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Abstract—The paper is concerned with the adaptive minimax problem of testing the independence
of the components of a d-dimensional random vector. The functions under alternatives consist of
smooth densities supported on [0, 1]¢ and separated away from the product of their marginals in Ly-
norm. We are interested in finding the adaptive minimax rate of testing and a test that attains this
rate. We focus mainly on the tests for which the error of the first kind a,, can decrease to zero as the
number of observations increases. We show also how this property of the test affects its error of the
second kind.

Keywords: independence hypothesis testing, minimax hypothesis testing, asymptotics of errors
probabilities, density estimation.

2000 Mathematics Subject Classification: primary 62G10, 62G20; secondary 62G07.

DOI: 10.3103/51066530711030069

1. INTRODUCTION

Consider the statistical experiment generated by the observation X™ = (X3,..., X,), where X; =
(Xi(l), ... ,Xi(d)), i=1,...,n, are independent identically distributed (i.i.d.) d-dimensional random
vectors with density function f. Let ® be the set of all probability densities on R%. Here and later we

denote by f;,j = 1,...,d, the marginal densities of f. To the independence hypothesis there corresponds
the set &y C @ of the densities of the form f(z1,...,2q) = fi(z1) ... fa(xq).

Given the observation X", we consider the nonparametric minimax problem of testing the null
hypothesis

Hy: f € o
against the alternative set
Hy: f € @p(thn) = {f € @2 0(f, Do) = ¥n},

where ¢ is a distance measure and 1), is a positive sequence tending to zero as n — oco. In other words,
the set of alternatives ®,,(1),,) is a subset of ® of densities separated from the set &, by the distance
at least 1,,. Moreover, we will assume some smoothness properties of the density f. This problem
named independence hypothesis testing is one of the classical problems in mathematical statistics.
There have been papers, initiated by Ingster [8, 9] concerning independence hypothesis testing via an
asymptotic minimax approach: Ermakov [3], Yodé [13]. Then, the goal of these papers is to determine
the minimal (optimal) distance between the null hypothesis and the set of alternatives for which testing
with prescribed error probabilities is still possible. However, the test procedures depend heavily on the
smoothness assumption, which is typically unknown as well as the density function f: this seems
unnatural and unattractive from a practical point of view. It is our first motivation to extend the non-
adaptive case of our paper [13] to the adaptive case, i.e., the case, where the smoothness parameter is
also supposed unknown.

As in Yodé [13], in this paper we deal with the problem of independence testing when the error
of the first kind is bounded by a positive sequence «,,, which can decrease to zero as the number of
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ADAPTIVE MINIMAX TEST OF INDEPENDENCE 247

observations increases, contrary to the usual context, where this bound is an absolute fixed positive
constant a € (0,1). We show also how this property affects the error of the second kind. Such kind
of testing problems appear in the concept of random normalizing factor initiated by Lepski [11] and
extended by Hoffmann and Lepski [10], Yodé[14], and Chiabrando [2].

We need to make the following assumptions.

Assumption 1. Assume that density f belongs to the functions class ¥(8,L,Q), 3 > Z, L>0,
Q > 0 defined as follows:

S(8,L,Q) £ (k) = {f € AB,L): | f]l0 < Q)

where || - ||oo is the supremum norm and A(3, L) is the isotropic Holder class, i.e., the class of all
functions f: R? — R having on R? all partial derivatives of order m = | 3| and such that

ai1+“‘+id d Te— Y 2
'f(x)— > A | Rl \SLnaz—ynﬁ, (1)
0<iy++Fig<m oy ... Oyy j=1 b

forany x,y € R, where xj and yj are the jth components of v and y and | - || is the Euclidian norm

in R%. Moreover, we assume that f is compactly supported in [0,1]%. The parameter k = (3, L, Q)
is called the nuisance parameter.

To define the test statistic, we use a classical Parzen—Rosenblatt estimator based on the observa-
tion X™ and defined by

fulz) = nllzd ZK<$ ; Xi>’ z € [0,1]% (2)
n =1 "

where h,, is a positive sequence such that h,, — 0, nhﬁ — 00, when n — oo and K : R? — Ris a kernel
function, i.e., a function such that fRd K (z)dx = 1. Under the hypothesis Hy, each univariate density f%,

k=1,...,d, can be estimated separately using only the corresponding observations (Xl(k), . ,X,gk)).
Let

- 1 — ap — XM

o) = Smo( ) el 3)

s
be the Parzen—Rosenblatt estimator attaining the univariate minimax rate of convergence n= 28+1. The
positive sequence b, — 0 is such that nb, — +o00, n — +o0, and Kj is a univariate kernel function.
Thus, f, are i.i.d random variables, and therefore the estimator

d
FO@) = 1] fenlar), 2= (x1,...,2a) € [0,1)%, (4)
k=1

s
attains the univariate minimax rate of convergence n~ 28+ (see Lepski[11]).

Assumption 2. K and Ky are Lipschitz-functions with compact support on R* and R and
Lipschitz-constants Q1 and Q9, respectively.

Assumption 3. Forany f € X(k) and univariate density g, we have

2 x5 (7) ) wa- @

2
: HZ Ko " )atoyde - o)

where Lo > 0 and h and b are positive sequences.

< Lohﬁv

sup
x

< Lob®.

sup
xX
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Remark 1. For example, if

/uill...uildK(u)du:O forany 1<4;4---4+ig<m and /Hu|]ﬁ|K(u)\du<+oo,

R4 Rd

we have
1 r—1
x| =] [ K- - ) du
R4 Rd
i1t +Hig d oy i
SN AT OVEE D DA | R
: , ox't ... o0zt - i;!
R 0<ii+-+ig<m 1 d j=1
+ Z 0 i f(i)( .h') | /uzll...uzldK(u)du < Loh®
Vi tigem 00wyl il J
with

Lo=L [ ljull"|K(w)| du
Rd

For m > 2, K necessarily takes negative values. Despite their negative values, kernels of higher order
are viable (see Gajek [5]).

2. MINIMAX AND ADAPTIVE MINIMAX FRAMEWORK
2.1. Minimax Testing Approach

Given the observation X™, if we suppose x known, one could consider the following hypotheses
testing problem

Ho,: | € Solr) 2 £(r) N @

against the alternative set

Hyye: f € @u(Cipu(n)) = {f € B(k): |If = foll2 = Cpnln) },

where fo(z1,...,2q9) = fi(z1) ... fa(xq) is the product of marginals of f, ¢.(n) — 0 when n — +o0,
C > 0and || - |2 denotes the usual Ly-norm on [0, 1]¢.

Atest A, = A, (X™) is a measurable function depending on observation X™ with values in the two-
point set {0,1}. The value A,, = 0 means that Hy is accepted and A,, = 1 means that Hy is rejected.
Introduce the first-kind error

4

an(Ay) sup PHA, =1},

feXo(k)
and the second-kind error

4

’y(An,Ccpﬁ(n)) sup ]P’?{An =0},

fE€Pn(Cpr(n))

where P’y is the probability measure of the sample X™, Py being the probability measure on (R4, By) with
density f. The properties of the test are characterized by both types of errors:

Definition 1. Let o, € (0,1). We call A,, an asymptotically «,-level test if

limsupa,! sup PHA, =1} < 1.
n—-400 fEEo(I{)
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Let 7 () be the set of asymptotically v, -level tests.

Definition 2. Let v, and v, be two positive sequences in (0, 1). The positive sequence ¢, (n) is called
minimax rate of testing if

— there exists C, > 0 such that for any C < C, we have
liminf~,! inf Ay, Co, > 1; 5
lim inf Anelg(an)v( ¢r(n)) = (5)

— there exists C* > 0 and A} € T (o) such that forany C > C*
limsup 7y, "7 (A5, Cps(n)) < 1; (6)

n—-4oo

— A, . is called asymptotically optimal test.

Definition 2 implies that ¢, (n) is a critical rate for testing. If the alternative is too close to the
null hypothesis set of functions then (5) ensures that no asymptotically «,,-level test procedure can
asymptotically achieve a second kind error lower than ~,. Though, (6) states that it is possible to
construct a test that detects Hp against a local alternative separated away from the null hypothesis
by a distance asymptotically equal to ¢, (n).

2.2. Adaptive Minimax Approach
The test constructed above is based on the prior knowledge of the nuisance parameter «.

Assumption 4. Thereafter, we assume that f € ¥(k), where k is unknown and
K= (57-[/7 Q) E \II = [/8*75*] X (07-[/*] X (OaQ*]a
where 0 < ff < By < B, L*>0and Q* > 0.

For each k € W, the optimal rate of testing is ¢, (n) and the asymptotically optimal test is A,, ... Now,
for the problem of adaptive testing, we expect to construct a universal test function A,, (iree of ) that
achieves the optimal rate of testing for all k € W. The existence of such test may depend on the model.
In case no test can fulfill this condition, we may introduce the following rule to compare the testing rate
families (Spokoiny [12]). First, we need to introduce

(¥, ap) = {An: limsupa,'sup sup Pi{A, =1} < 1}.
n—o0 KEV feX0(K)

This set is to be understood as the family of tests for which the maximal first kind error over ¥ is
controlled by a prescribed scale a,.

Definition 3. Let positive sequences a,, v, € (0,1). The factor ¢, is said to be adaptive (ay,,vn)-
optimal w.r.t. the family {2o(x), S(k), k € U} if
(1) there exists C, = C,(¥) > 0 such that forall C < C,,
lim inf 5, ! inf sup sup A, =0} >1;
n——+o0o An€Z(V,an) KEW fecpn(csom(nt?;l)) f{ }

(2) there exists a constant C* = C*(¥) > 0 and a test A}, € Z(¥, av,) such that forany C' > C*

lim sup 7, ' sup sup H{ALe =0} <1
notee REW fed, (Conlnin )

In this case, {p. (t,, 'n) ey is called the adaptive minimax rate of testing and A}y € I(¥, ayp) is called
an adaptive optimal test for the family {¥o(x), X(x), x € ¥}.

Following Definition 3, ¢,, must be interpreted as the smallest penalization for which one can
construct a test that detects, simultaneously on W, the null hypothesis 3¢ (x) at a distance of order
©x(nt;1). In this approach, t,, is a uniform penalization in the sense that ¢,, does not depend on x € V.
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3. MAIN RESULTS

3.1. Minimax procedure

In this section, we recall the results obtained in [13]. We set

28
_ 6% 484d
Pr(n) = <n 1\/10g< 0> > v Bk = L e m)?)s (7)

Qnp
where
D \/2Q\/eK1F + 12,
I" and K are positive constants. We define

d 2 n
A — 1 2 T —X;
Fum Il finl] = apaagy 2 [ ()

=1

T, =

with

We fix A, and B, and 7 such that

QI KB +2) Q| K3(48 + 3d +4)

A>Ty o Bz (48 +d) ’
T<min{1 _45+3d+4+ B, _5+2+ A, }
To24p+d)  8QIK|3T 28+1  QIK.3
Let us put
2 2
. 5,4 <an> (20 Aiﬁkgr ) 8d1622n2%++21_8®$*”% N 8Q1 n42£(‘1r§i2)4_8fozH% n 16'
oo A*/2 B}(/2 n

We have the following results.

Theorem 1 (Yodé [13]). Assume that Assumptions 1, 2, and 3 are satisfied. If d > 2 and o} =
O, (n7), then

— sup PH{A, . =1} <ay(l+o0,(1));
fe€3o(k)

— |Upper bound| there exists C* = (1 + \é2))\ such that for any C > C*
sup P?{An,ﬁ = 0} < v(an)(1 +0n(1));
fEPn(Cpr(n))

— [Lower bound] there exists Ci(k) > 0 such that for any C < Cy(k)

liminf inf sup PHA, =0} =1
n=00 AET(an) fedn(Cpn(n)

Remark 2. According to Theorem 1, ¢,.(n) is the minimax rate of testing and A, ,; is an asymptotically
optimal test.

This test function depends obviously on k = (3, L, Q). The purpose of this paper is to solve the above
testing problem in an adaptive framework, i.e., assuming that x is unknown.
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3.2. Adaptive Minimax Procedure

We use a naive adaptive method consisting of two steps: we first construct a grid on the set of
nuisance parameters; then, we accept the independence hypothesis if only if each of the tests attached
to the nodes of the grid accepts and reject as soon as at least one of them rejects. The problem here
is that each test has a finite type 1 error probability but its type 2 error is too large. To cope with
this, we take the threshold value for each test with an extra growth factor. We refer to Abramovich et
al.[1], Chiabrando [2], Fromont and Laurent [4], Gayraud and Pouet [6], and Spokoiny [12]for similar

approaches.
We put
14 log(lo%gn))’
log(?)
452 d
+
<n_1tn\/log <ZO> > with ag > 2,
2 .
“ g2 [ (7)o
) 2 2. hn
=1

1 - X;
al) = 0 SR(7)

*n

1>

tn

1>

h*n = h*n(ﬂ)
and we introduce the statistic

T (k) =

n

d
f;:,n - H fkn,/i
k=1

where

We fix > 1 and define J,, () such that »=7/»(8) = p,,(3), that is

5 log (n\/log(g:)_l)
T 4B +d log(r) ’

We assume without loss of generality that J,, () is an integer. Otherwise, one can take its integer part.
For each parameter k = (3, L, Q) € ¥, we may determine the level h, () and the corresponding test
procedure A, ,. defined as (8) and (7) respectively. Therefore, the range of adaptation ¥ can be translated
into a grid of [B,, 8*]. To do that, we need to introduce the set

T (W) = {Ja(B), B € B, 5]}

Therefore, we arbitrarily construct an injective mapping, denoted by V, from J(¥) to [5, 5*] such that
forany j € J(¥), we have J,(V(j)) = j. Hence we define the grid

In(0B)

Bu = {nj = (V) 2 8, 1°,Q7): e T} c w.

Since G, < 8*, we have
g log (n\/log(gz)_l) < I < g log (n\/log(gz)_l)
46* +d log(r) - T 4B, +d log(r) '
Obviously, the cardinality of B,,, denoted by ,,, is controlled as follows:
T < C1(V) log(n),

where C1(¥) > 0is a constant that only depends on the length 5* — (.. Now, we introduce the following
test:

ALg=1 { Tﬁ(ﬂj)l) }>/\}.

max 5 7’
KjEBn Pic; (nty,
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252 YODE
where A > /eK T1Q* + L2 with

T, = / K (1) || K (w2) | K (w1 + ws)|| K (w3 + ws)] deon dewados.
R3d
Fix positive constants A,, By, and 7 such that

8Q* | K[* (B +2) AQ*|| K |I5(48. + 3d + 4)

A, > , B, > , 9
26, + 1 (4. + d) )

. 46, + 3d + 4 B. By + 2 A, }
T <min< 1, — ,— + . 10
{ 248, +d)  8Q*| K3 26.+1  Q*||K.|3 1o

Theorem 2. Assume that Assumptions 1,2, 3, and 4 are satisfied. If d > 2 and a;;* = On(logzn))’
then

sup sup PH{A} ¢ =1} < an(l 4 0,(1)).
KEY feXo(k)
Let us put
(A= (Lo-0)%)?

Bx+2 Ax 4B%+3d+4 B
yAN [0 EKlQ*QA 23, - 2 2485 +d) 2 16
nlan) £ 2( . + C<” TS0 RR g 20000 TsetiIg )

Theorem 3 (Upper bound). Assume that Assumptions 1, 2, 3, and 4 are satisfied. If d > 2 and
a,t = On (o n)), then Jor any C > C*(¥)

sup sup PHALg = 0} < y(an)(1+ 0,(1)).
REY fed, (Copp(tn 'n))

Theorem 4 (Lower bound). Assume that Assumptions 1, 2, and 3 are satisfied. If d > 2, then for
any C < Cy ()

liminf  inf  sup sup ALy =0} =1

n—0o0 A,e€Z(V,an) kel FEBL (Con (tntn)) !

Remark 3. According to Theorems 2, 3 and 4, the family of rates of testing {¢(nt,!),x € ¥} is the
adaptive minimax rate of testing and Ay y, is adaptive optimal for the family {30 (), ¥(x), & € ¥}.

4. PROOFS OF THEOREMS
Throughout this section, if u,, and v,, are two real sequences such that v,, # 0, we put
Up = 0p(vy) <= lim U _ 0,
n—-4oo Un

Un
< 00.

Up = Op(v,) < limsup

n—+oo | Un

All positive constants appearing in the proofs are called C, although they may vary from one occurrence

to another.
Put
z—X ni =X
n(m)-K( he >—EfK< I >,
z—X; z — X;
i(2) = K ') —EMK N, i=1,...,n,
where X1,..., X, and X arei.i.d. random vectors.
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4.1. Asymptotics of the Test Statistic under the Null Hypothesis

In the sequel, we use the following decomposition:

d
oo Moo~ g 3 [ (0 Y= 3t
k=1 2

=10
where
* ng g 2 r—X,;

Sl,n,n = (fn,n(x) - Ef(fn,ﬁ( )) dr — 2h2d Z K h dx,

0.1)¢ =g

d 2

Sunn= [ (BHA) - ] ?;(fmm))) dr,

014 k=1

2
knn$k> Z,

N

3

=
—
A

:1&

\:

=N

3

;R

]

??‘
i ::]g

[0,1] k=1
d
Sine=2 [ (Fin) - Ej(fie >>>< (i)~ TTE o) )
[O,I]d k=1
d
557?%5 =2 / ( ;,n(x) - E?(fnn <H En fknn xk H >
[0,1]¢ k=1
d d
Sonn=2 [ <E?<f:,ﬁ<x>> T B o) ) (H B2 (Fonnon) — ] fkn,m)) dr.
[0,1]¢ k=1 k=1

4.1.1. Study of Sy 5 .(f). We have

A~

Sl,n,n(f) = Xn,k + Un,/i + Cn,n,f + E?(én,n) - en,m

where
1 n
Xuw = ogen O [ [7) ~ Epit(o)] do
=10,y
01’1,7;4 = n2h3%l Z / K < h*n > d.’L‘,
z:lmud
1 n xr — X1 2
G = B o
[0,1]4
1
Un,n = n2 Z Hn,n(Xinj)a (l 1)
1<i#j<n
where
1
H, .(X;, X;) = 2 / ni(z)n;(x)dz. (12)

[0,1]¢

We have the following results:
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Lemma 1 (Yodé[13]). There exists C > 0 such that for n large enough, we have

log(n) 2
sup P<|Xn,n| >C > <,
Fex(x) n3hd n

) . log(n) 2
_ > <
sup)]P’<\9n,n E¥(One)| > C\/n5h2d> =’

fex(k *n
Q*Q
sup |Cn,/i,f| < .
fex(x) n

4.1.2. Study of Sa 1, (), Sz n,«(f), and Sg n . (f). The estimations are based on the following Lemmas:
Lemma 2 (Yodé [13]). Forany A, > 0, for n large enough

— _ A*l Bx+2 _ *A*
sup P"{ sup || Fone — EF Fon)loo z\/ °g<")} < Cn TSR (1 4 0, (1)),

fex(x) k=1,...d nby,

Here and in the sequel, if A, satisfies (9), we put
_ _ A, log(n
Al,n,n = {k sup ”fkn,/-@ - E?(fkn,n)“oo < \/ g( )}

nb,,

=1,..

Lemma 3 (Yodé[13]). We have

d
sup |[E3(£7.0) = TTE}Fen)||, = || - kaH ‘ < L3H2(1 + 0,(1). (13)
feX(x) k=1
For any z € [0,1]%, we have
d d )
HEf fkn/i l‘k H H fkn/i l‘k E?(fkn,n(xk))) - Hn,f,/i(l‘)y
k=1 k=1 k=1
where
d—1
nf, H fk:Snn l‘k Ef(fhnn :L‘k:l H Ef fkm, (l‘k ))
1=1 k1. £k kg s=1 s=l+1

Therefore, we can state that

d
k=1

sup [lAan
) k=1

fex(s
for n large enough. Hence we get

sup [1a,,,,93ns] < CpinhZy
fex(x)

for n large enough and
_ log(n)
" bk

because of the choice of a,, and d > 2. Finally, we deduce

Sup [1A1,n,ns3,n,ﬁ] = On(hzg)- (15)
feX(x)

— 0, n — +00, (14)
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Under the null hypothesis, we deduce from Lemma 3 that

d
B} (fr ) = [T E} Fens)
k=1

sup

2
< LEh28 (14 0,(1)).
fe3o(x) 2

Therefore, we obtain
sup  Sonx < L2W28(1 + 0,(1)). (16)
€30 (k)

Using the Cauchy—Schwarz inequality, we obtain
d

d
Sup |1A1,n,n567n7’§| S Sup |:21A1 n,K En fn H fkTL H H En fkTL Ii H fkn,n oo:|
k=1 k=1

f€Z0(k) f€Z0(k)
< Cunhiy,
for n large enough, p,, is defined by (14). Hence we deduce that

sSup |1A1,n,ﬁ567n7/€| = On(h‘zg) (17)
fe3o(k)

4.1.3. Study of Sy, .(f). We need the following lemma.

Lemma 4 (Yodé [13]). Let the sequence R, ¢: $(r) x [0,1] — R be such that

Ry = sup [Rogloo = sup sup |Rus(a)] < oo
feX(r) feX(k) z€l0,1])4

For any positive sequence
*
zZn = on(R}),

one has

sup P?{
fex(x)
0
for n large enough.

Under the null hypothesis, we have

sup f*n En fkn S Lohfn
feSo(x) H
for n large enough. Thus, we obtain
sup Pf{|s4m| > on \/k’g(")} <2 (18)

feXo(k) n n
for n large enough.
4.1.4. Study of S5 , .(f). We need the following lemma.
Lemma 5 (Yodé[13]). Forany B, > 0,

B, log(n) Saae = ol
sup B 15~ Bl > b < Cn 2007008 14 0 1),
festn) T ’ JAin, nhd,
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Here and in the sequel, if B, satisfies (9), we consider

By log(n)
Az = mwe — EF(fn)lloe < :
S (LT ¢ sl

Forany f € ¥(k), the following decomposition holds
+ 5%

5,n,K?

SSnn_S( ) 5(2)

5nn 5,n,k

where

[ Uisle) - Ejinta)

1=2 b1k s=1

d
< I Etfeann(ar,) dz,

s=l+1

s =2 3 g/(ﬁ;@»—Eyﬁﬂu»xnmﬂmh>
kl# #kd[071}d

d
X H E?fksn,n(ZEks) dx.

s=2

Thus, we get

1
Sup |1A1TLN1A2TLNSéT)LH|
fex(x)

_ _ d
< swp (L i = B (Lt 500 i = Bfinslc)'|

feX(k) k=1,....d
< Cnuh?s

*19

where

d+1

(DI —
PR ’

n —

Finally, we deduce that

1
Sup ‘lAan1A2nﬁSé1’)LH _On(h‘2ﬁ)

fex(x)

Likewise, we state

sSup ‘1A1nH1A2nH 57’LI{| _On(hig)

fex(x)

®3)

To estimate Sy 7, .,

we use the following decomposition

S = 2. (S5 S5,
k1#..#kq

MATHEMATICAL METHODS OF STATISTICS  Vol. 20

d
H fkn K xk E?fkn,ﬁ(«rk)) da;,

l
H fkgn/i wkg Eq}f_ksn,n(xks))

- E?-fkln(xkl ))

(19)

(20)
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where k = (kq,...,kq) and

3,k,1 2 3,k,2 2
Sé,n,n) - n? qu”(X“XZ)’ Sé,n,n) - n2 ZQZJ”(X“XJ) (21)
i=1 i#j
with
(k1) (k1)
1 xkl - X] n xkl — X]
)~ gy [ (e (T ) (T ) )an @)
[0,1)¢

The statistic Sé?f,f) is a degenerate U-statistic of order 2. Then, using Proposition 1, we state the

following result:
1 2
sup ]P’?{|Sé37;k,f)| > C\/ o8(n) } < (23)
FES(K) o n*hn n

for n large enough. For the statistic Sé?’f,;l), the following decomposition holds

k, 1 ¢ n Lon
Séf”nﬁl):n2§ (6 (X2, Xi) = Efuon (X5, X))+ Ejuon(X1, X1).
=1

Therefore, we have the following results

log(n) 2
sup ]P’n{ Vn(Xi, Xi) — Efon(Xi, Xi)[ > C }S 24
Fesi(n) f | ( ) f ( )‘ nghzn n ( )
for n large enough and
1
sup | EMn (X1, X ]:on h22) . 25
fex(x) [n ! %, %) ( ) (25)

4.1.5. Conclusion. Using the estimations above, we deduce the behavior of test statistic 7,¥(x) under
the null hypothesis:

T3(%) < Unye + LRI (1 + 0a(1)).

4.2. Exponential Inequality for Completely Degenerate U -Statistic of Order 2
Let
1
Un = n(n—1) 1S;gnﬂn()(z,Xj)
be a completely degenerated U-statistic of order 2, that is
E(H, (X3, Xj) | Xi) = E(H, (X3, X;) | X;) =0,

where the kernel H,, is a symmetric function. We introduce the following functions:

H(z,y) =E(H(X1,X)H(X3, X) | X1 =2, X2 =y),

Hy(z) = H(z,z) - E(H(X, X)).

Proposition 1 (Chiabrando [2]). Assume that there exist us p, ks, and cs >0, s =1,2,3, such that
forany p € 4N

(i) E(H,(X1,X2)) < ki pnpPul

1,n’
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(i) max {E(max;; |Hn(XZ-,Xj)|),EH’(7O)} < kg,npczpugm,
(iii) E(max; {(E(H}(Xi, X) | Xi))P}) < kg np®Puf .

Then, for any x > 0,

P(n(nl— 1)

The mixture term is defined by

> Hu(Xi, X;)

> m) < ep(x)etmn (@),
1<iZj<n

my(z) = min{m; ,(x),1 <i < T},

where K,...,Ks are universal constants and

2 2

nx nx ny/nx '\ 3

min(z) = <eK1cf > o maaln) = eKy\/o,’ mn(@) = <nga > ’
n n n

Ky V K5)\/un,2 eKyul ,

where
op = E(H;(X1,X2)), o =E(H,(X1,X2)), oy =E(H{ (X, X)),
1 2 4
)=y (2) =354 (ca) =\ o,
Moreover,
A .

cn(z) = max{cjn: j [ mn(z) = mjn(z)},

where

2
Clyn = C2p = C4n = 1, C3n =N, C5np = 2nk1,m Con =N k2,m Crn = k'?;,n'

The proof of this result is a slight modification of that of the exponential inequality in Giné et al. [7].
We consider the U-statistic Uy, , defined by (11) and (12). For n large enough, we have

op = E(Hg,n(XlaX2)) < QI h ¢,
E(H? (X1, X3)) < QTohp"Ph !
for all p € N*, where v > 0 and
I = / | K (w1) K (w2) K (w1 + w3) K (w2 + w3)| dwy dwadws,

R3d

d
r= | (r:[ R/ K (w3) K (s + ) dws) do.

Rd
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Hy ol X0,X0) = 1y [ m@m@E@)n(w) dedy

R2d

Therefore, for n large enough, for all p € N*, we have

E(H? (X, X) | Xi) < Q| K3,

E (max |7 (X5, X)) < Q1K 207077,

(2

) <

E(max{(E(H}, .(X;, X) | Xi))'}) < Q| K|Ep"Ph",
)
) <

E(H{, . (X)

where v > 0. We obtain

where

with

min(z) =

n2hdg?
€K1 Q*2P1 ’

h
mon(z)= 0T mga(z) =
’ eK2Q.|| K% ’

. (x) <nihg$>§ - (x) < ’I’Lzhdl‘ >5(61)
4, = ) 5, = % )
' e KT ' R0

e(Ko V K5) eKoQ* 4

4.3. Proof of Theorem 2

Let us introduce the random events for any f € ¥y (&),

nb,,

=1,..

_ _ A, log(n
Al,n,n = {k sup ||fk:n,r{ - E?(fkn,n)”oo < \/ g( )}’

B, 1
e E?(f;ﬂ)noog\/ T,

(3.52)) o, [l08(n)
|55,n,/-; | = C\/th*n )

-
{

A = {l%(Xz”Xz’) — B} (¢n(Xi, X5))| < C\/log(n) },
=

n3hz,
|S4n,.@\ <C’h \/log;n)}

log(n
A6,n,/§ = {|XN,H‘ < C\/’rﬁézg }’

MATHEMATICAL METHODS OF STATISTICS Vol.20 No.3 2011
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nyv/nhz2x nshsx
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R oA log(n
A?,n,n — {|9n,n - Ef(9n7n)| S C\/ngézg) }7

where S8 and 1 are defined by (21) and (22) respectively.

5n/i

Using a Bonferroni argument, we have

PHAL g =1) = P?(geaé Ty (ks) > App (nt, 1) < Y7 PH(Tr (k) > Az (nt, ).

IijEBn
Forany f € ¥y(k), using Lemmas 1, 2, 5, (15)—(20), and (23)—(25), we get
7
PH(Ti (k) > Agp, (nt, ") < PH(Tr(r5) > Aon, (nt 1) + D PHAL,,)
j=1
7
<PH(Unyw; > (A= L§)pr (nty") Z Af i)
A —L3)2pt (nt,; nhﬁ Kj
< Sexp (A= L§)%e, (nt ) (]) 16
eK1Q2T n
4B3;+3d+4 B Bj+2 Ay

4 O(n 200 TsalE 4?7500 13) (140, (1))

Thus, we deduce that
(x-13)?
e 2F 16
PR (T (k) > A2 (nt1)) <264 7 e
f( n('%]) > Qpﬁj(n n )) > z€ aolog(n) + n

4B%x+3d+4 B B8*42 Ax

+ C(n 2048xtd) T 8Q*|IKIZ 4 py 267 _8Q*"K*”§)(1 + on(1)).

Therefore, we obtain

(A—13)?
« eK1Q3r 167
PYAY ¢ =1) < 2mpe? n n
HEny =) = 2me <aolog<n>> T
4B%+3d+4 B ﬁ*+2_ Ax
+C7rn(n2(4"*+d> SQIKIZ 4 g 287 SQ*HK*||%>(1+OH(1))
(A-L1§)?
e 16C, (P)1
<2640 (W) log(n) (" air | 160, () log(n)
agp log(n) n

4B%+3d+4 B B*+2 Ax

—’-CCl(\Il) log(n)(\ll) (n 2(48x+d) _SQ*HKHg +n2ﬁ*+1 8Q*|K*H2)(1 +O7’L(]~))

It suffices to choose constants ag > 2e*Cy(¥), A > VeK I'1Q. + L3, and ot = Oy, ("
clude that

log(n )) to con-

sup sup IP’f{Anq, =1} < ap(l+0,(1))
KEV feX0(K)

using (10).

4.4. Asymptotics of the Test Statistic under Alternative

Now, we aim to study the behavior of the test Ay, | under the alternative f € ©,(Cpyx(nt 1)) fora
givenk € ¥ and C' > 0.
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4.4.1. Study of S35, .. Here and in the sequel, for any f € X(x), z € [0, 1]¢, we put

d
Rp(z) = f(z) = ][ fulwn)-
k=1

Using Lemma 3, for any f € X, for any 3 € [, 5]

d

k=1

1Ryll2 — Loh?, < |[E]

X
Thus, we get
Sone = (IRsll2 = Lohl,)” (26)

4.4.2. Study of Sy, . and S5, .. To estimate S, , and S5, ., we use the same results as in
subsections 4.1.1 and 4.1 .4.

4.4.3. Study of S, . We use Lemma 4 and the following result.

Lemma 6 (Yodé[13]). Forany f € X3, there exists a positive sequence

3d
Zn = On(hn2 ||Rf||2)

Cnz2
2 S2EP T,

such that

P [ () — B0 By o)

[0,1]¢

forn large enough.

We use the following decomposition

S4,n,/i = Jl,n,n + J2,n,n + JS,H,H + J4,n,m

where
Tip =2 / (20 (2) — E2(f0(2))) Ry g ()
[0,1]¢
o =2 / (10 (2) — B2 f7n(2))) R g () iz,
[0,1]¢
o = 2 / (£ (@) — EH(F () Ry () d,
[0,1]¢
Timn =2 / (£ (@) — EB(f 0 (2))) Boy() da
[0,1]4
with

-1 !
By p(x) = Z > H E} fron(tr,) = fr, (Th,)) ka T, )

=1 ki#kqg s=1 s=l+1
Rin,p(z) = E}(fr0) — f(2),

d
Ron,f(x) = H (E% frn(zx) — fr(xr)).

k=1
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[t is easy to prove that
RT,n = Sup HRLn,f”oo < h’fna

fex(k)
R;, = sup [Rop flleo < CBYY,
fexi(k)
B, = sup ||Byyle < OO
fex(k)

for n large enough. Thus, we get the following results uniformly on ®,,(Cp,(nt,;1)):

P >z} < Cnzi = on(h?
HIJinel > 20} < 2expq — 25 orany z, = o,(h%)),
*n

" Cnz?
]P)f{"]ln,li‘ > zn} < 2exp{ - bz’Bd } for any  zp = On(bgd)7

n

Cnz?
P?{|J4,n,n| > Zn} < QQXp{ - b2ﬁn} forany 2z, = On(bg)'
n

3d
For any @,,(Cp,(nt,')) there exists a positive sequence z, 5 = o, (h4 || Ry||2) such that

1 2 20} < o = ot
3.kl = Znfr S €Xpy — ’ .
P = IRy
In particular, putting z,, y = C’HRng\/IOEL”, we have
2
sup P;‘L{|J3,n,ﬁ| > Zn,f} < n

FE@n(Con(ntn))
for n large enough.
4.4.4. Study of S 5, .. We have the following decomposition
Senmsy (f) = K1 + Konk + Kanw+ Kapp,

where
d d
Kins =2 [ (TIEGunton)) = ] fenlon) ) R plo)d
oad k=1 k=1
d
Kome=—2 [ ( T[EGin@) - ] ‘kn<xk>>R2,n,f<x> dr,
e k=1 k=1
d d
Kans =2 [ (TTEGunton) - [T funlo) ) Ryo)
oad k=1 k=1
d
Kins =2 [ (TIEGunton) = IT finl) ) Buslo)d
o k=1 k=1
Since
d — d logn
sup ‘ 1a,, ., ( H E(fkn) — fkn> H < C\/ ,
FE®n(Copn(nty 1)) Pt fm1 o0 nbn
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we obtain
logn
sup (14, [ K1y, ()] < C’hfn\/ -
€D (Cor(ntnt)) nby,
logn
o [l B, ()] £ Oy 57,
f€®,(Con(ntyh)) nb,,
logn
Sup |:1A1,n,n |K4,n,lij0 H S Cbg\/ %
fEP(Copr(nty ")) nop
for n large enough. Therefore, we deduce that
sup [1A1,n,~|K17”7/‘4|] = On(hig),
€D (Cow(ntnt))
Sup [1A1,n,~|K27”7/4|] = On(hig),
fE€EPA(Cpr(ntyt))
sup (14, | Kapl] = on(h2D).
fe@n(Cop(nty))

Using the Cauchy—Schwarz inequality, we have
d d )
k=1 k=1

for n large enough, for any f € ®,,(Cp.(nt,1)).

|1A1,TL,NK37TL7K/| S 1A1,TL,N

S T0a], = comey 2"

4.5. Proof of Theorem 3

Now, we consider the test Ay, | under the alternative f € ®(Cpp(nt, 1)) foragivenk € ¥and C > 0.

We denote by jy € B, the unique index such that .J,(V(j0)) = Jn(5). Recall that J,,(V(jo)) = Jn(0) is
defined as in subsection 3.2. Moreover, we notice that

iy (Nt 1) = @u(nt, ) (1 + 0n(1)). (28)
Thus, we get
PH(AG,, =0) =P} max Ta(r) <N SPHTH(k;) < A2 (nth)).

Now, we put, for any f € ®,,(Cy,(nt; 1)),
6
PHT ;s (rjo) < App, (nt ') = P?{ D St (F) < App (nt#)}
=1
" % ﬁ 2 —
B S Sty )+ (el = Zin)? < Ak, (ot .

1¢{2,3}

Let us consider the random events for any f € ®,,(Cp,(nt,;1)),

8., [logn
A n iy, = {|J1mﬁjo (Nl < Ohnjo\/ n }7
dg;, [logn
Agn sy = {|J2mﬁjo (Sl < Cbn JO\/ n }7

logn
AIO,TL,HJ‘O = {|J3,n,n]-0 (f)| < O||Rf||2\/ n }7
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. [logn
All,n,l-@jo - {|J4,n,/4j0 (f)| § Cbgﬂo\/ i } .

We have the following equalities:

A %155 logn logn
an = (| Ryll2 — Lihn™)? — 01||Rf||2\/ o 02||Rf||2\/ b

) logn 1ogn
Y (A A
1Rfl2 1Ryl2 ||Rf||2

For n large enough, since f € ®(Cyp,(nt, 1)), using (28), we get

a2 Cont ) ((1-20) 4 oat) = (€ 2 (1= 22) 0 ania,

Hence, for any f € ®,,(Cy,(nt, 1)), for n large enough, we have
PH(T (kj0) < Api, (nt‘l)) <PHUn +an < AGE, (nt; "))

+Z]P’” Fnssy) T PF(AT sy ) + PH(AS )
< pn(yn + (rgy (M )A(C = Lo)* < A2, (nth))
+ Z P (A sy) + PFHAT ey, ) + PHAS )
< ]P’”(U < (A= (Lo = O)P)er, (nt,h))
+Z]pm Frsy) T PF(AS s, ) T PF(AS e, )-

Putting

(A—(Cc-1g)?)?
(679 eK1Q*2T 16
_|_

aglog(n)

4B%+3d+4 _ Bx Bx+2 _ Ax
+ C(n 2(4Px+d)  8Qu| K13 + n 20t 8Q*||K*H%)

An(0r) = ze4<

if C' > Lo + v/, using Proposition 1 and results of subsection 4.4, we get
PH(Ty (rj0) < Apix, (nt,1) < () (1 + 0a(1)).
Therefore, we obtain

sup  sup PHAY, = 0) < yulan)(1 + 0a(1)).
KEY fed, (Copx(ntn )

4.6. Proof of Theorem 4

4.6.1. Construction of discrete family of functions 7, ;. Fix 0 >0 and put 6, ; = ohsn(B5),
M, ; = 5;}. The value of o can be determined later. Suppose that M, ; is an integer. Otherwise, one

can take its integer part. Let {u1, ..., un, ; } be a regular subdivision of [0, 1] and put A, j; = [ug, uzy1,
l=1,...,My; —1, Ay jm, ; = [unm, 1], where
-1
u; = .
' M
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For a multi-index s = (s1,...,84) € My ; = {1,... ,Mm}d, define Ay, js = Anjs X ... X Apjs,
Thus, the family {A,, j 5,5 € My, ;} is a partition of [0, 1]%.

Let ¢ be an infinitely differentiable function with support [0, 1] such that

/ Y(z)de =0, / Y} (z)de = 1. (29)
0,1] [0,1]
Forany s = (s1,...,54) € M, j, consider the function
1 d Ty — U
n,j =
such that
i+d/2 1 i L .
o N fnss@) = Y @ =0 D) < lle = ol (30)
sEMp j 0<i|<m

The function vy, ; , is compactly supported in A, ; ; and using (29) we have

/ U js(z)dr =0, / U o(x)de =1. (31)
An]’,s An]’,s

Moreover, the functions v, ; ; have nonintersecting supports.

We fix the density g(z1, . ..,2q4) = g1(21) ... ga(zq) € (8, 5, Cg) N ®( and we consider the collec-
tion of functions

d
Fow; = {fikr b = 1,...,2"n5},
where

i+d/2
i@t 2a) = 9@ty x)) + 0TS ap bl za),
SEMTLJ‘

where ay, 5, s € M,, j, are i.i.d. taking values 1 and —1 with probability 1/2. Moreover, we suppose that

2
/ d”;?;ém) dz = 1. (32)
o1

Foranyj=1,... ,2Mi fik € Pn(Cox; (nt;1)) for any k; € By:

1. for n large enough f;, k=1,... ,2Mfll, are nonnegative and are densities belonging to X(k;)

according to (30);
2. the marginal distributions of f; j are the same as for the density g; then, using (31), we get

1Fie = 9113 = 0*% (i, (nt,)? = (Copw, (nt,h))?,
choosing

0<C <o, (33)

3. moreover, we have || f; || . < @ for n large enough.
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4.6.2. The whole parametric family 7. We will consider the whole parametric family defined as
F= U Fun,
k’jEBn
We define a probability measure u,, on F as
Z :ulijy

where i is the uniform measure on 7, ,;;. Note that we have

aPr 1 ey, 1
Zn = B— T = Zn Kjo
d]P’Z T dapPn T Z I
kjEBn 9 kjEBn
where
]\
d]P’” dapPn I AP
fik 1 2: fik

ani. — XTL E’n Js XTL — Js Xn
"3 d]P’”( )= Nw[ dP?y ( )} oMy ; £ dPy (X™)

' ¢n, ',S(Xi)
2M"’ ZH (1 IR PR QJ(XZ-) >

k=1 1i=1 SEMTLJ‘

Since the random variables X; are independent, elementary computation and use of (31) show that

2 n72 TLJ n
2 d
W) = g, 2 2 (14057 S )

k=1 1= SEM,,
. 12
Therefore, putting Q. ¢ = Af,501,5, WE get

2M;f
n 2 _ 1
fo ( n,Kj ) - 2Md )

J n
<1+526J+d Z ak,sal7s>:|

SEMTLJ‘

25 +d "
/
J
ak7s>
sEMo, ;

Bl
1
51

=1

d
2]M Ji

|
A -
%»M:

—_
3

> exp( n526]+d)) Z(exp(_néiﬁﬁd))i

—
R.
M ﬁ
o I3

B <exp(n5nﬁj )+ exp(—ndiﬁﬁd))Mij
B 2

. a
<exp (n Qngéiﬁ]ﬁzd) < exp <a4ﬁa+dt% log <a0>>’

Therefore, we obtain
O_4Bj +d

2 < (Do) < (P roem) (34)

where C(W) is a constant depending only on W.
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Thus, we can write by using the Cauchy—Schwarz inequality

n 2 n
gz = L X z) <y ENZ,)
KjE€By " kjEBy
5C (D)

< swp BYZ,) < (2 log<n>> . (35)

4.6.3. Proof of the result. Forany A,, € Z(¥, ), since fp € Xo(k), we have forall ¢ > 0

sup sup 'HAn =0} > P (Ay, =0) +cay, llP’ A, =1} —c
REV fen (Copn(nty )

= B}, (Znl{a,=oy + o La,=1y) =
We have the following result

inf (Zn17, +c0, 1rg) = Znly, Coomt + 00 g 5 ot

Its follows that

sup sup HA, =0} > E?O(an{zn@a;l}) —c
REY fedn (Con(nty ')
1 12 apy
n gk n
SPD DE-X (D DR ATE LT B
T . cBn M i APy,

d .

2Mn.j
1 1 _
= E ( i E Py AZn < can1}> —c
n IijEBn ™d k=1

d

:(1—c)—7T1 > (Md ZIP {ancagl})

" k;€Bn " =1
Applying Markov’s inequality yields

s sup PHAL =0} > (1-¢) - ¢ 2alE], (22).
REY fe, (Con(nty'))

According to (35), we write

C(v)

sup sup PHA, =0} > (1 o) — 227" ag™ (log(n))?
REV fed, (Con(nty'))
1 1
Choosing c¢() < 2 je., 0 < 20 < 245+ < 24ﬁ*1+d, we deduce that

sup sup PHA, =0} > (1 —c¢) +on(1)
REY fe, (Con(nty'))

for all ¢ > 0, for n large enough. Therefore, according to (33), for all C' < 24ﬁﬁ*+d

liminf  inf  sup sup PE(A, =0) =1.
n—0o0 A,eZ(V,an) ke fe@n(Capn(ntﬁl)) f
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