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Abstract—This paper presents sharp inequalities for deviation probability of a general quadratic
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1. INTRODUCTION

This paper presents a number of deviation probability bounds for a quadratic form ‖ξ‖2 or more
generally ‖IB ξ‖2 of a random p-vector ξ satisfying a general exponential moment condition. Such
quadratic forms arise in many applications. Baraud (2010) lists some statistical tasks relying on such
deviation bounds including hypothesis testing for linear models or linear model selection. We also
refer to Massart (2007) for an extensive overview and numerous results on probability bounds and
their applications in statistical model selection. Limit theorems for quadratic forms can be found, e.g.,
in Götze and Tikhomirov (1999) and Horváth and Shao (1999). Some concentration bounds for U-
statistics are available in Bretagnolle (1999), Giné et al. (2000), Houdré and Reynaud-Bouret (2003).
Most of results assume that the components of the vector ξ are independent and bounded.

Hsu, Kakade and Zhang (2012) study the tail behavior of the quadratic form under the condition
of sub-Gaussianity of the random vector ξ and show that the deviation probabilities are essentially the
same as in the Gaussian case. However, the assumption that the vector ξ has finite exponential moments
of arbitrary order is quite strict and is not fulfilled in many applications. A particular example is given by
the Poisson and exponential cases. In the present work we only suppose that some exponential moments
of ξ are finite. This makes the problem much more involved and requires new approaches and tools.

If ξ is standard normal then ‖ξ‖2 is chi-squared with p degrees of freedom. We aim to extend this
behavior to the case of a general vector ξ satisfying the following exponential moment condition:

log IE exp
(
γ�ξ

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g. (1.1)

Here g is a positive constant which appears to be very important in our results. Namely, it determines
the frontier between the Gaussian and non-Gaussian type deviation bounds. Our first result shows that
under (1.1) the deviation bounds for the quadratic form ‖ξ‖2 are essentially the same as in the Gaussian
case, if the value g2 exceeds Cp for a fixed constant C. Further we extend the result to the case of a
more general form ‖IBξ‖2. An important advantage of the approach of this paper which differs it from all
the previous studies is that there are no additional conditions on the structure or origin of the vector ξ.
For instance, we do not assume that ξ is a sum of independent or weakly dependent random variables,
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or components of ξ are independent. The results are exact, stated in a non-asymptotic fashion, all the
constants are explicit and the leading terms are sharp.

As a motivating example, we consider a linear regression model Y = Ψ�θ∗ + ε in which Y is an
n-vector of observations, ε is the vector of errors with zero mean, and Ψ is a p × n design matrix. The
ordinary least squares estimator θ̃ for the parameter vector θ∗ ∈ IRp reads as

θ̃ =
(
ΨΨ�)−1

ΨY

and it can be viewed as the maximum likelihood estimator in a Gaussian linear model with a diagonal
covariance matrix, that is, Y ∼ N (Ψ�θ, σ2IIn). Define the p × p matrix

D2
0

def= ΨΨ�.

Then

D0(θ̃ − θ∗) = D−1
0 ζ

with ζ
def= Ψε. The likelihood ratio test statistic for this problem is exactly ‖D−1

0 ζ‖2/2. Similarly, the
model selection procedure is based on comparing such quadratic forms for different matrices D0; see,
e.g., Baraud (2010).

Now we indicate how this situation can be reduced to a bound for a vector ξ satisfying condition (1.1).
Suppose for simplicity that the entries εi of the error vector ε are independent and have exponential
moments.

(e1) There exist some constants ν0 and g1 > 0, and for every i a constant si such that
IE

(
εi/si

)2 ≤ 1 and

log IE exp
(
λεi/si

)
≤ ν2

0λ2/2, |λ| ≤ g1. (1.2)

Here g1 is a fixed positive constant. One can show that if this condition is fulfilled for some g1 > 0
and a constant ν0 ≥ 1, then one can get a similar condition with ν0 arbitrary close to one and g1 slightly
decreased. A natural candidate for si is σi where σ2

i = IEε2
i is the variance of εi. Under (1.2), introduce

a p × p matrix V0 defined by

V 2
0

def=
∑

s
2
i ΨiΨ

�
i ,

where Ψ1, . . . , Ψn ∈ IRp are the columns of the matrix Ψ . Define also

ξ = V −1
0 Ψε, N−1/2 def= max

i
sup

γ∈IRp

si|Ψ�
i γ|

‖V0γ‖
.

A simple calculation shows that for ‖γ‖ ≤ g = g1N
1/2

log IE exp
(
γ�ξ

)
≤ ν2

0‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g.

We conclude that (1.1) is nearly fulfilled under (e1) and moreover, the value g2 is proportional to the
effective sample size N . The results of the paper allow us to get a nearly χ2-behavior of the test statistic
‖ξ‖2 which is a finite sample version of the famous Wilks phenomenon; see, e.g., Fan et al. (2001); Fan
and Huang (2005), Boucheron and Massart (2011).

The paper is organized as follows. Section 2 recalls the classical results about deviation probability
of a Gaussian quadratic form. These results are presented only for comparison and to make the paper
self-contained.

Section 3 studies the probability of the form IP
(
‖ξ‖ > y

)
under the condition

log IE exp
(
γ�ξ

)
≤ ν2

0‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g.

The general case can be reduced to ν0 = 1 by rescaling ξ and g:

log IE exp
(
γ�ξ/ν0

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ ν0g,

that is, ν−1
0 ξ fulfills (1.1) with a slightly increased g.
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The obtained result is extended to the case of a general quadratic form in Section 4. Some more
extensions motivated by different statistical problems are given in Sections 6 and 7. They include the
bound with sup-norm constraint and the bound under Bernstein conditions. Among the statistical
problems demanding such bounds is estimation of the regression model with Poissonian or bounded
random noise. More examples can be found in Baraud (2010). All the proofs are collected in the
Appendix.

2. GAUSSIAN CASE
Our benchmark will be a deviation bound for ‖ξ‖2 for a standard Gaussian vector ξ. The ultimate goal

is to show that under (1.1) the norm of the vector ξ exhibits behavior expected for a Gaussian vector, at
least in the region of moderate deviations. For the reason of comparison, we begin by stating the result
for a Gaussian vector ξ. We use the notation a ∨ b for the maximum of a and b, while a ∧ b = min{a, b}.

Theorem 2.1. Let ξ be a standard normal vector in IRp. Then for any u > 0, it holds

IP
(
‖ξ‖2 > p + u

)
≤ exp

{
−(p/2)φ(u/p)

]}

with

φ(t) def= t − log(1 + t).

Let φ−1(·) stand for the inverse of φ(·). For any x,

IP
(
‖ξ‖2 > p + p φ−1(2x/p)

)
≤ exp(−x).

This particularly yields with κ = 6.6

IP
(
‖ξ‖2 > p +

√
κxp ∨ (κx)

)
≤ exp(−x).

This is a simple version of a well-known result and we present it only for comparison with the non-
Gaussian case. The message of this result is that the squared norm of the Gaussian vector ξ concentrates
around the value p and its deviation over the level p +

√
xp is exponentially small in x.

A similar bound can be obtained for a norm of the vector IBξ, where IB is some given deterministic
matrix. For notational simplicity we assume that IB is symmetric. Otherwise one should replace it with
(IB�IB)1/2.

Theorem 2.2. Let ξ be standard normal in IRp. Then for every x > 0 and any symmetric matrix
IB, it holds with p = tr(IB2), v2 = 2 tr(IB4), and a∗ = ‖IB2‖∞

IP
(
‖IBξ‖2 > p + (2vx1/2) ∨ (6a∗x)

)
≤ exp(−x).

Below we establish similar bounds for a non-Gaussian vector ξ obeying (1.1).

3. A BOUND FOR THE 
2-NORM

This section presents a general exponential bound for the probability IP
(
‖ξ‖ > y

)
under (1.1). The

main result tells us that if y is not too large, namely if y ≤ yc with y2
c 
 g2, then the deviation probability

is essentially the same as in the Gaussian case.
To describe the value yc, introduce the following notation. Given g and p, define the values w0 =

gp−1/2 and wc by the equation

wc(1 + wc)
(1 + w2

c)1/2
= w0 = gp−1/2. (3.1)

It is easy to see that w0/
√

2 ≤ wc ≤ w0. Further define

μc
def= w2

c/(1 + w2
c ), yc

def=
√

(1 + w2
c )p, xc

def= 0.5p
[
w2

c − log
(
1 + w2

c

)]
. (3.2)

Note that for g2 ≥ p, the quantities yc and xc can be evaluated as y2
c ≥ w2

cp ≥ g2/2 and xc � pw2
c/2 ≥

g2/4.
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Theorem 3.1. Let ξ ∈ IRp fulfill (1.1). Then it holds for each x ≤ xc

IP
(
‖ξ‖2 > p +

√
κxp ∨ (κx), ‖ξ‖ ≤ yc

)
≤ 2 exp(−x),

where κ = 6.6. Moreover, for y ≥ yc, it holds with gc = g−√
μcp = gwc/(1 + wc)

IP
(
‖ξ‖ > y

)
≤ 8.4 exp

{
−gcy/2 − (p/2) log(1 − gc/y)

}

≤ 8.4 exp
{
−xc − gc(y− yc)/2

}
.

The statements of Theorem 4.1 can be simplified under the assumption g2 ≥ p.

Corollary 3.2. Let ξ fulfill (1.1) and g2 ≥ p. Then it holds for x ≤ xc

IP
(
‖ξ‖2 ≥ z(x, p)

)
≤ 2e−x + 8.4e−xc , (3.3)

z(x, p) def=

{
p +

√
κxp, x ≤ p/κ,

p + κx, p/κ < x ≤ xc,
(3.4)

with κ = 6.6. For x > xc

IP
(
‖ξ‖2 ≥ zc(x, p)

)
≤ 8.4e−x, zc(x, p) def=

∣∣yc + 2(x − xc)/gc

∣∣2.

This result implicitly assumes that p ≤ κxc, which is fulfilled if w2
0 = g2/p ≥ 1:

κxc = 0.5κ
[
w2

0 − log(1 + w2
0)

]
p ≥ 3.3

[
1 − log(2)

]
p > p.

For x ≤ xc, the function z(x, p) mimics the quantile behavior of the chi-squared distribution χ2
p with

p degrees of freedom. Moreover, increase of the value g yields a growth of the sub-Gaussian zone. In
particular, for g = ∞, a general quadratic form ‖ξ‖2 has under (1.1) the same tail behavior as in the
Gaussian case.

Finally, in the large deviation zone x > xc the deviation probability decays as e−cx1/2
for some fixed

c. However, if the constant g in condition (1.1) is sufficiently large relative to p, then xc is large as well
and the large deviation zone x > xc can be ignored at a small price of 8.4e−xc and one can focus on the
deviation bound described by (3.3) and (3.4).

4. A BOUND FOR A QUADRATIC FORM

Now we extend the result to more general bound for ‖IBξ‖2 = ξ�IB2ξ with a given matrix IB and a
vector ξ obeying condition (1.1). Similarly to the Gaussian case we assume that IB is symmetric. Define
important characteristics of IB

p = tr(IB2), v2 = 2 tr(IB4), λ∗ def= ‖IB2‖∞
def= λmax(IB2).

For simplicity of formulation we suppose that λ∗ = 1, otherwise one has to replace p and v2 with p/λ∗

and v2/λ∗.

Let g be shown in (1.1). Similarly to the 
2-case define wc by the equation

wc(1 + wc)
(1 + w2

c )1/2
= gp−1/2.

Define also μc = w2
c/(1 + w2

c ) ∧ 2/3. Note that w2
c ≥ 2 implies μc = 2/3. Further, define

y2
c = (1 + w2

c )p, 2xc = μcy
2
c + log det{IIp − μcIB

2}. (4.1)

Similarly to the case with IB = IIp, under the condition g2 ≥ p, one can bound y2
c ≥ g2/2 and xc � g2/4.
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Theorem 4.1. Let a random vector ξ in IRp fulfill (1.1). Then for each x < xc

IP
(
‖IBξ‖2 > p + (2vx1/2) ∨ (6x), ‖IBξ‖ ≤ yc

)
≤ 2 exp(−x).

Moreover, for y ≥ yc, with gc = g−√
μcp = gwc/(1 + wc), it holds

IP
(
‖IBξ‖ > y

)
≤ 8.4 exp

(
−xc − gc(y− yc)/2

)
.

Now we describe the value z(x, IB) ensuring a small value for the large deviation probability
IP

(
‖IBξ‖2 > z(x, IB)

)
. For ease of formulation, we suppose that g2 ≥ 2p yielding μ−1

c ≤ 3/2. The other
case can be easily adjusted.

Corollary 4.2. Let ξ fulfill (1.1) with g2 ≥ 2p. Then it holds for x ≤ xc with xc from (4.1):

IP
(
‖IBξ‖2 ≥ z(x, IB)

)
≤ 2e−x + 8.4e−xc ,

z(x, IB) def=

{
p + 2vx1/2, x ≤ v/18,
p + 6x, v/18 < x ≤ xc.

(4.2)

For x > xc

IP
(
‖IBξ‖2 ≥ zc(x, IB)

)
≤ 8.4e−x, zc(x, IB) def=

∣
∣yc + 2(x − xc)/gc

∣
∣2.

5. RESCALING AND REGULARITY CONDITION

The result of Theorem 4.1 can be extended to a more general situation when condition (1.1) is fulfilled
for a vector ζ rescaled by a matrix V0. More precisely, let the random p-vector ζ fulfills for some p × p
matrix V0 the condition

sup
γ∈IRp

log IE exp
(
λ

γ�ζ

‖V0γ‖

)
≤ ν2

0λ2/2, |λ| ≤ g, (5.1)

with some constants g > 0, ν0 ≥ 1. Again, a simple change of variables reduces the case of an arbitrary
ν0 ≥ 1 to ν0 = 1. Our aim is to bound the squared norm ‖D−1

0 ζ‖2 of a vector D−1
0 ζ for another p × p

positive symmetric matrix D2
0 . Note that condition (5.1) implies (1.1) for the rescaled vector ξ = V −1

0 ζ.
This leads to bounding the quadratic form ‖D−1

0 V0ξ‖2 = ‖IBξ‖2 with IB2 = D−1
0 V 2

0 D−1
0 . It obviously

holds

p = tr(IB2) = tr(D−2
0 V 2

0 ).

Now we can apply the result of Corollary 4.2.

Corollary 5.1. Let ζ fulfill (5.1) with some V0 and g. Given D0, define IB2 = D−1
0 V 2

0 D−1
0 , and let

g2 ≥ 2p. Then it holds for x ≤ xc with xc from (4.1):

IP
(
‖D−1

0 ζ‖2 ≥ z(x, IB)
)
≤ 2e−x + 8.4e−xc

with z(x, IB) from (4.2). For x > xc

IP
(
‖D−1

0 ζ‖2 ≥ zc(x, IB)
)
≤ 8.4e−x, zc(x, IB) def=

∣∣yc + 2(x− xc)/gc

∣∣2.

In the regular case with D0 ≥ aV0 for some a > 0, one obtains ‖IB‖∞ ≤ a−1 and

v2 = 2 tr(IB4) ≤ 2a−2p.
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6. A CHI-SQUARED BOUND WITH NORM-CONSTRAINTS

This section extends the results to the case when the bound (1.1) requires some other conditions than
the 
2-norm of the vector γ. Namely, we suppose that

log IE exp
(
γ�ξ

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖◦ ≤ g◦, (6.1)

where ‖ · ‖◦ is a norm which differs from the usual Euclidean norm. Our driving example is given by the
sup-norm case with ‖γ‖◦ ≡ ‖γ‖∞. We are interested to check whether the previous results of Section 3
still apply. The answer depends on how massive the set A(r) = {γ : ‖γ‖◦ ≤ r} is in terms of the standard
Gaussian measure on IRp. Recall that the quadratic norm ‖ε‖2 of a standard Gaussian vector ε in IRp

concentrates around p at least for p large. We need a similar concentration property for the norm ‖ · ‖◦.
More precisely, we assume for a fixed r∗ that

IP
(
‖ε‖◦ ≤ r∗

)
≥ 1/2, ε ∼ N (0, IIp). (6.2)

This implies for any value u◦ > 0 and all u ∈ IRp with ‖u‖◦ ≤ u◦ that

IP
(
‖ε − u‖◦ ≤ r∗ + u◦

)
≥ 1/2, ε ∼ N (0, IIp).

For each z > p, consider

μ(z) = (z − p)/z.

Given u◦, denote by z◦ = z◦(u◦) the root of the equation

g◦
μ(z◦)

− r∗
μ1/2(z◦)

= u◦. (6.3)

One can easily see that this value exists and is unique if u◦ ≥ g◦ − r∗ and it can be defined as the largest
z for which

g◦
μ(z)

− r∗
μ1/2(z)

≥ u◦.

Let μ◦ = μ(z◦) be the corresponding μ-value. Define also x◦ by

2x◦ = μ◦z◦ + p log(1 − μ◦).

If u◦ < g◦ − r∗, then set z◦ = ∞, x◦ = ∞.

Theorem 6.1. Let a random vector ξ in IRp fulfill (6.1). Suppose (6.2) and let, given u◦, the value
z◦ be defined by (6.3). Then it holds for any u > 0

IP
(
‖ξ‖2 > p + u, ‖ξ‖◦ ≤ u◦

)
≤ 2 exp

{
−(p/2)φ(u)

]}
(6.4)

yielding for x ≤ x◦

IP
(
‖ξ‖2 > p +

√
κxp ∨ (κx), ‖ξ‖◦ ≤ u◦

)
≤ 2 exp(−x), (6.5)

where κ = 6.6. Moreover, for z ≥ z◦, it holds

IP
(
‖ξ‖2 > z, ‖ξ‖◦ ≤ u◦

)
≤ 2 exp

{
−μ◦z/2 − (p/2) log(1 − μ◦)

}

= 2exp
{
−x◦ − g◦(z − z◦)/2

}
.

It is easy to check that the result continues to hold for the norm of Πξ for a given sub-projector Π

in IRp satisfying Π = Π�, Π2 ≤ Π . As above, denote p
def= tr(Π2), v2 def= 2 tr(Π4). Let r∗ be fixed to

ensure

IP
(
‖Πε‖◦ ≤ r∗

)
≥ 1/2, ε ∼ N (0, IIp).

The next result is stated for g◦ ≥ r∗ + u◦, which simplifies the formulation.
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Theorem 6.2. Let a random vector ξ in IRp fulfill (6.1) and let Π follows Π = Π�, Π2 ≤ Π . Let

some u◦ be fixed. Then for any μ◦ ≤ 2/3 with g◦μ−1
◦ − r∗μ

−1/2
◦ ≥ u◦,

IE exp
{μ◦

2
(‖Πξ‖2 − p)

}
1I
(
‖Π2ξ‖◦ ≤ u◦

)
≤ 2 exp(μ2

◦v
2/4), (6.6)

where v2 = 2 tr(Π4). Moreover, if g◦ ≥ r∗ + u◦, then for any z ≥ 0

IP
(
‖Πξ‖2 > z, ‖Π2ξ‖◦ ≤ u◦

)
≤ IP

(
‖Πξ‖2 > p + (2vx1/2) ∨ (6x), ‖Π2ξ‖◦ ≤ u◦

)
≤ 2 exp(−x).

7. A BOUND FOR THE 
2-NORM UNDER BERNSTEIN CONDITIONS

For comparison, we specify the results to the case considered recently in Baraud (2010). Let ζ be a
random vector in IRn whose components ζi are independent and satisfy the Bernstein type conditions:
for all |λ| < c−1

log IEeλζi ≤ λ2σ2

1 − c|λ| . (7.1)

Denote ξ = ζ/(2σ) and consider ‖γ‖◦ = ‖γ‖∞. Fix g◦ = σ/c. If ‖γ‖◦ ≤ g◦, then 1 − cγi/(2σ) ≥ 1/2
and

log IE exp
(
γ�ξ

)
≤

∑

i

log IE exp
(γiζi

2σ

)
≤

∑

i

|γi/(2σ)|2σ2

1 − cγi/(2σ)
≤ ‖γ‖2/2.

Let also S be some linear subspace of IRn with dimension p and ΠS denote the projector on S. For
applying the result of Theorem 6.1, the value r∗ has to be fixed. We use that the infinity norm ‖ε‖∞
concentrates around

√
2 log p.

Lemma 7.1. It holds for a standard normal vector ε ∈ IRp with r∗ =
√

2 log p

IP
(
‖ε‖◦ ≤ r∗

)
≥ 1/2.

Indeed

IP
(
‖ε‖◦ > r∗

)
≤ IP

(
‖ε‖∞ >

√
2 log p

)
≤ p IP

(
|ε1| >

√
2 log p

)
≤ 1/2.

Now the general bound of Theorem 6.1 is applied to bounding the norm of ‖ΠSξ‖. For simplicity of
formulation we assume that g◦ ≥ u◦ + r∗.

Theorem 7.2. Let S be some linear subspace of IRn with dimension p. Let g◦ ≥ u◦ + r∗. If the
coordinates ζi of ζ are independent and satisfy (7.1), then for all x,

IP
(
(4σ2)−1‖ΠSζ‖2 > p +

√
κxp ∨ (κx), ‖ΠSζ‖∞ ≤ 2σu◦

)
≤ 2 exp(−x).

The bound of Baraud (2010) reads

IP
(
‖ΠSζ‖2 >

(
3σ ∨

√
6cu

)√
x + 3p, ‖ΠSζ‖∞ ≤ 2σu◦

)
≤ e−x.

As expected, in the region x ≤ xc of Gaussian approximation, the bound of Baraud is not sharp and
actually quite rough.
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APPENDIX: A. PROOF OF THEOREM 2.1

The proof utilizes the following well-known fact, which can be obtained by straightforward calculus:
for μ < 1

log IE exp
(
μ‖ξ‖2/2

)
= −0.5p log(1 − μ).

Now consider any u > 0. By the exponential Chebyshev inequality

IP
(
‖ξ‖2 > p + u

)
≤ exp

{
−μ(p + u)/2

}
IE exp

(
μ‖ξ‖2/2

)

= exp
{
−μ(p + u)/2 − (p/2) log(1 − μ)

}
. (A.1)

It is easy to see that the value μ = u/(u + p) maximizes μ(p + u) + p log(1 − μ) w.r.t. μ yielding

μ(p + u) + p log(1 − μ) = u − p log(1 + u/p).

Further we use that x − log(1 + x) ≥ a0x
2 for x ≤ 1 and x − log(1 + x) ≥ a0x for x > 1 with a0 =

1 − log(2) ≥ 0.3. This implies with x = u/p for u =
√

κxp or u = κx and κ = 2/a0 < 6.6 that

IP
(
‖ξ‖2 ≥ p +

√
κxp ∨ (κx)

)
≤ exp(−x)

as required.

B. PROOF OF THEOREM 2.2

The matrix IB2 can be represented as U� diag(a1, . . . , ap)U for an orthogonal matrix U . The vector
ξ̃ = Uξ is also standard normal and ‖IBξ‖2 = ξ̃�UIB2U�ξ̃. This means that one can reduce the
situation to the case of a diagonal matrix IB2 = diag(a1, . . . , ap). We can also assume without loss of
generality that a1 ≥ a2 ≥ . . . ≥ ap. The expressions for the quantities p and v2 simplify to

p = tr(IB2) = a1 + . . . + ap,

v2 = 2 tr(IB4) = 2(a2
1 + . . . + a2

p).

Moreover, rescaling the matrix IB2 by a1 reduces the situation to the case with a1 = 1.

Lemma B.1. It holds

IE‖IBξ‖2 = tr(IB2), Var
(
‖IBξ‖2

)
= 2 tr(IB4).

Moreover, for μ < 1

IE exp
{
μ‖IBξ‖2/2

}
= det(1 − μIB2)−1/2 =

p∏

i=1

(1 − μai)−1/2. (B.1)

Proof. If IB2 is diagonal, then ‖IBξ‖2 =
∑

i aiξ
2
i and the summands aiξ

2
i are independent. It remains

to note that IE(aiξ
2
i ) = ai, Var(aiξ

2
i ) = 2a2

i , and for μai < 1,

IE exp
{
μaiξ

2
i /2

}
= (1 − μai)−1/2

yielding (B.1).

Given u, fix μ < 1. The exponential Markov inequality yields

IP
(
‖IBξ‖2 > p + u

)
≤ exp

{
−μ(p+ u)

2

}
IE exp

(μ‖IBξ‖2

2

)

≤ exp
{
−μu

2
− 1

2

p∑

i=1

[
μai + log

(
1 − μai

)]}
.
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We start with the case when x1/2 ≤ v/3. Then u = 2x1/2v fulfills u ≤ 2v2/3. Define μ = u/v2 ≤ 2/3
and use that t + log(1 − t) ≥ −t2 for t ≤ 2/3. This implies

IP
(
‖IBξ‖2 > p + u

)
≤ exp

{
−μu

2
+

1
2

p∑

i=1

μ2a2
i

}
= exp

(
−u2/(4v2)

)
= e−x. (B.2)

Next, let x1/2 > v/3. Set μ = 2/3. It holds similarly to the above
p∑

i=1

[
μai + log

(
1 − μai

)]
≥ −

p∑

i=1

μ2a2
i ≥ −2v2/9 ≥ −2x.

Now, for u = 6x and μu/2 = 2x, (B.2) implies

IP
(
‖IBξ‖2 > p + u

)
≤ exp

{
−

(
2x − x

)}
= exp(−x)

as required.

C. PROOF OF THEOREM 3.1

The main step of the proof is the following exponential bound.

Lemma C.1. Suppose (1.1). For any μ < 1 with g2 > pμ, it holds

IE exp
(μ‖ξ‖2

2

)
1I
(
‖ξ‖ ≤ g/μ −

√
p/μ

)
≤ 2(1 − μ)−p/2. (C.1)

Proof. Let ε be a standard normal vector in IRp and u ∈ IRp. The bound IP
(
‖ε‖2 > p

)
≤ 1/2 and the

triangle inequality imply for any vector u and any r with r ≥ ‖u‖ + p1/2 that IP
(
‖u + ε‖ ≤ r

)
≥ 1/2.

Let us fix some ξ with ‖ξ‖ ≤ g/μ −
√

p/μ and denote by IPξ the conditional probability given ξ. The
previous arguments yield:

IPξ

(
‖ε + μ1/2ξ‖ ≤ μ−1/2g

)
≥ 0.5.

It holds with cp = (2π)−p/2

cp

∫
exp

(
γ�ξ − ‖γ‖2

2μ

)
1I(‖γ‖ ≤ g) dγ

= cp exp
(
μ‖ξ‖2/2

) ∫
exp

(
−1

2

∥∥μ−1/2γ − μ1/2ξ
∥∥2

)
1I(μ−1/2‖γ‖ ≤ μ−1/2g) dγ

= μp/2 exp
(
μ‖ξ‖2/2

)
IPξ

(
‖ε + μ1/2ξ‖ ≤ μ−1/2g

)
≥ 0.5μp/2 exp

(
μ‖ξ‖2/2

)

because ‖μ1/2ξ‖ + p1/2 ≤ μ−1/2g. This implies in view of p < g2/μ that

exp
(
μ‖ξ‖2/2

)
1I
(
‖ξ‖2 ≤ g/μ −

√
p/μ

)
≤ 2μ−p/2cp

∫
exp

(
γ�ξ − ‖γ‖2

2μ

)
1I(‖γ‖ ≤ g) dγ.

Further, by (1.1)

cpIE

∫
exp

(
γ�ξ − 1

2μ
‖γ‖2

)
1I(‖γ‖ ≤ g) dγ

≤ cp

∫
exp

(
−μ−1 − 1

2
‖γ‖2

)
1I(‖γ‖ ≤ g) dγ

≤ cp

∫
exp

(
−μ−1 − 1

2
‖γ‖2

)
dγ ≤ (μ−1 − 1)−p/2

and (C.1) follows.
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Due to this result, the scaled squared norm μ‖ξ‖2/2 after a proper truncation possesses the
same exponential moments as in the Gaussian case. A straightforward implication is the probability
bound IP

(
‖ξ‖2 > p + u

)
for moderate values u. Namely, given u > 0, define μ = u/(u + p). This

value optimizes inequality (A.1) in the Gaussian case. Now we can apply a similar bound under the
constraints ‖ξ‖ ≤ g/μ −

√
p/μ. Therefore the bound is only meaningful if

√
u + p ≤ g/μ −

√
p/μ with

μ = u/(u + p) or with w =
√

u/p ≤ wc, see (3.1).

The largest value u for which this constraint is still valid, is given by p + u = y2
c . Hence (C.1) yields

for p + u ≤ y2
c

IP
(
‖ξ‖2 > p + u, ‖ξ‖ ≤ yc

)
≤ exp

{
−μ(p + u)

2

}
IE exp

(μ‖ξ‖2

2

)
1I
(
‖ξ‖ ≤ g/μ −

√
p/μ

)

≤ 2 exp
{
−0.5

[
μ(p + u) + p log(1 − μ)

]}

= 2exp
{
−0.5

[
u − p log(1 + u/p)

]}
.

Similarly to the Gaussian case, this implies with κ = 6.6 that

IP
(
‖ξ‖ ≥ p +

√
κxp ∨ (κx), ‖ξ‖ ≤ yc

)
≤ 2 exp(−x).

The Gaussian case means that (1.1) holds with g = ∞ yielding yc = ∞. In the non-Gaussian case with
a finite g, we have to accompany the moderate deviation bound with a large deviation bound IP

(
‖ξ‖ > y

)

for y ≥ yc. This is done by combining the bound (C.1) with the standard slicing arguments.

Lemma C.2. Let μ0 ≤ g2/p. Define y0 = g/μ0 −
√

p/μ0 and g0 = μ0y0 = g−√
μ0p. It holds for

y ≥ y0

IP
(
‖ξ‖ > y

)
≤ 8.4(1 − g0/y)−p/2 exp

(
−g0y/2

)
(C.2)

≤ 8.4 exp
{
−x0 − g0(y− y0)/2

}
(C.3)

with x0 defined by

2x0 = μ0y
2
0 + p log(1 − μ0) = g2/μ0 − p + p log(1 − μ0).

Proof. Consider the growing sequence yk with y1 = y and g0yk+1 = g0y + k. Define also μk = g0/yk.
In particular, μk ≤ μ1 = g0/y. Obviously

IP
(
‖ξ‖ > y

)
=

∞∑

k=1

IP
(
‖ξ‖ > yk, ‖ξ‖ ≤ yk+1

)
.

Now we try to evaluate every slicing probability in this expression. We use that

μk+1y
2
k =

(g0y + k − 1)2

g0y + k
≥ g0y + k − 2,

and also g/μk −
√

p/μk ≥ yk because g− g0 =
√

μ0p >
√

μkp and

g/μk −
√

p/μk − yk = μ−1
k (g −√

μkp − g0) ≥ 0.

Hence by (C.1)

IP
(
‖ξ‖ > y

)
=

∞∑

k=1

IP
(
‖ξ‖ > yk, ‖ξ‖ ≤ yk+1

)

≤
∞∑

k=1

exp
(
−μk+1y

2
k

2

)
IE exp

(μk+1‖ξ‖2

2

)
1I
(
‖ξ‖ ≤ yk+1

)

≤
∞∑

k=1

2
(
1 − μk+1

)−p/2 exp
(
−μk+1y

2
k

2

)
≤ 2

(
1 − μ1

)−p/2
∞∑

k=1

exp
(
−g0y + k − 2

2

)
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= 2e1/2(1 − e−1/2)−1(1 − μ1)−p/2 exp
(
−g0y/2

)
≤ 8.4(1 − μ1)−p/2 exp

(
−g0y/2

)

and the first assertion follows. For y = y0, it holds

g0y0 + p log(1 − μ0) = μ0y
2
0 + p log(1 − μ0) = 2x0

and (C.2) implies IP
(
‖ξ‖ > y0

)
≤ 8.4 exp(−x0). Now observe that the function f(y) = g0y/2 +

(p/2) log
(
1 − g0/y

)
fulfills f(y0) = x0 and f ′(y) ≥ g0/2 yielding f(y) ≥ x0 + g0(y− y0)/2. This

implies (C.3).

The statements of the theorem are obtained by applying the lemmas with μ0 = μc = w2
c/(1 + w2

c ).
This also implies y0 = yc, x0 = xc, and g0 = gc = g−√

μcp, cf. (3.2).

D. PROOF OF THEOREM 4.1

The main steps of the proof are similar to the proof of Theorem 3.1.

Lemma D.1. Suppose (1.1). For any μ < 1 with g2/μ ≥ p, it holds

IE exp
(
μ‖IBξ‖2/2

)
1I
(
‖IB2ξ‖ ≤ g/μ −

√
p/μ

)
≤ 2det(IIp − μIB2)−1/2. (D.1)

Proof. With cp(IB) =
(
2π

)−p/2 det(IB−1)

cp(IB)
∫

exp
(
γ�ξ − 1

2μ
‖IB−1γ‖2

)
1I(‖γ‖ ≤ g) dγ

= cp(IB) exp
(μ‖IBξ‖2

2

) ∫
exp

(
−1

2

∥
∥μ1/2IBξ − μ−1/2IB−1γ

∥
∥2

)
1I(‖γ‖ ≤ g) dγ

= μp/2 exp
(μ‖IBξ‖2

2

)
IPξ

(
‖μ−1/2IBε + IB2ξ‖ ≤ g/μ

)
,

where ε denotes a standard normal vector in IRp and IPξ means the conditional probability given ξ.
Moreover, for any u ∈ IRp and r ≥ p1/2 + ‖u‖, it holds in view of IP

(
‖IBε‖2 > p

)
≤ 1/2

IP
(
‖IBε − u‖ ≤ r

)
≥ IP

(
‖IBε‖ ≤ √

p
)
≥ 1/2.

This implies

exp
(
μ‖IBξ‖2/2

)
1I
(
‖IB2ξ‖ ≤ g/μ −

√
p/μ

)

≤ 2μ−p/2cp(IB)
∫

exp
(
γ�ξ − 1

2μ
‖IB−1γ‖2

)
1I(‖γ‖ ≤ g) dγ.

Further, by (1.1)

cp(IB)IE
∫

exp
(
γ�ξ − 1

2μ
‖IB−1γ‖2

)
1I(‖γ‖ ≤ g) dγ

≤ cp(IB)
∫

exp
(‖γ‖2

2
− 1

2μ
‖IB−1γ‖2

)
dγ

≤ det(IB−1) det(μ−1IB−2 − IIp)−1/2 = μp/2 det(IIp − μIB2)−1/2

and (D.1) follows.

Now we evaluate the probability IP
(
‖IBξ‖ > y

)
for moderate values of y.
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Lemma D.2. Let μ0 < 1 ∧ (g2/p). With y0 = g/μ0 −
√
p/μ0, it holds for any u > 0

IP
(
‖IBξ‖2 > p + u, ‖IB2ξ‖ ≤ y0

)
≤ 2 exp

{
−0.5μ0(p + u) − 0.5 log det(IIp − μ0IB

2)
}
. (D.2)

In particular, if IB2 is diagonal, that is, IB2 = diag
(
a1, . . . , ap

)
, then

IP
(
‖IBξ‖2 > p + u, ‖IB2ξ‖ ≤ y0

)
≤ 2 exp

{
−μ0u

2
− 1

2

p∑

i=1

[
μ0ai + log

(
1 − μ0ai

)]}
. (D.3)

Proof. The exponential Chebyshev inequality and (D.1) imply

IP
(
‖IBξ‖2 > p + u, ‖IB2ξ‖ ≤ y0

)

≤ exp
{
−μ0(p + u)

2

}
IE exp

(μ0‖IBξ‖2

2

)
1I
(
‖IB2ξ‖ ≤ g/μ0 −

√
p/μ0

)

≤ 2 exp
{
−0.5μ0(p + u) − 0.5 log det(IIp − μ0IB

2)
}
.

Moreover, the standard change-of-basis arguments allow us to reduce the problem to the case of a
diagonal matrix IB2 = diag

(
a1, . . . , ap

)
, where 1 = a1 ≥ a2 ≥ . . . ≥ ap > 0. Note that p = a1 + . . . +

ap. Then the claim (D.2) can be written in the form (D.3).

Now we evaluate a large deviation probability that ‖IBξ‖ > y for a large y. Note that the condition
‖IB2‖∞ ≤ 1 implies ‖IB2ξ‖ ≤ ‖IBξ‖. So, the bound (D.2) continues to hold when ‖IB2ξ‖ ≤ y0 is
replaced by ‖IBξ‖ ≤ y0.

Lemma D.3. Let μ0 < 1 and μ0p < g2. Define g0 by g0 = g−√
μ0p. For any y ≥ y0

def= g0/μ0, it
holds

IP
(
‖IBξ‖ > y

)
≤ 8.4 det{IIp − (g0/y)IB2}−1/2 exp

(
−g0y/2

)

≤ 8.4 exp
(
−x0 − g0(y− y0)/2

)
, (D.4)

where x0 is defined by

2x0 = g0y0 + log det{IIp − (g0/y0)IB2}.

Proof. The slicing arguments of Lemma C.2 apply here in the same manner. One has to replace
‖ξ‖ by ‖IBξ‖ and (1 − μ1)−p/2 by det{IIp − (g0/y)IB2}−1/2. We omit the details. In particular, with
y = y0 = g0/μ, this yields

IP
(
‖IBξ‖ > y0

)
≤ 8.4 exp(−x0).

Moreover, for the function f(y) = g0y+ log det{IIp − (g0/y)IB2}, it holds f ′(y) ≥ g0 and hence, f(y) ≥
f(y0) + g0(y− y0) for y > y0. This implies (D.4).

One important feature of the results of Lemmas D.2 and D.3 is that the value μ0 < 1 ∧ (g2/p) can
be selected arbitrarily. In particular, for y ≥ yc, Lemma D.3 with μ0 = μc yields the large deviation
probability IP

(
‖IBξ‖ > y

)
. For bounding the probability IP

(
‖IBξ‖2 > p + u, ‖IBξ‖ ≤ yc

)
, we use the

inequality log(1 − t) ≥ −t − t2 for t ≤ 2/3. It implies for μ ≤ 2/3 that

− log IP
(
‖IBξ‖2 > p+ u, ‖IBξ‖ ≤ yc

)
≥ μ(p + u) +

p∑

i=1

log
(
1 − μai

)

≥ μ(p + u) −
p∑

i=1

(μai + μ2a2
i ) ≥ μu − μ2v2/2. (D.5)
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Now we distinguish between μc = 2/3 and μc < 2/3 starting with μc = 2/3. The bound (D.5) with
μ = 2/3 and with u = (2vx1/2) ∨ (6x) yields

IP
(
‖IBξ‖2 > p + u, ‖IBξ‖ ≤ yc

)
≤ 2 exp(−x);

see the proof of Theorem 2.2 for the Gaussian case.

Now consider μc < 2/3. For x1/2 ≤ μcv/2, use u = 2vx1/2 and μ0 = u/v2. It holds μ0 = u/v2 ≤ μc

and u2/(4v2) = x yielding the desired bound by (D.5). For x1/2 > μcv/2, we select again μ0 = μc. It
holds with u = 4μ−1

c x that μcu/2 − μ2
cv

2/4 ≥ 2x − x = x. This completes the proof.

E. PROOF OF THEOREM 6.1

The arguments behind the result are the same as in the one-norm case of Theorem 3.1. We only
outline the main steps.

Lemma E.1. Suppose (6.1) and (6.2). For any μ < 1 with g◦ > μ1/2r∗, it holds

IE exp
(
μ‖ξ‖2/2

)
1I
(
‖ξ‖◦ ≤ g◦/μ − r∗/μ

1/2
)
≤ 2(1 − μ)−p/2. (E.1)

Proof. Let ε be a standard normal vector in IRp and u ∈ IRp. Let us fix some ξ with μ1/2‖ξ‖◦ ≤
μ−1/2g◦ − r∗ and denote by IPξ the conditional probability given ξ. It holds by (6.2) with cp = (2π)−p/2

cp

∫
exp

(
γ�ξ − 1

2μ
‖γ‖2

)
1I(‖γ‖◦ ≤ g◦) dγ

= cp exp
(
μ‖ξ‖2/2

) ∫
exp

(
−1

2

∥
∥μ1/2ξ − μ−1/2γ

∥
∥2

)
1I(‖μ−1/2γ‖◦ ≤ μ−1/2g◦) dγ

= μp/2 exp
(
μ‖ξ‖2/2

)
IPξ

(
‖ε − μ1/2ξ‖◦ ≤ μ−1/2g◦

)
≥ 0.5μp/2 exp

(
μ‖ξ‖2/2

)
.

This implies

exp
(μ‖ξ‖2

2

)
1I
(
‖ξ‖◦ ≤ g◦/μ − r∗/μ

1/2
)

≤ 2μ−p/2cp

∫
exp

(
γ�ξ − 1

2μ
‖γ‖2

)
1I(‖γ‖◦ ≤ g◦) dγ.

Further, by (6.1)

cpIE

∫
exp

(
γ�ξ − 1

2μ
‖γ‖2

)
1I(‖γ‖◦ ≤ g◦) dγ

≤ cp

∫
exp

(
−μ−1 − 1

2
‖γ‖2

)
dγ ≤ (μ−1 − 1)−p/2

and (E.1) follows.

As in the Gaussian case, (E.1) implies for z > p with μ = μ(z) = (z− p)/z the bounds (6.4) and (6.5).
Note that the value μ(z) clearly grows with z from zero to one, while g◦/μ(z) − r∗/μ1/2(z) is strictly
decreasing. The value z◦ is defined exactly as the point where g◦/μ(z) − r∗/μ1/2(z) crosses u◦, so that
g◦/μ(z) − r∗/μ1/2(z) ≥ u◦ for z ≤ z◦.

For z > z◦, the choice μ = μ(y) conflicts with g◦/μ(z) − r∗/μ1/2(z) ≥ u◦. So, we apply μ = μ◦
yielding by the Markov inequality

IP
(
‖ξ‖2 > z, ‖ξ‖◦ ≤ u◦

)
≤ 2 exp

{
−μ◦z/2 − (p/2) log(1 − μ◦)

}
,

and the assertion follows.
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F. PROOF OF THEOREM 6.2

Arguments from the proof of Lemmas D.1 and E.1 yield in view of g◦μ−1
◦ − r∗μ

−1/2
◦ ≥ u◦

IE exp
{
μ◦‖Πξ‖2/2

}
1I
(
‖Π2ξ‖◦ ≤ u◦

)

≤ IE exp
(
μ◦‖Πξ‖2/2

)
1I
(
‖Π2ξ‖◦ ≤ g◦/μ◦ − p/μ

1/2
◦

)
≤ 2det(IIp − μ◦Π

2)−1/2.

The inequality log(1 − t) ≥ −t − t2 for t ≤ 2/3 and symmetry of the matrix Π imply

− log det(IIp − μ◦Π
2) ≤ μ◦p + μ2

◦v
2/2

cf.(D.5); the assertion (6.6) follows.
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Two”, in Birkhäuser Prog. Probab., Vol. 56: Stochastic Inequalities and Applications. Selected Papers
Presented at the Euroconference on “Stochastic Inequalities and Their Applications", Barcelona, June
18–22, 2002, Ed. by E. Giné et al. (Birkhäuser, Basel, 2003), pp. 55–69.

10. D. Hsu, S.M. Kakade and T. Zhang, “A Tail Inequality for Quadratic Forms of Subgaussian Random
Vectors”, Electron. Commun. Probab. 17 (52), 6 (2012).

11. P. Massart, Concentration Inequalities and Model Selection. Ecole d’Eté de Probabilités de Saint-
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