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INTRODUCTION

This Part II of the paper (consisting, in turn, of parts 1 and 2, the latter to appear in the next issue)
deals with the application of the results obtained in Proposition 2, Lepski (2013), to the construction of
upper functions for generalized empirical processes. The main difficulty in the realization of our approach
consists in the following. To apply Proposition 2 to particular problems one has to compute the function E
and there is no general recipe how to do this. The main goal of this and the next part is to provide
rather general assumptions under which this quantity can be calculated explicitly. As was discussed
in Lepski (2013), upper functions for random objects appear in various areas of probability theory and
mathematical statistics. Therefore the problems of different nature require different assumptions. The
assumptions presented below are oriented mostly to the problems arising in mathematical statistics,
which definitely reflects author’s interests. However, some purely probabilistic results like the law of
iterated logarithm and the law of logarithm will be established as well.

1. GENERALIZED EMPIRICAL PROCESSES

Let (X ,X, ν) be a σ-finite space and (Ω,A,P) a complete probability space. Let Xi, i ≥ 1, be a
collection of X -valued independent random variables defined on (Ω,A,P) having the densities fi with
respect to the measure ν. Furthermore, Pf , f = (f1, f2, . . .), denotes the probability law of (X1,X2, . . .)
and Ef is the expectation with respect to Pf .

Let G : H ×X → R be a given mapping, where H is a set. Put ∀n ∈ N
∗

ξh(n) = n−1
n∑

i=1

[
G(h,Xi) − EfG(h,Xi)

]
, h ∈ H. (1.1)

We will say that ξh(n), h ∈ H, is a generalized empirical process. Note that if h : X → R and G(h, x) =
h(x), h ∈ H, x ∈ X , then ξh(n) is the standard empirical process parameterized by H.

Throughout this section we will suppose that

G∞(h) := sup
x∈X

∣∣G(h, x)
∣∣ < ∞, ∀h ∈ H, (1.2)

and it will be referred to as the bounded case. Some generalizations concerning the situations, where
this assumption fails, are discussed in Section 1.1.
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Condition (1.2) implies that the random variables G(h,Xi), h ∈ H, and G(h1,Xi) − G(h2,Xj),
h1, h2 ∈ H, i = 1, . . . , n, are bounded, and we obtain in view of Bernstein’s inequality ∀z > 0

Pf

{
|ξh(n)| > z

}
≤ 2 exp

{
− z2

A2
f (h) + zB∞(h)

}
, (1.3)

Pf

{
|ξh1(n) − ξh2(n)| > z

}
≤ 2 exp

{
− z2

a2
f (h1, h2) + zb∞(h1, h2)

}
, (1.4)

where

A2
f (h) = 2n−2

n∑

i=1

EfG2(h,Xi), a2
f (h1, h2) = 2n−2

n∑

i=1

Ef

(
G(h1,Xi) − G(h2,Xi)

)2
, (1.5)

B∞(h) = (4/3)n−1 sup
x∈X

∣∣G(h, x)
∣∣, b∞(h1, h2) = (4/3)n−1 sup

x∈X

∣∣G(h1, x) − G(h2, x)
∣∣. (1.6)

We conclude that Assumption 1, Lepski (2013), is fulfilled with Ψ(·) = | · |, A = Af , B = B∞, a = af ,
b = b∞, and c = 2.

It is easily seen that af and b∞ are semi-metrics on H. We note also that ξ• : H → R is P-a.s.
continuous in the topology induced by b∞. Thus, if H ⊆ H is totally bounded with respect to af ∨ b∞ and
such that Af := suph∈H Af(h) < ∞, B∞ := suph∈H B∞(h) < ∞, then we conclude that Assumption 2,
Lepski (2013), is fulfilled.

Thus, in the problems for which Assumption 3, Lepski (2013), holds, the machinery developed in
Proposition 2, Lepski (2013), can be applied for |ξh(n)|, h ∈ H. We would like to emphasize, however,
that problems studied below are not always related to the consideration of |ξh(n)|, h ∈ H, with H being
totally bounded, although such problems are also studied. The idea is to reduce them (if necessary) to
those for which Proposition 2, Lepski (2013), can be used. For instance, we will be interested in finding
upper functions for |ξh(n)| on h ∈ H not only for given n but mostly on N×H, where N is a given subset
of N

∗. This will allow us, in particular, to study generalized empirical processes with random number of
summands.

1.1. Problem Formulation and Examples
In this section we find upper functions for several functionals of the generalized empirical process

ξh(n) defined in (1.1) under condition (1.2). We remark that the parameter h may possess a composite
structure and its components may have very different nature. In order to treat such situations it will be
convenient to assume that for some m ≥ 1

H = H1 × · · · × Hm, (1.7)

where Hj , j = 1, . . . ,m, are given sets. We will use the following notation. For any given k = 0, 1, . . . ,m
put

H
k
1 = H1 × · · · × Hk, H

m
k+1 = Hk+1 × · · · × Hm,

with the convention that H0
1 = ∅, Hm

m+1 = ∅. The elements of Hk
1 and Hm

k+1 will be denoted by h(k) and
h(k) respectively. We will suppose that for any j = k + 1, . . . ,m the set Hj is endowed with the semi-
metric �j and the Borel measure κj .

In the next two sections we find upper functions for |ξh(n)| on some subsets of H (possibly depending
on n!) and we will consider two cases.

Totally bounded case. In this case we will suppose that Hj is totally bounded with respect to �j for
any j = k + 1, . . . ,m.

Partially totally bounded case. Here we first suppose that for some p ≥ 1

(X , ν) =
(
X1 × · · · × Xp, ν1 × · · · × νp

)
, (1.8)

where (Xl, νl), l = 1, . . . , p, are measurable spaces and ν is the product measure.
Next we will assume that Hm = X1. As a consequence, the assumption that Hm is totally bounded is

too restrictive. In particular, it does not hold in the case X = X1 = R
d, which appears in many examples.

Before presenting the results, let us consider several examples.
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Example 1 (Density model). Let K : R
d → R be a given function and let

Kh(·) =
[ d∏

i=1

hi

]−1

K
(
· /h1, . . . , · /hd

)
, h = (h1, . . . , hd) ∈ (0, 1]d,

where, as before, for two vectors u, v ∈ R
d the notation u/v denotes the coordinate-wise division.

Put p = 1, m = d + 1, k = d, X1 = Hd+1 = R
d, Hi = (0, 1], i = 1, . . . , d, and consider for any h =

(h, x) ∈ H := (0, 1]d × R
d

ξh(n) = ξ̂h,x(n) := n−1
n∑

i=1

[
Kh(Xi − x) − Ef{Kh(Xi − x)}

]
.

We have come to the well-known in nonparametric statistics kernel density estimation process. Here
the function K is a kernel and the vector h is a multi-bandwidth.

Example 2 (Regression model). Let εi, i = 1, . . . , n, be independent real random variables distributed
on I ⊆ R and such that Eεi = 0 for any i = 1, . . . , n. Let Yi, i = 1, . . . , n, be independent d-dimensional
random vectors. The sequences {εi, i = 1, . . . , n} and {Yi, i = 1, . . . , n} are assumed independent. Let
M be a given set of d × d invertible matrices and let I ⊆ R and X1 ⊆ R

d be a given interval.

Put p = 2, m = d + 2, k = d, X1 = Hd+2 = R
d, X2 = I , Hj = (0, 1], j = 1, . . . , d, and Hd+1 = M.

Consider for any h = (h,M, x) ∈ H := (0, 1]d ×M× R
d

ξh(n) = ξ̃h,M,x(n) := n−1|det(M)|
n∑

i=1

Kh[M(Yi − x)]εi.

The family of random fields
{
ξ̃h,M,x(n), x, h,M ∈ (0, 1]d ×M× R

d
}

appears in nonparametric regres-
sion under single index hypothesis, Stone (1985).

If I is a bounded interval, i.e., the εi are bounded random variables, then (1.5) and (1.6) hold and the
results from Lepski (2013) are directly applicable. However this assumption is too restrictive and it is
not satisfied even in the classical Gaussian regression. At the first glance it seems that if I = R, then
Proposition 2, Lepski (2013), is inapplicable here. Although the aforementioned problem lies beyond the
scope of the paper, let us briefly discuss how to reduce it to the problem in which the machinery developed
in Proposition 2, Lepski (2013), can be applied.

Some generalizations. Let (εi, i = 1, . . . , n) be a sequence of independent real-valued random vari-
ables such that Eεi = 0 (later on for simplicity we assume that the εi have symmetric distribution) and
Eε2

i =: σ2
i < ∞. Let X̄i, i = 1, . . . , n, be a collection of X̄ -valued independent random elements and

suppose also that (X̄i, i = 1, . . . , n) and (εi, i = 1, . . . , n) are independent. Consider the generalized
empirical process

ξ̄h(n) = n−1
n∑

i=1

Ḡ(h, X̄i)εi, h ∈ H,

where, as before, Ḡ : H ×X → R is a given mapping satisfying (1.2). For any y > 0 define

ξ̄h(n, y) = n−1
n∑

i=1

Ḡ(h, X̄i)εi1[−y,y](εi), ηn(y) = sup
i=1,...,n

|εi|
[
1 − 1[−y,y](εi)

]
.

Obviously, for any y > 0

ξ̄h(n, y) = n−1
n∑

i=1

[
Gy(h,Xi) − EfGy(h,Xi)

]
, Xi = (X̄i, εi),
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where Gy(h, x) = Ḡ(h, x̄)u1[−y,y](u), x = (x̄, u) ∈ X := X̄ × R, h ∈ H. Since Gy is bounded for any
y > 0, inequalities (1.3) and (1.4) hold and, analogously to (1.5) and (1.6), we have

A2
f (h) = 2n−2

n∑

i=1

σ2
i Ef Ḡ2(h, X̄i), a2

f (h1, h2) = 2n−2
n∑

i=1

σ2
i Ef

(
Ḡ(h1, X̄i) − G(h2, X̄i)

)2
,

B∞(h) = (4y/3)n−1 sup
x∈X

∣∣Ḡ(h, x̄)
∣∣, b∞(h1, h2) = (4/3)yn−1 sup

x∈X

∣∣Ḡ(h1, x̄) − Ḡ(h2, x̄)
∣∣.

Let also H ⊆ H be such that the results obtained in Proposition 2, Lepski (2013), are applicable to
|ξ̄h(n, y)| on H for any y > 0. It is extremely important to emphasize that neither Af(·) nor af(·, ·) depend
on y.

This implies, in view of Theorem 1 below, that upper functions for |ξ̄h(y)|, h ∈ H (for brevity V (h, y)
and Uq(h, y), q ≥ 1) can be found in the form:

V (h, y) = V1(h) + yV2(h), Uq(h, y) = Uq,1(h) + yUq,2(h).
This means that we are able to bound from above for any y > 0

Pf

{
sup
h∈H

[
|ξ̄h(n, y)| − V (h, y)

]
> 0

}
, Ef

{
sup
h∈H

[
|ξ̄h(n, y)| − Uq(h, y)

]}q

+
.

Moreover, we obviously have for any y > 0

Pf

{
sup
h∈H

[
|ξ̄h(n)| − V (h, y)

]
> 0

}
≤ Pf

{
sup
h∈H

[
|ξ̄h(n, y)| − V (h, y)

]
> 0

}
+ Pf{ηn(y) > 0},

Ef

{
sup
h∈H

[
|ξ̄h(n)| − Uq(h, y)

]}q

+
≤ Ef

{
sup
h∈H

[
|ξ̄h(n, y)| − Uq(h, y)

]}q

+
+
(
sup
h∈H

G∞(h)
)q

E(ηn(y))q.

Typically, V (·, y) = V (n)(·, y) and Uq(·, y) = U
(n)
q (·, y) and V

(n)
2 (·) � V

(n)
1 and U

(n)
q,2 (·) � U

(n)
q,1 for all n

large enough. This allows us to choose y = yn in an optimal way, i.e., to balance both terms in the last

inequalities, which usually leads to sharp upper functions V
(n)
1 (·) + ynV

(n)
2 (·) and U

(n)
q,1 (·) + ynU

(n)
q,2 (·).

1.2. Main Assumption
Now let us return to the consideration of generalized empirical processes obeying (1.2). Assumption 1

below is the main tool allowing us to compute upper functions explicitly. Introduce the following
notation: for any h(k) ∈ Hk

1

G∞(h(k)) = sup
h(k)∈Hm

k+1

sup
x∈X

|G(h, x)|,

and let G∞ : Hk
1 → R+ be any mapping satisfying

G∞
(
h(k)

)
≤ G∞

(
h(k)

)
, ∀h(k) ∈ Hk

1 . (1.9)

Let {Hj(n) ⊂ Hj , n ≥ 1}, j = 1, . . . , k, be a sequence of sets and let Hk
1(n) = H1(n)× · · · ×Hk(n). Set

for any n ≥ 1

Gn = inf
h(k)∈Hk

1(n)
G∞(h(k)), Gn = sup

h(k)∈Hk
1(n)

G∞(h(k)).

For any n ≥ 1, j = 1, . . . , k, and any hj ∈ Hj(n) define

Gj,n(hj) = sup
h1∈H1(n),...,hj−1∈Hj−1(n),
hj+1∈Hj+1(n),...,hk∈Hk(n)

G∞(h(k)), Gj,n = inf
hj∈Hj(n)

Gj,n(hj).

Noting that
∣∣ log (t1)− log (t2)

∣∣ is a metric on R+ \ {0}, we equip Hk
1(n) with the following semi-metric.

For any n ≥ 1 and any ĥ(k), h̄(k) ∈ Hk
1(n) set

�(k)
n (ĥ(k), h̄(k)) = max

j=1,...,k

∣∣ log{Gj,n(ĥj)} − log{Gj,n(h̄j)}
∣∣,

where ĥj , h̄j , j = 1, . . . , k, are the coordinates of ĥ(k) and h̄(k) respectively.
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Assumption 1. (i) 0 < Gn ≤ Gn < ∞ for any n ≥ 1 and for any j = 1, . . . , k

G∞
(
h(k)

)

Gn

≥ Gj,n(hj)
Gj,n

, ∀h(k) = (h1, . . . , hk) ∈ Hk
1(n), ∀n ≥ 1.

(ii) There exist functions Lj : R+ → R+, Dj : R+ → R+, j = 0, k + 1, . . . ,m, such that Lj is non-
decreasing and bounded on each bounded interval, Dj ∈ C

1(R), D(0) = 0, and

‖G(h, ·) − G(h, ·)‖∞ ≤
{
G∞(h(k)) ∨ G∞(h(k))

}
D0

{
�(k)

n (h(k), h
(k))
}

+
m∑

j=k+1

Lj

{
G∞(h(k)) ∨ G∞(h(k))

}
Dj

(
�j(hj , h

′
j)
)
,

for any h, h ∈ Hk
1(n) × Hm

k+1 and n ≥ 1.

We remark that Assumption 1 (i) is automatically fulfilled if k = 1.

Remark 1. If n ≥ 1 is fixed or Hj(n), j = 1, . . . , k, are independent of n, for example, Hj(n) = Hj ,
j = 1, . . . , k, for all n ≥ 1 then upper functions for |ξh(n)| can be derived under Assumption 1. However,
if we are interested in finding upper functions for |ξh(n)| when n is varying, we cannot do it in general
without specifying the dependence of Hj(n), j = 1, . . . , k, on n.

In view of the latter remark we will seek upper functions for |ξh(n)| when h ∈ H̃(n) := H̃k
1(n)×Hm

k+1.

Here H̃k
1(n) = H̃1(n)× · · · × H̃k(n) and let

{
H̃j(n) ⊂ Hj(n), n ≥ 1

}
, j = 1, . . . , k, be a sequence of sets

satisfying an additional restriction. We will not be tending here to the maximal generality and complete
Assumption 1 by the following condition.

Assumption 2. For any m ∈ N
∗ there exists n[m] ∈ {m,m + 1, . . . , 2m} such that

⋃

n∈{m,m+1,...,2m}
H̃k

1(n) ⊆ Hk
1

(
n[m]

)
.

We note that Assumption 2 obviously holds if for any j = 1, . . . , k the sequence
{
H̃j(n), n ≥ 1

}
is

an increasing/decreasing sequence of sets.

1.3. Totally Bounded Case

The objective is to find upper functions for |ξh(n)| under Assumption 1 enforced, if necessary, by
Assumption 2 and the condition imposed on the entropies of the sets Hj , j = k + 1, . . . ,m.

1.3.1. Assumptions and main result. The following condition will be additionally imposed in this
section.

Assumption 3. Suppose that (1.7) holds and there exist N,R < ∞ such that for any ς > 0 and
any j = k + 1, . . . ,m

EHj ,�j
(ς) ≤ N [log2 {R/ς}]+,

where, as before, EHj ,�j
denotes the entropy of Hj measured in �j .

We remark that Assumption 3 is fulfilled, in particular, when (Hj , �j , κj), j = k + 1, . . . ,m, are
bounded and satisfy the doubling condition. Note also that this assumption can be considerably
weakened, see discussion after Theorem 1.

Notation. Let 3 ≤ n1 ≤ n2 < 2n1 be fixed and set Ñ = {n1, . . . ,n2}. For any h ∈ H set

Fn2(h) =

⎧
⎨

⎩
supi=1,...,n2

Ef

∣∣G(h,Xi)
∣∣, n1 �= n2,

(n2)−1
∑n2

i=1 Ef

∣∣G(h,Xi)
∣∣, n1 = n2,
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and remark that if additionally Xi, i ≥ 1, are identically distributed then we have the same definition of
Fn2(·) in both cases. We note that

Fn2 := sup
n∈Ñ

sup
h∈H̃(n)

Fn2(h) ≤ sup
n∈Ñ

Gn < ∞

in view of Assumption 1 (i). Let b > 1 be fixed and put

n =

{
n1, n1 = n2,

n[n1], n1 �= n2,
β =

{
0, n1 = n2;
b, n1 �= n2,

where, recall, n[·] is defined in Assumption 2.

Define L̂j(z) = supu≤z max
{
u−1Lj(u), 1

}
and L(k)(z) =

∑m
j=k+1 log2 {L̂j(2z)} and introduce the

following quantities: for any h(k) ∈ Hk
1 and any q > 0

P (h(k)) = (36kδ−2
∗ + 6) log

(
1 + log{2G−1

n G∞(h(k))}
)

+ 36Nδ−2
∗ L(k)

(
G∞(h(k))

)
+ 18CN,R,m,k,

Mq(h(k)) = (72kδ−2
∗ + 2.5q + 1.5) log

(
2G−1

n G∞(h(k))
)

+ 72Nδ−2
∗ L(k)

(
G∞(h(k))

)
+ 36CN,R,m,k.

Here δ∗ is the smallest solution of the equation (48δ)−1s∗(δ) = 1, where, recall, s∗(δ) = (6/π2)
(
1 +

[log δ]2
)−1, δ ≥ 0. The quantities N , R are defined in Assumption 3.

The explicit expression of the constant CN,R,m,k, as well as explicit expressions of the constants λ1,
λ2 and CD,b used in the description of the results below, are given in Section 2.1.2, which precedes the
proof of Theorem 1.

Result. For any r ∈ N put Fn2,r(h) = max[Fn2(h), e−r] and define for any h ∈ H, u ≥ 0 and q > 0

V(u)
r (n, h) = λ1

√
G∞(h(k))

(
Fn2,r(h)n−1

)(
P (h(k)) + 2 log

{
1 +

∣∣ log
(
Fn2,r(h)

)∣∣}+ u
)

+ λ2G∞(h(k))
(
n−1 logβ (n)

)(
P (h(k)) + 2 log

{
1 +

∣∣ log
(
Fn2,r(h)

)∣∣}+ u
)
,

U (u,q)
r (n, h) = λ1

√
G∞(h(k))

(
Fn2,r(h)n−1

)(
Mq(h(k)) + 2 log

{
1 +

∣∣ log
(
Fn2,r(h)

)∣∣}+ u
)

+ λ2G∞
(
h(k)

)(
n−1 logβ (n)

)(
Mq(h(k)) + 2 log

{
1 +

∣∣ log
(
Fn2,r(h)

)∣∣}+ u
)
.

Theorem 1. Let Assumptions 1 and 3 be fulfilled. If n1 �= n2 suppose additionally that Assump-
tion 2 holds. Then for any r ∈ N, b > 1, u ≥ 1 and q ≥ 1

Pf

{
sup
n∈Ñ

sup
h∈H̃(n)

[
|ξh(n)| − V(u)

r (n, h)
]
≥ 0

}
≤ 2419 e−u,

Ef

{
sup
n∈Ñ

sup
h∈H̃(n)

[
|ξh(n)| − U (u,q)

r (n, h)
]}q

+
≤ cq

[√
(n1)−1Fn2Gn ∨

(
(n1)−1 logβ (n2)Gn

)]q
e−u,

where cq = 2(7q/2)+53q+4Γ(q + 1)(CD,b)q .

Remark 2. The inspection of the proof of the theorem allows us to assert that Assumption 3 can be
weakened. The condition that is needed in view of the used technique: for some α ∈ (0, 1), L < ∞

sup
ς>0

ς−α
EHj ,�j

(ς) ≤ L, j = k + 1, . . . ,m. (1.10)

In particular, this allows us to consider the generalized empirical processes indexed by sets of smooth
functions. However the latter assumption does not permit us to express upper functions explicitly as this
is done in Theorem 1. This explains why we prefer to state our results under Assumption 3.
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Several other remarks are in order.

1◦. First we note that the results presented in the theorem are obtained without any assumption on
the densities fi, i ≥ 1. In particular, the obtained upper functions remain finite even if the densities fi,
i ≥ 1, are unbounded.

2◦. Next, putting r = +∞ we get the results of the theorem with Fn2,r(·) = Fn2(·). This improves

the first terms in the expressions of V(u)
r (·, ·) and U (u,q)

r (·, ·), however the second terms may explode if
Fn2(h) = 0 for some h ∈ H. The latter fact explains the necessity to “truncate” Fn2(·) from below, i.e.,
to consider Fn2,r(·) instead of Fn2(·).

1.3.2. Law of iterated logarithm. Our goal here is to use the first assertion of Theorem 1 in order to
establish a non-asymptotic version of the law of iterated logarithm for

ηh(k)(n) := sup
h(k)∈Hm

k+1

|ξh(n)|.

Suppose that for some c > 0, b > 0

c ≤ Gn ≤ Gn ≤ cnb, ∀n ≥ 1. (1.11)

We would like to emphasize that the restriction Gn ≥ c is imposed for simplicity of notation and the
results presented below are valid if Gn decreases to zero polynomially in n.

Moreover we will assume that

sup
n≥1

sup
h∈H̃(n)

sup
i≥1

Ef |G(h,Xi)| =: F < ∞. (1.12)

We will see that this condition is fulfilled in various particular problems if the densities fi, i ≥ 1, are
uniformly bounded. Suppose finally that for some a > 0

L(k)(z) ≤ a log{1 + log (z)}, ∀z ≥ 3. (1.13)

For any a > 0 and n ≥ 3 define

H
k
1(n, a) = H̃

k
1(n) ∩

{
h
(k) : G∞(h(k)) ≤ n[log(n)]−a

}
.

Theorem 2. Let Assumptions 1, 2 and 3 be fulfilled and suppose additionally that (1.11), (1.12),
and (1.13) hold. Then there exists Υ > 0 such that for any j ≥ 3 and any a > 2

Pf

{
sup
n≥j

sup
h(k)∈H

k
1(n,a)

[ √
n ηh(k)(n)

√
G∞(h(k)) log (1 + log (n))

]
≥ Υ

}
≤ 2419

log(j)
.

The explicit expression of the constant Υ can be easily derived but it is quite cumbersome and we
omit its derivation.

Remark 3. An inspection of the proof of the theorem shows that for any y ≥ 0 one can find 0 <
Υ(y) < ∞ such that the assertion of the theorem remains true if one replaces Υ by Υ(y) and the right-
hand side of the obtained inequality by 2419[log(j)]−(1+y). This makes sensible to consider small values
of j.

A simple corollary of Theorem 2 is the law of iterated logarithm:

lim sup
n→∞

sup
h(k)∈H

k
1(n,a)

[ √
n ηh(k)(n)

√
G∞

(
h(k)

)
log log (n)

]
≤ Υ, Pf-a.s. (1.14)
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2. PROOF OF THEOREMS 1 AND 2

2.1. Proof of Theorem 1

2.1.1. Preliminaries. We start the proof with several technical results used in the sequel. Put for any
i = 1, . . . ,n2, y ∈

[
n1/n2, 1

]
and α = b

[
log (n2)

]−1,

Qi(y) = 1(i/n2,1](y) + (n2y − i + 1)α1Δi(y), Qi(y) = y−1Qi(y).

Here Δi =
(
(i − 1)/n2, i/n2

]
, i = 3, . . . ,n2, and Δ2 =

[
1/n2, 2/n2

]
.

For any a ≥ 1 let �a� be the smallest integer larger or equal to a. This implies, in particular, that
y ∈ Δ
n2y�. First we note that for any y, ȳ ∈ [n1/n2, 1] and any i = 1, . . . ,n2

Qi(y) ≤ 1, Qi(y) = 0, ∀i > �n2y�, |Qi(y) −Qi(ȳ)| ≤ 1 ∧ |n2(y − ȳ)|α. (2.1)

The first and the third inequalities imply for any i = 1, . . . ,n2 and any y, ȳ ∈ [n1/n2, 1]

|Qi(y) − Qi(ȳ)| ≤ (y ∧ ȳ)−1

[
|n2(y − ȳ)|α +

(
1 − y ∧ ȳ

y ∨ ȳ

)]
. (2.2)

For any z, z′ ∈ R+ denote w(z, z′) =
(
1−

√
z∧z′
z∨z′

)1/2, and remark that w is a metric on R+. This follows

from the relation

√
2w(z, z′) =

[
E

(
b(z)√

z
− b(z′)√

z′

)2]1/2

,

where b is the standard Wiener process. Taking into account that y, ȳ ≥ 1/2 and that w(y ∧ ȳ) ≤ 1 we
obtain from (2.2)

|Qi(y) − Qi(ȳ)| ≤ 8eb
[
w(y, ȳ)

]α
. (2.3)

Here we have also used the definition of α. Taking into account that for any a ≤ c

sup
p∈(0,1]

pa
(
1 − log (p)

)c = ea−c
[
c/a

]c
,

we obtain from (2.3) for any b > 0, y, ȳ ∈ [n1/n2, 1] and n2 ≥ 3

sup
i=1,...,n2

∣∣Qi(y) − Qi(ȳ)
∣∣ ≤ 8e

[
log (n2)

1 − log
(
w(y, ȳ)

)
]b

. (2.4)

Next, for any y, ȳ ∈ [n1/n2, 1]

|Qi(y) −Qi(ȳ)| = 0, i /∈
{
�n2(y ∧ ȳ)�, . . . , �n2(y ∨ ȳ)�

}
. (2.5)

We have for any y, ȳ ∈
[
n1/n2, 1

]
in view of the first and the third bounds in (2.1) and (2.5)

n2∑

i=1

|Qi(y) −Qi(ȳ)|2 ≤
{

2n2|y − ȳ|, �n2(y ∨ ȳ)� − �n2(y ∧ ȳ)� ≥ 3,
3|n2(y − ȳ)|2α, �n2(y ∨ ȳ)� − �n2(y ∧ ȳ)� ≤ 2.

To get the first inequality we have also used the fact that �n2(y ∨ ȳ)� − �n2(y ∧ ȳ)� ≥ 3 implies
n2(y ∨ ȳ − y ∧ ȳ) > 2 and therefore

�n2(y ∨ ȳ)� − �n2(y ∧ ȳ)� + 1 ≤ n2(y ∨ ȳ − y ∧ ȳ) + 2 ≤ 2n2(y ∨ ȳ − y ∧ ȳ) = 2n2|y − ȳ|.
Thus we have for any y, ȳ ∈ [n1/n2, 1]

√√√√
n2∑

i=1

|Qi(y) −Qi(ȳ|2 ≤
√

2n2|y − ȳ| +
√

3|n2(y − ȳ)|α ≤ 2
√

n2w(y, ȳ) + 2
√

3eb
[
w(y, ȳ)

]α
.
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Hence we get
√√√√

n2∑

i=1

|Qi(y) − Qi(ȳ)|2 ≤ 8
√

n2w(y, ȳ) + 4
√

3eb
[
w(y, ȳ)

]α

≤ 8
√

n2w(y, ȳ) + 4
√

3e

[
log (n2)

1 − log
(
w(y, ȳ)

)
]b

.

Taking into account that supz≥1 z−1/2[log (2ez)]b ≤ (2b/e)b we obtain
√√√√

n2∑

i=1

|Qi(y) − Qi(ȳ)|2 ≤ 8
√

n2

[
w(y, ȳ) +

√
3/4e(2b/e)b

{
1 − log(w(y, ȳ))

}−b
]
.

Finally we get for any y, ȳ ∈ [n1/n2, 1] and any b > 1
√√√√

n2∑

i=1

|Qi(y) − Qi(ȳ)|2 ≤ 8[2b + 1](b)b
√

n2

[
1 − log

(
w(y, ȳ)

)]−b
. (2.6)

2.1.2. Constants. The following constants appeared in the description of upper functions and inequali-
ties obtained in Theorem 1. Let χ = 0 if n1 = n2 and χ = 1 if n1 �= n2. Then

CN,R,m,k = C
(1)
N,R,m,k + C

(2)
N,R,m,k + 2χab, ab = 2δ−2

∗ log(2) + 2 sup
δ>δ∗

(δ2 ∧ δ)−1
(
96δ
/
s∗(δ)

) 1
b ,

C
(1)
N,R,m,k = sup

δ>δ∗
δ−2

{
k

[
1 + log

(
9216mδ2

[s∗(δ)]2

)]

+

+ N(m − k)
[

log2

{(
4608mRδ2

[s∗(δ)]2

)}]

+

}
,

C
(2)
N,R,m,k = sup

δ>δ∗
δ−1

{
k

[
1 + log

(
9216mδ

s∗(δ)

)]

+

+ N(m − k)
[

log2

{(
4608mRδ

s∗(δ)

)}]

+

}
.

Put also CD :=
[
supj=0,k+1,...,m supz∈[0,1] D

′
j(z)

]
∨ 2, where D′

j is the first derivative of the function Dj .

Set, finally, cb = 4
√

2
[
2b + 1

]
bb and let

λ1 = 4
√

2e
(√

CD ∨ [χcb]
)
, λ2 = (16/3)

(
CD ∨ 8e

)
, CD,b =

(√
2CD ∨ [χcb]

)
∨
[
(2/3)

(
CD ∨ 8e

)]
.

2.1.3. Proof of the theorem. 1◦. Put for any i = 1, . . . , n

ε
(
h,Xi

)
= G

(
h,Xi

)
− EfG(h,Xi)

and define for any y ∈ (n1/n2, 1] and any h ∈ H the random function

ξ(y, h) = n−1
2

n2∑

i=1

ε
(
h,Xi

)
Qi(y). (2.7)

We remark that ξh(p) = ξ
(
p/n2, h

)
for any p ∈ Ñ and any h ∈ H. Thus in order to get the assertions of

the theorem it suffices to find upper functions for |ξ(·, ·)| on
[
n1/n2, 1

]
× H

(
n
)

in view of Assumption 2
and the definition of the number n.

In view of Bernstein’s inequality Assumption 1 in Lepski (2013) is fulfilled with θ = h =: (y, h) and
θ̄ = h̄ =: (ȳ, h̄),

A2(θ) = A2
f (h) := 2n−2

2

n2∑

i=1

Q2
i (y)EfG2(h,Xi), (2.8)

a2(θ, θ̄) = a2
f (h, h̄) := 2n−2

2

n2∑

i=1

Ef

[
Qi(y)G(h,Xi) − Qi(ȳ)G(h̄,Xi)

]2
, (2.9)
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B(θ) = B∞(h) = (4/3)n−1
2

[
sup

i=1,...,n2

Qi(y)
]
sup
x∈X

∣∣G(h, x)
∣∣, (2.10)

b(θ, θ̄) = b∞(h, h̄) := (2/3)n−1
2 sup

i=1,...,n
sup
x∈X

∣∣ε(h, x)Qi(y) − ε(h̄, x)Qi(ȳ)
∣∣. (2.11)

Note that af and b∞ are semi-metrics on [n1/n2, 1] × H and ξ(·, ·) is obviously continuous on
[n1/n2, 1] × H(n) in the topology generated by b∞. Moreover, Af and B∞ are bounded and therefore
Assumption 2 in Lepski (2013) is fulfilled.

Later on we will use the following notation: for any Q : X → R put ‖Q‖∞ = supx∈X |Q(x)|.
We obtain from (2.8)–(2.11) and (2.4) for any h, h̄ ∈ [n1/n2, 1] × H(n)

A2
f (h) ≤ 2(n1)−1Fn2(h)G∞(h(k)), B∞(h) ≤ (4/3)(n1)−1G∞(h(k)), (2.12)

b∞(h, h̄) ≤ 4 logβ (n2)
3n1

{∥∥G(h, ·) − G(h̄, ·)
∥∥
∞ + γ8eG∞(h̄(k))

[
1 − log

(
w(y, ȳ)

)]−b
}
, (2.13)

where, recall, γ = 0 if n1 = n2 and γ = 1 if n1 �= n2. Here we have used that if n1 = n2 the second term
in the last inequality disappears.

We also get using (2.1) and (2.6)

af(h, h̄) ≤
√

2n−1
2

{√√√√
n2∑

i=1

Q2
i (y)Ef

[
G(h,Xi) − G(h̄,Xi)

]2

+

√√√√Fn2(h̄)G∞(h̄(k))
n2∑

i=1

(
Qi(y) − Qi(ȳ)

)2
}

≤
√

2(n1)−1/2

{√(
Fn2(h) + Fn2(h̄)

)∥∥G(h, ·) − G(h̄, ·)
∥∥
∞

+ χcb

√
2Fn2(h̄)G∞(h̄(k))

[
1 − log

(
w(y, ȳ)

)]−b
}

, (2.14)

where we have put cb = 4
√

2[2b + 1](b)b. Here we have used that if n1 = n2 the second term in the last
inequality disappears.

For any τ > 0 put H
(
n, τ

)
=
{
h ∈ H(n) : Fn2(h) ≤ τ

}
. Our first step consists in establishing an

upper function for |ξ(·, ·)| on H(τ) :=
[
n1/n2, 1

]
× H(n, τ). As usual, the supremum over empty set is

supposed to be zero.

2◦. Note that in view of (2.12) and (2.14) for any h,h ∈ H(τ)

A2
f (h) ≤ 2τ(n1)−1G∞(h(k)), B∞(h) ≤ 4 logβ (n2)

3n1
G∞(h(k)), (2.15)

af(h, h̄) ≤ 2
√

τ(n1)−1/2
{√

‖G(h, ·) − G(h̄, ·)‖∞ + χcb

√
G∞(h̄(k))

[
1 − log

(
w(y, ȳ)

)]−b
}

. (2.16)

Moreover, by the triangle inequality we obviously have for any h,h ∈ H(τ)

af(h,h) ≤ Af(h) + Af(h) ≤
√

8τ(n1)−1[G∞(h(k)) ∨ G∞(h(k))], (2.17)

b∞(h,h) ≤ B∞(h) + B∞(h) ≤ 8 logβ (n2)
3n1

[G∞(h(k)) ∨ G∞(h(k))]. (2.18)

Set

G(h(k), h
(k)) = G∞(h(k)) ∨ G∞(h(k)).
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We get for any h, h satisfying �(k)(h(k), h
(k)) ∨ supj=k+1,...,m�j

(
hj , hj

)
≤ 1 in view of Assumption 1 (i)

∥∥G(h, ·) − G(h̄, ·)
∥∥
∞ ≤ CD

{
G(h(k), h

(k))�(k)(h(k), h
(k)) +

m∑

j=k+1

Lj{G(h(k), h
(k))}�j

(
hj , hj

)}
.

On the other hand, putting L̃j(y) = Lj(y) ∨ y, j = 0, k + 1, . . . m, we have for any h, h satisfying[
�(k)(h(k), h

(k)) ∨ supj=k+1,...,m �j(hj , h
′
j)
]

> 1

‖G(h, ·) − G(h̄, ·)‖∞ ≤ ‖G(h, ·)‖∞ + ‖G(h̄, ·)‖∞ ≤ 2G(h(k), h
(k))

≤ CD

{
G(h(k), h

(k))�(k)(h(k), h
(k)) +

m∑

j=k+1

L̃j{G(h(k), h
(k))}�j(hj , hj)

}
.

Here we have also used that CD ≥ 2. Thus we finally have for any h, h

‖G(h, ·) − G(h̄, ·)‖∞ ≤ CD

{
G(h(k), h

(k))�(k)(h(k), h
(k)) +

m∑

j=k+1

L̃j{G(h(k), h
(k))}�j(hj , hj)

}
.

The latter inequality together with (2.13) and (2.16) yields for any h,h ∈ H(τ)

af(h,h) ≤ a

{(
G(h(k), h

(k))�(k)(h(k), h
(k)) +

m∑

j=k+1

L̃j{G(h(k), h
(k))}�j(hj , hj)

)1/2

+ χ

√
G(h(k), h

(k))
[
1 − log

(
w(y, ȳ)

)]−b
}

, (2.19)

b∞(h,h) ≤ b

{
G(h(k), h

(k))�(k)(h(k), h
(k)) +

m∑

j=k+1

L̃j{G(h(k), h
(k))}�j(hj , hj)

+ χG(h(k), h
(k))
[
1 − log

(
w(y, ȳ)

)]−b
}

, (2.20)

where we have put a = 2
√

τ(n1)−1/2
(√

CD ∨ [χcb]
)
, b =

4
(
CD∨8e

)
logβ (n2)

3n1
.

3◦. We note that in view of (2.15) Assumption 1 (1) in Lepski (2013) is verified on H(τ) with

A(θ) = A(h) := a

√
G∞

(
h(k)

)
, B(θ) = B(h) := bG∞

(
h
(k)
)
, θ = h.

The idea now is to apply Proposition 2, Lepski (2013), with Θ = H(τ). Put

Gn[τ ] = inf
h∈H(n,τ)

G∞
(
h
(k)
)
,

which yields A = a
√

Gn[τ ] and B = bGn[τ ]. Choose s1 = s2 = s∗. To apply Proposition 2, Lepski
(2013), one has to bound from above the function

E�s(u, v) = e(a)
s1

(
Au,ΘA(Au)

)
+ e(b)

s2

(
Bv,ΘB(Bv)

)
, u, v ≥ 1,

defined in this proposition. Here, in our case, a = af , b = b∞ and

ΘA

(
Au
)

=
{
h ∈ H(n, τ) : G∞(h(k)) ≤ u2Gn[τ ]

}
× [n1/n2, 1],

ΘB

(
Bv
)

=
{
h ∈ H(n, τ) : G∞(h(k)) ≤ vGn[τ ]

}
× [n1/n2, 1].

Let us make several remarks.

3◦a. First recall that

e
(af )
s∗
(
Au,ΘA(Au)

)
= sup

δ>0
δ−2

EΘA(Au), af

(
Au(48δ)−1s∗(δ)

)
,
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e
(b∞)
s∗

(
Bv,ΘB(Bv)

)
= sup

δ>0
δ−1EΘB(Bv), b∞

(
Bv(48δ)−1s∗(δ)

)
.

We have in view of (2.17) and (2.18) that for any h,h ∈ H(τ)

af

(
h,h

)
≤ a

√[
G∞(h(k)) ∨ G∞(h(k))

]
, b∞

(
h,h

)
≤ b

[
G∞(h(k)) ∨ G∞(h(k))

]
,

where we have also used again that CD ≥ 2. Therefore

sup
h,h∈ΘA(Au)

af

(
h,h

)
≤ Au, sup

h,h∈ΘB(Bv)

b∞
(
h,h

)
≤ Bv.

This yields for any δ ≤ δ∗, where, recall, δ∗ is the smallest solution of the equation (48δ)−1s∗(δ) = 1,

EΘA(Au), af

(
Au(48δ)−1s∗(δ)

)
= 0, EΘB(Bv), b∞

(
Bv(48δ)−1s∗(δ)

)
= 0

and therefore

e
(af )
s∗
(
Au,ΘA(Au)

)
= sup

δ>δ∗
δ−2

EΘA(Au), af

(
Au(48δ)−1s∗(δ)

)
, (2.21)

e
(b∞)
s∗

(
Bv,ΘB(Bv)

)
= sup

δ>δ∗
δ−1

EΘB(Bv), b∞

(
Bv(48δ)−1s∗(δ)

)
. (2.22)

3◦b. For any t ≥ 1 put Hk
1(t,n) =

{
h(k) ∈ Hk

1(n) : G∞(h(k)) ≤ Gnt
}

and note that the following
obvious inclusions hold:

ΘA

(
Au
)
⊆ H

k
1

(
u2Gn[τ ]G−1

n ,n
)
× H

m
k+1 ×

[
n1/n2, 1

]
, (2.23)

ΘB

(
Bv
)
⊆ H

k
1

(
vGn[τ ]G−1

n ,n
)
× H

m
k+1 ×

[
n1/n2, 1

]
. (2.24)

For any ε > 0 denote by N
(k)
t (ε) the minimal number of �

(k)
n -balls of radius ε needed to cover Hk

1(t,n),
let Nj(ε), j = k + 1, . . . ,m, be the minimal number of �j-balls of radius ε needed to cover Hj and let
N(ε) be the minimal number of w-balls of radius ε needed to cover

[
n1/n2, 1

]
.

Let H be an arbitrary subset of Hk
1(t,n) × Hm

k+1 × [1/2, 1]. It is evident that for any given ε(k) > 0,
εj > 0, j = k + 1, . . . ,m, and ε > 0 one can construct a net

{
h(i), i = 1, . . . , I[H]

}
⊂ H such that

∀h = (h, y) ∈ H ∃i ∈ {1, . . . , I
[
H
]
}

�
(k)
n (h(k), h(k)(i)) ≤ ε(k), �j(hj , hj(i)) ≤ εj, j = k + 1, . . . ,m, w(y, y(i)) ≤ ε, (2.25)

I
[
H
]
≤ N(ε/2) N

(k)
t (ε(k)/2)

m∏

j=k+1

Nj(εj/2), ∀H ⊆ H
k
1(t,n) × H

m
k+1 × [n1/n2, 1]. (2.26)

Moreover we obtain from (2.19) and (2.20) for any u, v ≥ 1

af(h,h) ≤ a

{(
Gn[τ ]u2 �

(k)
n (h(k), h

(k)) +
m∑

j=k+1

L̃j(Gn[τ ]u2)�j(hj , hj)
)1/2

+ χu
√

Gn[τ ]
[
1 − log (w(y, ȳ))

]−b
}

, ∀h,h ∈ ΘA(Au),

b∞(h,h) ≤ b

{
Gn[τ ]v �

(k)
n (h(k), h

(k)) +
m∑

j=k+1

L̃j(Gn[τ ]v)�j(hj , hj)

+ χGn[τ ]v
[
1 − log

(
w(y, ȳ)

)]−b
}

, ∀h,h ∈ ΘB(Bv).

Thus, putting t = t1 := u2Gn[τ ]G−1
n and choosing for any ς > 0

ε(k) =
ς2

2a2mGn[τ ]u2
, εj =

ς2

2a2mL̃j(Gn(τ)u2)
, ε = e−

(
2ua

√
Gn[τ ]

ς

)1/b

,
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we obtain in view of (2.23) and (2.25) with H = ΘA

(
Au
)

∀h ∈ ΘA(Au) ∃i ∈
{
1, . . . , I

[
ΘA(Au)

]}
: af

(
h,h(i)

)
≤ ς. (2.27)

Putting t = t2 := vGn[τ ]G−1
n and choosing

ε(k) =
ς

2bmGn[τ ]v
, εj =

ς

2bmL̃j(Gn[τ ]v)
, ε = e−

(
2vbGn[τ ]

ς

)1/b

we obtain in view of (2.23) and (2.25) with H = ΘB

(
Bv
)

∀h ∈ ΘB

(
Bv
)

∃i ∈
{
1, . . . , I

[
ΘB(Bv)

]}
: b∞

(
h,h(i)

)
≤ ς. (2.28)

We get from (2.26), (2.27) and (2.28) for any ς > 0

EΘA(Au),af
(ς) ≤ E

Hk
1(t1,n),�

(k)
n

(
ς2

4ma2Gn[τ ]u2

)
+

m∑

j=k+1

EHj ,�j

(
ς2

4ma2L̃j

(
Gn[τ ]u2

)
)

+ E[n1/n2,1],w

(
2−1 exp

{
−
(
2ua

√
Gn[τ ]ς−1

)1/b})
, (2.29)

E
ΘB(Bv

)
,b∞

(ς) ≤ E
Hk

1(t2,n),�
(k)
n

(
ς

4mbGn[τ ]v

)
+

m∑

j=k+1

EHj ,�j

(
ς

4mbL̃j

(
Gn[τ ]v

)
)

+ E[n1/n2,1],w

(
2−1 exp

{
−
(
2vbGn[τ ]ς−1

)1/b})
. (2.30)

4◦. We get in view of Assumption 3
m∑

j=k+1

EHj ,�j

(
ς2

4ma2L̃j

(
Gn[τ ]u2

)
)

≤ N
m∑

j=k+1

[
log2

{
4a2mRL̃j(Gn[τ ]u2)ς−2

}]

+
, (2.31)

m∑

j=k+1

EHj ,�j

(
ς

4mbL̃j

(
Gn[τ ]v

)
)

≤ N

m∑

j=k+1

[
log2

{
4bmRL̃j(Gn[τ ]v)ς−1

}]

+
. (2.32)

Taking into account that E[n1/n2,1],w(·) ≡ 0 if n1 = n2 and E[n1/n2,1],w(ε) ≤ log (2/ε2) for any ε ∈ (0, 1]
and any n2 ≤ 2n1, we have

E[n1/n2,1],w

(
2−1 exp

{
−
(
2ua

√
Gn[τ ]ς−1

)1/β}) = χ
(
2 log(2) + 2

(
2ua

√
Gn[τ ]ς−1

) 1
b

)
, (2.33)

E[n1/n2,1],w

(
2−1 exp

{
−
(
2vbGn[τ ]ς−1

)1/β}) = χ
(
2 log(2) + 2

(
2vbGn[τ ]ς−1

) 1
b

)
. (2.34)

Let us now bound from above E
Hk

1(t,n),�
(k)
n

. First we note that in view of Assumption 1 (i)

Hk
1(t,n) ⊆

{
h1 ∈ H1(n) : G1,n(h1) ≤ tG1,n

}
× · · · ×

{
hk ∈ Hk(n) : Gk,n(hk) ≤ tGk,n

}
. (2.35)

Consider the hyper-rectangle Z(t) = [G1,n, tG1,n]× · · · × [Gk,n, tGk,n], t ≥ 1, which we equip with the
metric

m(k)(z, z′) = max
i=1,...,k

∣∣ log(zi) − log(z′i)
∣∣, z, z′ ∈ Z(t),

where zi, z′i, i = 1, . . . , k, are the coordinates of z, z′ respectively. It is easily seen that for any ς > 0

EZ(t),m(k)(ς) ≤ k
[
log log t − log log (1 + ς)

]
+
≤ k

(
log (1 + log t) + [1 + log (1/ς)]+

)
.

This yields together with (2.35) in view of the obvious inequality E
Hk

1(t,n),�
(k)
n

(ς) ≤ EZ(t),m(k)(ς/2)

E
Hk

1(t,n),�
(k)
n

(ς) ≤ k
(
log (1 + log t) + [1 + log (2/ς)]+

)
. (2.36)
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We obtain from (2.36)

E
Hk

1(t1,n),�
(k)
n

(
ς2

4ma2Gn[τ ]u2

)
≤ k

(
log (1 + log t1) +

[
1 + log (8ma

2Gn[τ ]u2ς−2)
]
+

)
, (2.37)

E
Hk

1(t2,n),�
(k)
n

(
ς

4mbGn[τ ]v

)
≤ k

(
log (1 + log t2) +

[
1 + log (8mbGn[τ ]vς−1)

]
+

)
. (2.38)

Putting L̂j(z) = z−1L̃j(z) = max
{
z−1Lj(z), 1

}
, we get from (2.21), (2.29), (2.31), (2.33) and (2.37)

e
(af )
s∗
(
Au,ΘA(Au)

)
≤ kδ−2

∗ log
(
1 + log(u2Gn[τ ]G−1

n )
)

+ Nδ−2
∗

m∑

j=k+1

log2

{
L̂j(Gn[τ ]u2)

}

+ sup
δ>δ∗

δ−2

{
k

[
1 + log

(
9216mδ2

[s∗(δ)]2

)]

+

+ N(m − k)
[

log2

{(
4608mRδ2

[s∗(δ)]2

)}]

+

}

+ χ
(
2δ−2

∗ log(2) + 2 sup
δ>δ∗

δ−2
(
96δ
/
s∗(δ)

) 1
b

)

= kδ−2
∗ log

(
1 + log (u2Gn[τ ]G−1

n )
)

+ Nδ−2
∗

m∑

j=k+1

log2

{
L̂j(Gn[τ ]u2)

}

+ C
(1)
N,R,m,k + χab, (2.39)

where, recall, ab = 2δ−2
∗ log(2) + 2 supδ>δ∗(δ

2 ∧ δ)−1
(
96δ
/
s∗(δ)

) 1
b . Note that ab < ∞ since b > 1.

Repeating these computations we get from (2.22), (2.30), (2.32), (2.34) and (2.38)

e
(b∞)
s∗

(
Bv,ΘB(Bv)

)
≤ kδ−1

∗ log
(
1 + log (vGn[τ ]G−1

n )
)

+ Nδ−1
∗

m∑

j=k+1

log2

{
L̂j(Gn[τ ]v)

}
+ C

(2)
N,R,m,k + χab. (2.40)

We deduce from (2.39) and (2.40) that Ẽ�s, �s = (s∗, s∗), is bounded from above by the function

E(u, v) ≤ kδ−2
∗ log

{(
1 + log (u2Gn[τ ]G−1

n )
)(

1 + log (vGn[τ ]G−1
∞ )
)}

+ Nδ−2
∗

m∑

j=k+1

log2

[{
L̂j(Gn[τ ]u2)

}{
L̂j(Gn[τ ]v)

}]
+ CN,R,m,k. (2.41)

Here we have used that δ∗ < 1. We note that (2.41) implies in particular Assumption 3 in Lepski (2013)
and therefore Proposition 2, Lepski (2013), is applicable with Θ = H(τ).

5◦. To apply Proposition 2, Lepski (2013), on Θ = H(τ) we choose ε =
√

2− 1 and bound from above
the quantities

P√
2−1(h) := 4

[√
2 − 1

]−2E
(√

2G−1
n [τ ]G∞(h(k)),

√
2G−1

n [τ ]G∞(h(k))
)

+ 2�
(√

2G−1
n [τ ]G∞(h(k))

)
+ 2�

(√
2G−1

n [τ ]G∞(h(k))
)
,

M√
2−1,q(h) := 8

[√
2 − 1

]−2E
(√

2G−1
n [τ ]G−1

∞ (h(k)),
√

2G−1
n [τ ]G∞(h(k))

)

+ 2
(√

2 − 1 + q
)
log
(√

2G−1
n [τ ]G∞(h(k))

√
2G−1

n [τ ]G∞(h(k))
)
,

where, recall, �(u) = log
{
1 + log (u)

}
+ 2 log

{
1 + log {1 + log (u)}

}
.
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Taking into account that �(u) ≤ 3 log {1 + log (u)}, u ≥ 1,
[√

2− 1
]−2 ≤ 9 and that Gn[τ ] ≥ Gn for

any τ , we obtain from (2.41)

P√
2−1(h) ≤ [72kδ−2

∗ + 12] log
{
1 + log

(
2G∞

(
h(k)

)
G−1

n

)}

+ 72Nδ−2
∗

m∑

j=k+1

log2

{
L̂j

(
2G∞(h(k))

)}
+ 36CN,R,m,k =: 2P (h(k)),

M√
2−1,q(h) ≤ [144kδ−2

∗ + 3(1 + q)] log
(
2G∞(h(k))G−1

n

)

+ 144Nδ−2
∗

m∑

j=k+1

log2

{
L̂j

(
2G∞(h(k))

)}
+ 72CN,R,m,k =: 2Mq(h(k)).

We remark that P and Mq are independent of τ and y.
Put for any z ≥ 0 and any h ∈ H(τ)

V̌(z)
τ (h(k)) = 2

√
2a

√
G∞(h(k))

[
P (h(k)) + z

]
+ 4bG∞(h(k))

[
P (h(k)) + z

]
,

Ǔ(z,q)
τ (h(k)) = 2

√
2a

√
G∞(h(k))

[
Mq(h(k)) + z

]
+ 4bG∞(h(k))

[
Mq(h(k)) + z

]
,

where, recall, a = 2
√

τ(n1)−1/2
(√

CD ∨ [χcb]
)
, b = 4(CD∨8e) logβ (n2)

3n1
.

We conclude that Proposition 2, Lepski (2013) is applicable with V̌(z)
τ and Ǔ(z,q)

τ . Put for any
n ∈ {n1,n1 + 1, . . . ,n2}

a(n) = 2
√

2τ(n)−1/2
(√

CD ∨ [χcb]
)
, b(n) =

8
(
CD ∨ 8e

)
logβ (2n)

3n
and define

V(z)
τ

(
n, h(k)

)
= 2

√
2a(n)

√
G∞

(
h(k)

)[
P (h(k)) + z

]
+ 4b(n)G∞

(
h
(k)
)[

P (h(k)) + z
]
,

U(z,q)
τ

(
n, h(k)

)
= 2

√
2a(n)

√
G∞

(
h(k)

)[
Mq(h(k)) + z

]
+ 4b(n)G∞

(
h(k)

)[
Mq(h(k)) + z

]
.

It is easily seen that a(n) ≥ a, b(n) ≥ b for any n ∈
{
n1, . . . ,n2

}
since n2 ≤ 2n1. Therefore

V(z)
τ

(
n, h(k)

)
≥ V̌(z)

τ

(
h
(k)
)
, U(z,q)

τ

(
n, h(k)

)
≥ Ǔ(z,q)

τ

(
h
(k)
)
.

It remains to recall that ξh(n) = ξ
(
n/n2, h

)
for any n ∈ {n1,n1 + 1, . . . ,n2} and any h ∈ H. All what

was said above allows us to assert that Proposition 2, Lepski (2013), is applicable to |ξh(n)| on

H(τ) := {n1,n1 + 1, . . . ,n2} × H(n, τ) for any τ > 0 with V(z)
τ (·, ·) and U(z,q)

τ (·, ·).
Thus, putting h = (n, h) we obtain for any τ > 0, any z ≥ 1 and any q ≥ 1

Pf

{
sup

h∈H(τ)

[
|ξh(n)| − V(z)

τ

(
n, h(k)

)]
≥ 0

}
≤ 4

[
1 +

[
log {1 + 2−1 log 2}

]−2
]2

exp {−z}, (2.42)

Ef

{
sup

h∈H(τ)

[
|ξh(n)| − U(z,q)

τ

(
n, h(k)

)]
Big}q

+ ≤ 2(5q/2)+33q+4Γ(q + 1)
[
A ∨ B

]q exp {−z}, (2.43)

where, recall, A = a
√

Gn[τ ] and B = bGn[τ ].
To get the statements of the theorem we will have to choose z. This, in its turn, will be done for Vτ

and Uτ differently in dependence on the values of the parameter τ .

6◦. Let r ∈ N be fixed and for any r ∈ N put τr = er−r. For any r ∈ N
∗ denote Ĥ(r) =

H
(
n, τr

)
\ H
(
n, τr−1

)
, Ĥ(0) = H

(
n, τ0

)
and let Ĥ(r) := {n1,n1 + 1, . . . ,n2} × Ĥ(r).
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Probability bound. For any u ≥ 1 put zr(u) = u + 2 log
(
1 + |r − r|

)
and remark that

zr(u) =

{
u + 2 log (| log (τr−1)|), r ≤ r,
u + 2 log (1 + | log (τr)|), r ≥ r.

We have for any r ∈ N and any h ∈ Ĥ(r)

τ0 = Fn2,r(h) ⇒ z0(u) = u + 2 log
{
1 + | log (Fn2,r(h))|

}
,

τr−1 ≤ Fn2(h) = Fn2,r(h) ⇒ zr(u) ≤ u + 2 log
{
| log (Fn2,r(h))|

}
, 1 ≤ r ≤ r− 1,

τr ≥ Fn2(h) = Fn2,r(h) ⇒ zr(u) ≤ u + 2 log
{
1 + | log (Fn2,r(h))|

}
, r ≥ r.

Hence we have for any r ∈ N

zr(u) ≤ u + 2 log
{
1 + | log (Fn2,r(h))|

}
, ∀h ∈ Ĥ(r), (2.44)

which yields for any r ∈ N

V(zr(u))
τr

(
n, h(k)

)
≤ V(u)

r (n, h), ∀(n, h) ∈ Ĥ(r). (2.45)

Here we have also taken into account that τr ≤ eFn2,r(h), ∀h ∈ Ĥ(r) for any r ∈ N.

Thus we get for any r ∈ N and u ≥ 0, taking into account (2.45), the inclusion Ĥ(r) ⊆ H(τr) and
applying (2.42) with τ = τr,

Pf

{
sup

(n,h)∈Ĥ(r)

[
|ξh(n)| − V(u)

r (n, h)
]
≥ 0

}
≤

4
[
1 + [log {1 + 2−1 log 2}]−2

]2 exp {−u}
[
1 + |r − r|

]2 . (2.46)

Since obviously Ñ× H(n) =
⋃∞

r=0 Ĥ(r), summing up the right-hand sides of (2.46) over r, we come to

the first assertion of the theorem. Here we have also used that 16
[
1 + [log {1 + 2−1 log 2}]−2

]2 ≤ 2419
and the fact that H̃(n) ⊆ H(n) for any n ∈ Ñ in view of Assumption 2 and the definition of the number n.

Moment’s bound. For any u ≥ 1 put

zr(u) = u + 2 log
(
1 + |r − r|

)
+ q log

(
Gn[τr]G−1

n

)
.

Similarly to (2.44) we have for any r ∈ N and any h ∈ Ĥ(r)

zr(u) ≤ u + 2 log
{
1 + | log (Fn2,r(h))|

}
+ q log

(
Gn[τr]G−1

n

)
.

Moreover, for any r ∈ N by definition

Gn[τr] := inf
h∈H(n,τr)

G∞(h(k))

and, therefore, for any h ∈ Ĥ(r)

zr(u) ≤ u + 2 log
{
1 + | log (Fn2,r(h))|

}
+ q log

{
G∞(h(k))G−1

n

}
.

Similarly to (2.45), this yields for any r ∈ N

U(zr(u),q)
τr

(n, h(k)) ≤ U (u,q)
r (n, h), ∀(n, h) ∈ Ĥ(r). (2.47)

Note that for any r ∈ N

A ∨ B ≤ 2CD,b

[√
(n1)−1Fn2Gn ∨

(
(n1)−1 logβ (n2)Gn

)][
Gn[τr]G−1

n

]
,

where CD,b =
(√

2CD ∨ [γcb]
)
∨
[
(2/3)

(
CD ∨ 8e

)]
. We get from (2.43) and (2.47), similarly to (2.46),

Ef

{
sup

(n,h)∈Ĥ(r)

[
|ξh(n)| − U (u,q)

r (n, h)
]}q

+
≤

Kq

[√
(n1)−1Fn2Gn ∨

(
(n1)−1 logβ (n2)Gn

)]q
e−u

[
1 + |r − r|

]2 ,

where Kq = 2(7q/2)+33q+4Γ(q + 1)(CD,b)q.
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Summing up the right-hand sides of the last inequality over r we come to the second assertion of the
theorem.

2.2. Proof of Theorem 2
For any l ∈ N

∗ set nl = j2l, Nl = {nl, nl + 1, . . . , nl+1} and let

ζj = sup
n≥j

sup
h(k)∈H

k
1(n,a)

[ √
n ηh(k)(n)

√
G∞

(
h(k)

)
log
(
1 + log (n)

)
]
.

We obviously have

Pf{ζj ≥ Υ} ≤
∞∑

l=1

Pf

{
sup
n∈Nl

sup
h(k)∈H

k
1(n,a)

[ √
n ηh(k)(n)

√
G∞

(
h(k)

)
log
(
1 + log (n)

)
]
≥ Υ

}

=
∞∑

l=1

Pf

{
sup
n∈Nl

sup
h(k)∈H

k
1(n,a)

[
ηh(k)(n) − Υ

√
n−1G∞

(
h(k)

)
log
(
1 + log (n)

)]
> 0

}
.

Let l ∈ N
∗ be fixed and later on Υr, r = 1, 2, 3, denote constants independent of l and n.

Note that in view of (1.11), (1.12) and (1.13) for any n ∈ Nl

V(2 log (1+log (nl)))
0 (n, h) ≤ λ1

√
(Fn−1)G∞

(
h(k)

(
Pn + 2 log {1 + | log (F)|} + 2 log (1 + log (n))

)

+ λ2(n−1 logb (n))G∞(h(k))
(
Pn + 2 log {1 + | log (F)|} + 2 log (1 + log (n))

)
,

where we have put

Pn = (36kδ−2
∗ + 6) log

(
1 + b log (2n)

)
+ 36Nδ−2

∗ a log
(
1 + log (2nb

c)
)

+ 18CN,R,m,k(b).

Hence, for any n ∈ Nl and any h ∈ H̃(n),

V(2 log (1+log (nl)))
0 (n, h) ≤ Υ1

√
G∞

(
h(k)

)
log
(
1 + log (n)

)

n
+Υ2

[
G∞

(
h(k)

)
logb (n) log

(
1 + log (n)

)

n

]
.

Since b > 1 can be chosen arbitrarily and a > 2, let 1 < b < a/2. This yields for any n ≥ 3 and any

h(k) ∈ H
k
1(n, a)

G∞
(
h(k)

)
logb (n) log

(
1 + log (n)

)

n
≤ Υ3

√
G∞

(
h(k)

)
log
(
1 + log (n)

)

n

and therefore putting Υ = Υ1 + Υ2Υ3 we get for any n ∈ Nl

V(2 log (1+log (nl)))
0 (n, h) ≤ Υ

√
G∞

(
h(k)

)
log
(
1 + log (n)

)

n
.

Noting that the right-hand side of this inequality is independent of h(k) and applying the first assertion

of Theorem 1 with Ñ = Nl, r = 0 and u = 2 log (1 + log (nl)) we have

Pf{ζj ≥ Υ} ≤ 2419
∞∑

l=1

(
l + log (j)

)−2 ≤ 2419
log (j)

.

REFERENCES
1. O. Lepski, “Upper Functions for Positive Random Functionals. I. General Setting and Gaussian Random

Functions”, Math. Methods Statist. 22 (1), 1–27 (2013).
2. C. J. Stone, “Additive Regression and Other Nonparametric Models”, Ann. Statist. 13 (2), 689–705 (1985).

MATHEMATICAL METHODS OF STATISTICS Vol. 22 No. 2 2013


