)
11 (β)

)−1
)

X(1)T Σ(β)−2
]

Σ(β0)ε
∣

∣

∣

≤
∥

∥

∥

(

Σ(β0)−2 − Σ(β)−2
)

X(1)
(

D
(n)
11 (β0)

)−1
ej

∥

∥

∥

2
‖Σ(β0)ε‖2

+
∥

∥

∥Σ(β)−2X(1)
(

(

D
(n)
11 (β0)

)−1 −
(

D
(n)
11 (β)

)−1
)

ej

∥

∥

∥

2
‖Σ(β0)ε‖2

≤
∥

∥Σ(β0)−2 − Σ(β)−2
∥

∥

op

∥

∥nC
(n)
11

∥

∥

1/2

op

∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op ‖Σ(β0)ε‖2

+
∥

∥Σ(β)−2
∥

∥

op

∥

∥nC
(n)
11

∥

∥

1/2

op

∥

∥

(

D
(n)
11 (β0)

)−1 −
(

D
(n)
11 (β)

)−1∥
∥

op ‖Σ(β0)ε‖2. (6.10)

Next we use assumption (viii) to obtain the Taylor expansion

1
σ(xi, β)2

=
1

σ(xi, β0)2
− 2

(∂σ/∂β)(xi, β0)
σ(xi, β0)3

(β − β0)

+ (β − β0)T
3
[

(∂σ/∂β)(xi, ξ)
]T (∂σ/∂β)(xi, ξ) − σ(xi, ξ)(∂2σ/∂2β)(xi, ξ)

σ(xi, ξ)4
(β − β0)

=
1

σ(xi, β0)2
− 2

(∂σ/∂β)(xi, β0)
σ(xi, β0)3

(β − β0) + (β − β0)T M(xi, ξ)(β − β0),

where the vector ξ satisfies ‖ξ − β0‖2 ≤ ‖β − β0‖2 and the last line defines M(xi, ξ) in an obvious way.
Consequently, we have

∥

∥Σ(β0)−2 − Σ(β)−2
∥

∥

op ≤ max
1≤i≤n

∣

∣

∣

∣

2
σ(xi, β0)3

∂σ

∂β
(xi, β0)(β − β0)

∣

∣

∣

∣

+ max
1≤i≤n

∣

∣(β − β0)T M(xi, ξ)(β − β0)
∣

∣.

On the event {β =s β0} conditions (vii), (viii) and the Cauchy–Schwarz inequality yield

max
1≤i≤n

∣

∣

∣

∣

2
σ(xi, β0)3

∂σ

∂β
(xi, β0)(β − β0)

∣

∣

∣

∣

≤ c
√

kn‖(β(1) − β0(1))‖2

for some constant c. By condition (ix) we have P (β =s β0) → 1 and

max
1≤i≤n

∣

∣

∣

∣

2
σ(xi, β0)3

∂σ

∂β
(xi, β0)(β − β0)

∣

∣

∣

∣

= OP

(

kn√
n

)

.

Let M11(xi, ξ) denote the upper left kn × kn block of the matrix M(xi, ξ). Because of assumption (viii)
we obtain

‖M11(xi, ξ)‖op ≤ ‖M11(xi, ξ)‖2 ≤ Ckn

for some constant C independent of xi and ξ. Thus on the event {β =s β0} it follows

max
1≤i≤n

∣

∣(β − β0)T M(xi, ξ)(β − β0)
∣

∣ ≤ Ckn‖(β(1) − β0(1))‖2
2 = OP

(

k2
n

n

)

,

where the last estimate follows again from condition (ix). This gives

∥

∥Σ(β0)−2 − Σ(β)−2
∥

∥

op = Op

(

kn√
n

+
k2

n

n

)

. (6.11)

By assumption (vi) we have
∥

∥nC
(n)
11

∥

∥

1/2

op = O(
√

n), (6.12)
∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op = O(1). (6.13)

Condition (vii) and the law of large numbers yield

‖Σ(β0)ε‖2 = Op(
√

n).
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From these estimates and (6.11) we obtain for the first term in (6.10)
∥

∥Σ(β0)−2 − Σ(β)−2
∥

∥

op

∥

∥nC
(n)
11

∥

∥

1/2

op

∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op

∥

∥Σ(β0)ε
∥

∥

2
= OP (kn

√
n + k2

n).

Next the estimates (6.11), (6.12) and condition (vi) yield

‖D(n)
11 (β) − D

(n)
11 (β0)‖op =

∥

∥

∥

1
n

X(1)T
(

Σ(β0)−2 − Σ(β)−2
)

X(1)
∥

∥

∥

op

≤ ‖C(n)
11 ‖op‖Σ(β0)−2 − Σ(β)−2‖op = Op

(

kn√
n

+
k2

n

n

)

. (6.14)

For each invertible matrix A the mapping A 	→ A−1 is Fréchet differentiable and its derivative at A
evaluated at the matrix B is given by −A−1BA−1 (compare, e.g., Example X.4.2 of Bhatia (1997)).

With the notation A = D
(n)
11 (β0) and B = D

(n)
11 (β) − D

(n)
11 (β0) this directly implies

∥

∥

(

D
(n)
11 (β0)

)−1 −
(

D
(n)
11 (β)

)−1∥
∥

op =
∥

∥A−1 − (A + B)−1
∥

∥

op

≤
∥

∥A−1 − (A + B)−1 + A−1BA−1
∥

∥

op +
∥

∥A−1BA−1
∥

∥

op

≤ O(‖B‖op) + ‖A−1‖2
op‖B‖op = Op

(

kn√
n

+
k2

n

n

)

, (6.15)

where the last line follows from (6.14) and assumptions (vi) and (vii). By condition (vii) we obtain the
estimate ‖Σ(β)−2‖op = Op(1), which gives for the second term in (6.10) the estimate

∥

∥Σ(β)−2
∥

∥

op

∥

∥nC
(n)
11

∥

∥

1/2

op

∥

∥

(

D
(n)
11 (β0)

)−1 −
(

D
(n)
11 (β)

)−1∥
∥

op

∥

∥Σ(β0)ε
∥

∥

2
= OP (kn

√
n + k2

n).

Combining these arguments finally yields

1
n

max
1≤j≤kn

|χj(β0) − χj(β)| = OP

(

kn√
n

+
k2

n

n

)

and by condition (v) (a) it follows

P
( 1

n
max

1≤j≤kn

|χj(β0) − χj(β)| ≥ bn

4

)

→ 0,

which implies (6.9) for the case j = 1.
Next we consider the probability P (A2) and observe

P (A2) ≤ P
(λn

n
max

1≤j≤kn

|φj(β)| ≥ bn

)

.

For each j ≤ kn we have

|φj(β)| ≤
∥

∥

(

D
(n)
11 (β)

)−1∥
∥

op‖ŝ(1)‖2.

Let

λ1(β0), . . . , λkn(β0) and λ1(β), . . . , λkn(β)

denote the ordered eigenvalues of the matrices
(

D
(n)
11 (β0)

)−1 and
(

D
(n)
11 (β)

)−1 respectively. Weyl’s
perturbation theorem (see, e.g., Corollary III.2.6 of Bhatia (1997)) shows

max
1≤j≤kn

|λj(β0) − λj(β)| ≤
∥

∥

(

D
(n)
11 (β0)

)−1 −
(

D
(n)
11 (β)

)−1∥
∥

op
P−→ 0

and thus condition (vi) implies that for each ε > 0 and δ > 0 there exists an n0 ∈ N such that for all
n ≥ n0

∥

∥

(

D
(n)
11 (β)

)−1∥
∥

op ≤ λ−1
2 + δ (6.16)
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with probability at least (1 − ε). Condition (ii) implies that with probability at least (1 − ε) and for n
sufficiently large the inequality

‖ŝ(1)‖2 ≤
√

kn

√

max
1≤j≤kn

|β̃j |−1 ≤
√

knb√
bn

(6.17)

is satisfied. The last two estimates and assumptions (v) (a) and (b) directly yield P (A2) → 0.
Now we consider the term P (A3). We obtain analogously to P (A1) the inequality

P (A3) ≤ P

(

max
kn+1≤j≤pn

|ηj(β0)| ≥
λnrn

8

)

+ P

(

max
kn+1≤j≤pn

|ηj(β0) − ηj(β)| ≥ λnrn

8

)

+ P

(

max
kn+1≤j≤pn

|β̃| >
1
rn

)

. (6.18)

Define

H(β0) = Σ(β0)−1x(j) − Σ(β0)−1 1
n

X(1)
(

D
(n)
11 (β0)

)−1
X(1)T Σ(β0)−2x(j).

By condition (i) we have ‖x(j)‖2 =
√

n and thus

‖H(β0)‖2 ≤ ‖Σ(β0)−1‖op

(

1 +
∥

∥

∥

1
n

X(1)
(

D
(n)
11 (β0)

)−1
X(1)T

∥

∥

∥

op
‖Σ(β0)−2‖op

)√
n

≤ σ−1
(

1 + λ−1
2 λ1σ

−2
)√

n,

where the last inequality follows from conditions (vi) and (vii). So Lemma 1 of Huang et al. (2006) is
applicable to n−1/2ηj and we obtain

∥

∥

∥

∥

1√
n

ηj(β0)
∥

∥

∥

∥

ψd

=
∥

∥

∥

∥

1√
n

H(β0)T ε

∥

∥

∥

∥

ψd

≤ c(log n)I{d=1}

with some constant c independent of n and j. Again the arguments given in Section 2.2 of Vaart and
Wellner (1996) yield

P

(

max
kn+1≤j≤pn

|ηj(β0)| ≥
λnrn

8

)

≤
(

exp
(

(λnrn)d

8dCd
√

n
d(log n)I{d=1} log(1 + pn − kn)

)

− 1
)−1

for some constant C > 0. By assumption (v) (c) the right-hand side of the last inequality converges
to zero. Next we consider the second term in (6.18). Using condition (i) and the Cauchy–Schwarz
inequality it follows

|ηj(β0) − ηj(β)| ≤
√

n
∥

∥Σ(β)−2 − Σ(β0)−2
∥

∥

op

∥

∥Σ(β0)ε
∥

∥

2

+
√

n

∥

∥

∥

∥

1
n

(

Σ(β)−2X(1)
(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2

− Σ(β0)−2X(1)
(

D
(n)
11 (β0)

)−1
X(1)T Σ(β0)−2

)

∥

∥

∥

∥

op
‖Σ(β0)ε‖2.

By assumption (vii), the law of large numbers and (6.11) we obtain for the first term
√

n
∥

∥Σ(β)−2 − Σ(β0)−2
∥

∥

op

∥

∥Σ(β0)ε
∥

∥

2
= Op

(

kn

√
n + k2

n

)

,

while the second term can be estimated as follows:
∥

∥

∥

1
n

(

Σ(β)−2X(1)
(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2 − Σ(β0)−2X(1)

(

D
(n)
11 (β0)

)−1
X(1)T Σ(β0)−2

)∥

∥

∥

op

≤
∥

∥

∥

1
n

(

Σ(β)−2 − Σ(β0)−2
)

X(1)
(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2

∥

∥

∥

op

+
∥

∥

∥

1
n

Σ(β0)−2X(1)
(

(

D
(n)
11 (β)

)−1 −
(

D
(n)
11 (β0)

)−1
)

X(1)T Σ(β)−2
∥

∥

∥

op
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+
∥

∥

∥

1
n

Σ(β0)−2X(1)
(

D
(n)
11 (β0)

)−1
X(1)T

(

Σ(β)−2 − Σ(β0)−2
)

∥

∥

∥

op

≤
∥

∥Σ(β)−2 − Σ(β0)−2
∥

∥

op

∥

∥C
(n)
11

∥

∥

op

∥

∥

(

D
(n)
11 (β)

)−1∥
∥

op

∥

∥Σ(β)−2
∥

∥

op

+
∥

∥

(

D
(n)
11 (β)

)−1 −
(

D
(n)
11 (β0)

)−1∥
∥

op

∥

∥C
(n)
11

∥

∥

op

∥

∥Σ(β0)−2
∥

∥

op

∥

∥Σ(β)−2
∥

∥

op

+
∥

∥Σ(β)−2 − Σ(β0)−2
∥

∥

op

∥

∥C
(n)
11

∥

∥

op

∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op

∥

∥Σ(β0)−2
∥

∥

op = Op

(

kn√
n

+
k2

n

n

)

,

where the last line is a consequence of (6.11), (6.15), (6.16) and conditions (vi), (vii) and (ix). The last
three estimates yield

max
kn+1≤j≤pn

|ηj(β0) − ηj(β)| = OP (kn

√
n + k2

n)

and by assumption (v) (d) we have

P
(

max
kn+1≤j≤pn

|ηj(β0) − ηj(β)| ≥ λnrn

8

)

→ 0.

Thus condition (iii) and (6.18) yield P (A3) → 0.
Finally, we consider P (A4) and observe

P (A4) ≤ P
(

max
kn+1≤j≤pn

|ζj(β)| ≥ λnrn

4

)

+ P
(

max
kn+1≤j≤pn

|β̃j | >
1
rn

)

.

The definition of ζj yields

|ζj(β)| ≤ λn

2n

∥

∥

(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2x(j)

∥

∥

2
‖ŝ(1)‖2

≤ λn

2

∥

∥

(

D
(n)
11 (β)

)−1∥
∥

op

∥

∥Σ(β)−2
∥

∥

op

∥

∥

∥

1√
n

X(1)T
∥

∥

∥

op

∥

∥ŝ(1)
∥

∥

2
= OP

(√
knλn√
bn

)

,

where the last line follows from (6.17) and arguments given above. Thus conditions (v) (b), (v) (d)
and (iii) show that P (A4) → 0 and the sign consistency of ̂βwlse follows from (6.8) and (6.9).

6.2. Proof of Theorem 3.2

By Theorem 3.1 the probability of the event {̂βwlse =s β0} converges to one. On that event we have
by (6.6) the identity

̂βwlse(1) = β0(1) +
1
n

(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2Σ(β0)ε −

1
n

(

D
(n)
11 (β)

)−1 λn

2
ŝ(1),

where we use the same notation as in the proof of Theorem 3.1. Thus we obtain the representation
√

n

sn
αT

n

(

̂βwlse(1)−β0(1)
)

=
1√
nsn

αT
n

(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2Σ(β0)ε−

1√
nsn

αT
n

(

D
(n)
11 (β)

)−1 λn

2
ŝ(1).

Let ε > 0. First the proof of Theorem 3.1 implies that for n sufficiently large and small δ > 0 the
inequality

∣

∣

∣

∣

1√
nsn

αT
n

(

D
(n)
11 (β)

)−1 λn

2
ŝ(1)

∣

∣

∣

∣

≤ λn

√
knb

2sn

√
nbn

(λ−1
2 + δ)

holds with probability at least (1 − ε). Further we have s2
n ≥ λ−1

1 σ2 by conditions (vi) and (vii). Thus
∣

∣

∣

∣

1√
nsn

αT
n

(

D
(n)
11 (β)

)−1 λn

2
ŝ(1)

∣

∣

∣

∣

= Op

(

λn

√
kn√

nbn

)

= op(1),

where the last equality follows from the first part of condition (x). Next we use the decomposition
(

D
(n)
11 (β)

)−1
X(1)T Σ(β)−2Σ(β0) =

(

D
(n)
11 (β0)

)−1
X(1)T Σ(β0)−1

MATHEMATICAL METHODS OF STATISTICS Vol. 22 No. 2 2013



152 WAGENER, DETTE

+
(

(

D
(n)
11 (β)

)−1 −
(

D
(n)
11 (β0)

)−1
)

X(1)T Σ(β0)−1

+
(

D
(n)
11 (β)

)−1
X(1)T

(

Σ(β)−2 − Σ(β0)−2
)

Σ(β0) = An + Bn + Cn, (6.19)

where the last line defines An, Bn and Cn in an obvious way. We directly obtain

1√
nsn

αT
nAnε =

n
∑

i=1

ciεi,

where the numbers ci (i = 1, . . . , n) are given by

ci =
1√

nsnσ(xi, β0)
αT

n

(

D
(n)
11 (β0)

)−1
xi(1).

Direct calculations yield E
[

∑n
i=1 ciεi

]

= 0 and

E
[(

n
∑

i=1

ciεi

)2]

=
n

∑

i=1

c2
i =

1
s2
n

αT
n

(

D
(n)
11 (β0)

)−1 1
n

n
∑

i=1

xi(1)xi(1)T

σ(xi, β0)2
(

D
(n)
11 (β0)

)−1
αn = 1

by the definition of s2
n. Conditions (vi), (vii) and (xi) yield

max
1≤i≤n

|ci| ≤
1√
nsn

∥

∥

(

D
(n)
11 (β0)

)−1∥
∥

op max
1≤i≤n

∥

∥

∥

∥

xi(1)
σ(xi, β0)

∥

∥

∥

∥

2

≤
√

λ1λ
−1
2 σ−2 1√

n
max
1≤i≤n

‖xi(1)‖2 → 0.

Thus is follows from the Lindeberg CLT

1√
nsn

αT
n Anε

D−→ N (0, 1). (6.20)

Now we consider the term Bn in (6.19). Its definition yields
∣

∣

∣

∣

1√
nsn

αT
n Bnε

∣

∣

∣

∣

≤
√

λ1σ
−1

√
n

∥

∥

∥

(

D
(n)
11 (β)

)−1 −
(

D
(n)
11 (β0)

)−1
∥

∥

∥

op
‖X(1)T Σ(β0)−1ε‖2.

By Markov’s inequality we obtain for every t > 0

P
( 1

nkn
‖X(1)T Σ(β0)−1ε‖2

2 > t
)

≤ 1
tkn

kn
∑

j=1

1
n

E
[( n

∑

i=1

xij
εi

σ(xi, β0)

)2]

≤ 1
tσ2

,

where the last line follows from conditions (i) and (vii). Thus equation (6.15) and condition (x) yield
∣

∣

∣

∣

1√
nsn

αT
nBnε

∣

∣

∣

∣

= OP

(

k
3/2
n√
n

)

= oP (1). (6.21)

Finally, we consider the term Cn in (6.19). For each ε > 0, arbitrary small δ > 0 and n sufficiently large
the inequality

∣

∣

∣

1√
nsn

αT
nCnε

∣

∣

∣ ≤
√

λ1√
nσ

(λ−1
2 + δ)

∥

∥X(1)T
(

Σ(β)−2 − Σ(β0)−2
)

Σ(β0)ε
∥

∥

2

holds with probability at least (1 − ε). Using a Taylor expansion of the function σ(xi, β)−2 in a
neighborhood of the point β0 we obtain

n
∑

i=1

xij

(

1
σ(xi, β)2

− 1
σ(xi, β0)2

)

σ(xi, β0)εi

= −2
n

∑

i=1

∂σ

∂β
(xi, β0)(β − β0)

xijεi

σ(xi, β0)2
+ (β − β0)T

n
∑

i=1

xijσ(xi, β0)εiM(xi, ξ)(β − β0),
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where the matrix M(xi, ξ) is defined as in the proof of Theorem 3.1. On the event {β =s β0} we obtain
the estimate
∣

∣

∣

∣

n
∑

i=1

∂σ

∂β
(xi, β0)(β − β0)

xijεi

σ(xi, β0)2

∣

∣

∣

∣

≤
kn
∑

k=1

|βk − β0,k|
∣

∣

∣

∣

n
∑

i=1

∂σ

∂βk
(xi, β0)

xijεi

σ(xi, β0)2

∣

∣

∣

∣

≤ ‖β(1) − β0(1)‖2

( kn
∑

k=1

( n
∑

i=1

∂σ

∂βk
(xi, β0)

xijεi

σ(xi, β0)2

)2)1/2

= Op

(√
kn√
n

)

OP (
√

nkn) = OP (kn),

where the last line follows by a similar argument as used for the estimate of Bn, using conditions (i),
(viii), and (ix). Further the inequality
∣

∣

∣(β − β0)T
n

∑

i=1

xijσ(xi, β0)εiM(xi, ξ)(β − β0)
∣

∣

∣

≤ σ max
1≤i≤n

∣

∣

∣(β(1) − β0(1))T M11(xi, ξ)(β(1) − β0(1))
∣

∣

∣

n
∑

i=1

|xijεi| = OP

(

k2
n

n

)

OP (n) = OP (k2
n)

holds on the event {β =s β0}, where we used conditions (i), (ix), the Chebychev inequality and the
estimate ‖M11(xi, ξ)‖op = OP (kn) in the last line. Thus we obtain

∥

∥

∥X(1)T
(

Σ(β)−2 − Σ(β0)−2
)

Σ(β0)ε
∥

∥

∥

2

=
( kn

∑

j=1

( n
∑

i=1

xij

(

1
σ(xi, β)2

− 1
σ(xi, β0)2

)

σ(xi, β0)εi

)2)1/2

= OP (k5/2
n ),

which yields

1√
nsn

αT
nCnε = oP (1) (6.22)

using condition (x). Finally, (6.19)–(6.22) and the Slutsky lemma yield the assertion of the theorem.

6.3. Proof of Theorem 4.2

As in the proof of Theorem 3.1 we obtain

̂βlse =s β0 if

{

sign(β0,j)(β0,j − ̂βlse,j) < |β0,j | for all j ≤ kn,

|ηj + ζj| < λn
2 ŵj, for all j > kn,

where ηj and ζj are given by

ηj = x(j)T
(

In − 1
n

X(1)
(

C
(n)
11

)−1
X(1)T

)

Σ(β0)ε, ζj =
λn

2n
x(j)T X(1)

(

C
(n)
11

)−1
ŝ(1),

respectively, and

̂βlse(1) = (̂βlse,1, . . . , ̂βlse,kn)T = β0(1) +
1
n

(

C
(n)
11

)−1
X(1)T Σ(β0)ε −

1
n

(

C
(n)
11

)−1 λn

2
ŝ(1). (6.23)

This directly yields P (̂βlse �=s β0) ≤ P (Ã1)+ P (Ã2) + P (Ã3)+ P (Ã4), where the events Ã1, Ã2, Ã3 and
Ã4 are defined by

Ã1 =
{ 1

n

∣

∣eT
j

(

C
(n)
11

)−1
X(1)T Σ(β0)ε

∣

∣ ≥ |β0,j |
2

for some j ≤ kn

}

,

Ã2 =
{λn

n

∣

∣eT
j

(

C
(n)
11

)−1
ŝ(1)

∣

∣ ≥ |β0,j | for some j ≤ kn

}

,
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Ã3 =
{

|ηj | ≥
λn

4
ŵj for some j > kn

}

and

Ã4 =
{

|ζj | ≥
λn

4
ŵj for some j > kn

}

.

Now P (Ãj) → 0 for j = 1, . . . , 4 follows with less complexity analogously to P (Aj) → 0 in the proof of
Theorem 3.1. This proves the assertion of the theorem.
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