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Abstract—By introducing a new parameterization, Hirose [12] improved on the seminal work of
Murphy and van der Vaart [16]: the improvement establishes the efficiency of the estimator through
direct quadratic expansion of the profile likelihood, which requires fewer assumptions. This paper
aims to demonstrate that the approach in [12] is fully applicable to the Cox proportional hazard
model.
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1. INTRODUCTION

We consider a semiparametric model of the form

P = {p(x;β, η) : β ∈ Θ ⊂ R
m, η ∈ H},

where β is the m-dimensional parameter of interest, and η is a nuisance parameter, which may be
infinite-dimensional. Let (β0, η0) be the true value of (β, η). We assume Θ is a compact set containing
an open neighborhood of β0 in R

m, and H is a convex set containing η0 in a Banach space B.
Hirose [12] showed an asymptotic expansion of the profile likelihood by introducing a function η̂(β, F )

of the parameter of interest β and a cdf F such that η̂(β0, F0) = η0 and the derivative

∂

∂β

∣
∣
∣
∣
β=β0

log p(x;β, η̂(β, F0)) (1)

is the efficient score function, where F0 is the cdf for the density p(x;β0, η0). Then for the empirical cdf
Fn, the profile log-likelihood for β is defined by

�n(β, η̂(β, Fn)) =
n∑

i=1

log p(Xi;β, η̂(β, Fn)).

This representation of profile likelihood is an explicit function of sample size n, through Fn. In Theorem 1
at Section 2, we summarize the results in [12] with a modified proof that shows the asymptotic linear
expansion of profile likelihood using this representation. This result gives an alternative approach to
the one given by Murphy and van der Vaart [16]. The work in this paper is motivated by the referee’s
comments given for [12]: “Its assumption on the existence of η̂(β, F ) in equation (1) still concerns me,
as many semiparametric models used in survival context don’t have this property. The paper should
give more examples or acknowledge this limitation.” In this paper, we aim to answer the comments by
showing that, in the case of the Cox proportional hazard model, there exists a function η̂(β, F ) and the
results in [12] are fully applicable. This is demonstrated in Section 3.
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2. SUMMARY OF RESULTS IN [12]: THEOREM AND ITS ASSUMPTIONS

On the set of cdf functions F , we use the sup-norm, i.e., for F,F0 ∈ F ,

‖F − F0‖∞ = sup
x

|F (x) − F0(x)|.

For ρ > 0, let

Cρ = {F ∈ F : ‖F − F0‖∞ < ρ}. (2)

For a map (β, F ) ∈ Θ ×F → η̂(β, F ) ∈ H, we define a model (called the induced model) with log-
likelihood for one observation as

�(x;β, F ) = log p(x;β, η̂(β, F )), β ∈ Θ, F ∈ F .

The score function in the induced model is denoted by

�̇(x, β, F ) =
∂

∂β
�(x;β, F ). (3)

We assume that:

(R0) η̂ satisfies η̂(β0, F0) = η0 and the function

�̇∗(x) = �̇(x, β0, F0)

is the efficient score function.

(R1) The empirical cdf Fn is n1/2-consistent, i.e., n1/2‖Fn − F0‖∞ = OP (1), and for each (β, F ) ∈
Θ×F , the log-likelihood function �(x;β, F ) is twice continuously differentiable with respect to β

and Hadamard differentiable with respect to F for all x. (Derivatives are denoted by �̇(x, β, F ) =
∂
∂β �(x;β, F ), �̈ = ∂

∂β �̇(x, β, F ), A(x, β, F ) = dF �(x;β, F ), and dF �̇(x, β, F ). See [9] or [19] for
the definition of Hadamard differentiability.)

(R2) The efficient information matrix I∗ = E(�̇∗�̇∗T ) is invertible.

(R3) There exists a ρ > 0 such that the class of functions {�̇(x, β, F ) : (β, F ) ∈ Θ × Cρ} is Donsker
with square integrable envelope function, and the class of functions {�̈(x, β, F ) : (β, F ) ∈ Θ×Cρ}
is Glivenko–Cantelli with integrable envelope function. (Note: In the Introduction, we assumed
the set Θ is a compact set containing an open neighborhood of β0 in R

m.)

Theorem 1. Suppose that the assumptions {(R0), (R1), (R2), (R3)} are satisfied, then a consistent
solution β̂n to the estimating equation

n∑

i=1

�̇(Xi, β̂n, Fn) = 0 (4)

is an asymptotically linear estimator for β0 with the efficient influence function (I∗)−1�̇∗(x), so
that

√
n(β̂n − β0) = n−1/2

n∑

i=1

(I∗)−1�̇∗(Xi) + oP (1) d−→ N
{

0, (I∗)−1
}

,

where N{0, (I∗)−1} is a normal distribution with mean zero and variance (I∗)−1. This demon-
strates that the estimator β̂n is efficient.

MATHEMATICAL METHODS OF STATISTICS Vol. 20 No. 3 2011



226 HIROSE

Proof. Since (i) the range of the score operator A(X,β0, F0) = dF �(x;β0, F0) = dF log p(x;β0, η̂β0,F0)
for F is in the nuisance tangent space (the tangent space for η), and (ii) the function �̇(x, β0, F0) is the
efficient score function, we have

E{dF �̇(X,β0, F0)} = −E{�̇(X,β0, F0)A(X,β0, F0)} = 0 (the zero operator). (5)

For Fn and F0 in F , consider a path F ∗
n,t = F0 + t(Fn − F0), t ∈ [0, 1]. Then F ∗

n,0 = F0 and F ∗
n,1 =

Fn. Under the assumption n1/2‖Fn − F0‖∞ = OP (1) (condition (R1)), we have supt∈[0,1] ‖F ∗
n,t −

F0‖∞ = oP (1).

By the mean value theorem for vector-valued functions (see Hall and Newell [11]),

‖n1/2E{�̇(X,β0, Fn)}‖
= ‖n1/2E{�̇(X,β0, Fn)} − n1/2E{�̇(X,β0, F0)}‖
≤ sup

t∈[0,1]
‖E{dF �̇(X,β0, F

∗
n,t)}‖n1/2‖Fn − F0‖∞

= ‖E{dF �̇(X,β0, F0)} + op(1)‖n1/2‖Fn − F0‖∞ (since sup
t∈[0,1]

‖F ∗
n,t − F0‖∞ = oP (1))

= op(1)n1/2‖Fn − F0‖∞ (by Eq. (5))

= oP (1) (since n1/2‖Fn − F0‖∞ = OP (1)). (6)

Since the functions �̇(x, β, F ) and �̈(x, β, F ) are continuous in (β, F ) in a neighborhood of (β0, F0),
and they are dominated by the square integrable function and the integrable function, respectively, by

the dominated convergence theorem, for every (β∗
n, F ∗

n) P→ (β0, F0), we have

E‖�̇(X,β0, F
∗
n) − �̇(X,β0, F0)‖2 P→ 0

and

E‖�̈(X,β∗
n, F ∗

n) − �̈(X,β0, F0)‖ P→ 0.

Together with condition (R3), this implies that

n−1/2
n∑

i=1

{

�̇(Xi, β0, Fn) − �̇(Xi, β0, F0)
}

= n1/2E
{

�̇(X,β0, Fn) − �̇(X,β0, F0)
}

+ oP (1). (7)

By Lemma 13.3 in [15], and for every (β∗
n, F ∗

n) P→ (β0, F0),

n−1
n∑

i=1

�̈(Xi, β
∗
n, F ∗

n) P→ E�̈(Xi, β0, F0) = −I∗. (8)

By combining Eqs. (6) and (7), we get

n−1/2
n∑

i=1

�̇(Xi, β0, Fn) = n−1/2
n∑

i=1

�̇(Xi, β0, F0) + oP (1). (9)

Finally, by Taylor’s expansion, for some β∗
n with ‖β∗

n − β0‖ ≤ ‖β̂n − β0‖
P→ 0,

0 = n−1/2
n∑

i=1

�̇(Xi, β̂n, Fn)

= n−1/2
n∑

i=1

�̇(Xi, β0, Fn) + n−1
n∑

i=1

�̈(Xi, β
∗
n, Fn)n1/2(β̂n − β0)

MATHEMATICAL METHODS OF STATISTICS Vol. 20 No. 3 2011



ASYMPTOTIC LINEAR EXPANSION OF PROFILE LIKELIHOOD 227

= n−1/2
n∑

i=1

�̇(Xi, β0, F0) + oP (1) + {−I∗ + oP (1)}n1/2(β̂n − β0),

where the last equality is by Eqs. (8) and (9). Hence, by condition (R2),

n1/2(β̂n − β0) = (I∗)−1n−1/2
n∑

i=1

�̇(Xi, β0, F0) + oP (1){1 + n1/2(β̂n − β0)}.

Since (I∗)−1n−1/2
∑n

i=1 �̇(Xi, β0, F0) = OP (1), this equality implies n1/2(β̂n − β0) = OP (1) and

n1/2(β̂n − β0) = (I∗)−1n−1/2
n∑

i=1

�̇(Xi, β0, F0) + oP (1).

3. APPLICATION TO COX’S PROPORTIONAL HAZARD MODEL

Cox [7] introduced a proportional hazard model, known as the Cox model, where the cumulative
hazard function of the survival time T for a subject with covariate Z ∈ Rk is given by

Λ(t | Z) = eβT ZΛ(t). (10)

Here Λ(t) is an unspecified baseline cumulative hazard function. Murphy and van der Vaart [16]
discussed asymptotic normality of the profile likelihood estimator by applying an approximate least
favorable submodel which was proposed in their paper. Our approach uses the direct asymptotic
expansion of profile likelihood for the Cox regression model.

Suppose we observe (X, δ, Z) in time interval [0, τ ], where X = T ∧ C, δ = 1{T≤C}, Z ∈ Rk is a
regression covariate, T is a right-censored failure time with cumulative hazard as given by Eq. (10), and
C is a censoring time independent of T given Z and uninformative of (β,Λ). Let N(t) = 1{X≤t,δ=1},

Y (t) = 1{X≥t}, and M(t) = N(t) −
∫ t
0 Y (s)eβT Z dΛ(s). The log-likelihood for a single observation

(X, δ, Z) for the usual discrete extension of the model is given by

�(X, δ, Z;β,Λ) = {βT Z + log ΔΛ(X)}δ − eβT ZΛ(X), (11)

where ΔΛ(t) = Λ(t) − Λ(t−).

We denote the empirical cdf of the observations {(Xi, δi, Zi) : i = 1, . . . , n} by Fn, and the cdf that
generates an observation (X, δ, Z) by F0. For any cdf F of (X, δ, Z), write EF (f) =

∫

f dF and define a
function

Λ̂β,F (t) =

t∫

0

EF {dN(s)}
EF {Y (s)eβT Z}

. (12)

Note that (i) for an estimator β̂ of β, the Breslow estimator is given by Λ̂β̂,Fn
(t); (ii) if (β0,Λ0)

is the true value of the parameter (β,Λ), then we have EF0N(t) =
∫ t
0 EF0{Y (s)eβT

0 Z} dΛ0(s) and

Λ̂β0,F0(t) = Λ0(t).

We substitute the function Λ̂β,F (t) into the log-likelihood (Eq. (11)) and call it the induced model.
The log-likelihood for an observation (X, δ, Z) in the induced model is

�(X, δ, Z;β, Λ̂β,F ) =
[

βT Z + log
EF {ΔN(X)}

EF{Y (X)eβT Z}

]

δ − eβT Z

X∫

0

EF {dN(s)}
EF{Y (s)eβT Z}

. (13)
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The score function and its derivative at (X, δ, Z) in the induced model are

�̇(X, δ, Z;β, F ) =
∂

∂β
�(X, δ, Z;β, Λ̂β,F ) =

τ∫

0

[

Z − EF {ZY (t)eβT Z}
EF {Y (t)eβT Z}

]

dM̂β,F (t) (14)

and

�̈(X, δ, Z;β, F ) =
∂

∂β
�̇(X, δ, Z;β, F )

= −
τ∫

0

(
EF {Z⊗2Y (t)eβT Z}

EF {Y (t)eβT Z}
− [EF {ZY (t)eβT Z}]⊗2

[EF {Y (t)eβT Z}]2

)

M̂β,F (t)

−
τ∫

0

[

Z − EF {ZY (t)eβT Z}
EF{Y (t)eβT Z}

]⊗2

Y (t)eβT Z dΛ̂β,F (t). (15)

Here M̂β,F (t) = N(t) − Y (t)eβT ZΛ̂β,F (t).

Since Λ̂β0,F0(t) = Λ0(t), the induced score function at (β0, F0),

�̇(X, δ, Z;β0, F0) =

τ∫

0

[

Z − EF0{ZY (t)eβT
0 Z}

EF0{Y (t)eβT
0 Z}

]

dM(t) =: �̇∗(X, δ, Z) (16)

is the efficient score function �̇∗(X, δ, Z) (cf. [16]) and the efficient information matrix is given by

I∗ := −E{�̈(X, δ, Z;β0 , F0)} = E

( τ∫

0

[

Z − EF0{ZY (t)eβT
0 Z}

EF0{Y (t)eβT
0 Z}

]⊗2

Y (t)eβT
0 Z dΛ0(t)

)

. (17)

We assume that

(C1) pr(X ≥ τ) = E{Y (τ)} > 0, and

(C2) the range of Z is bounded and the parameter β is in a compact set Θ that contains an open
neighborhood of β0;

(C3) the efficient information matrix I∗ is invertible;

(C4) the empirical cdf Fn is n1/2-consistent, i.e., n1/2‖Fn − F0‖∞ = OP (1).

Now, the partial likelihood and the corresponding score equation are given by

Ln(β) =
n∏

i=1

∏

0≤t≤τ

{
Yi(t)eβT Zi

∑n
j=1 Yj(t)eβT Zj

}ΔNi(t)

and

∂

∂β
log Ln(β) =

n∑

i=1

τ∫

0

[

Zi −
EFn{ZY (t)eβT Z}
EFn{Y (t)eβT Z}

]

dNi(t) = 0. (18)

At the same time, for the empirical cdf Fn,
∑n

i=1 �(Xi, δi, Zi;β, Λ̂β,Fn) gives a version of profile log-
likelihood, where �(X, δ, Z;β,Λ) is the log-likelihood for an observation given by Eq. (11) and Λ̂β,Fn is
given by Eq. (12). Then the score equation for the profile likelihood is

n∑

i=1

τ∫

0

[

Zi −
EFn{ZY (t)eβT Z}
EFn{Y (t)eβT Z}

]

M̂β,Fn(t) = 0. (19)
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Since
n∑

i=1

τ∫

0

[

Zi −
EFn{ZY (t)eβT Z}
EFn{Y (t)eβT Z}

]

Yi(t)eβT Zi dΛ̂β,Fn(t) = 0,

the score equations (18) and (19) are the same equation.
The following theorem shows asymptotic linearity of the estimators based on the profile likelihood

and the partial likelihood.

Theorem 2. Suppose (C1)–(C4). The solution β̂n to the score equation for the profile likelihood
(Eq. (19)) and the solution β̂n to the score equation for the partial likelihood (Eq. (18)) are both
asymptotically linear estimators with the efficient influence function (I∗)−1�̇∗, so that

n1/2(β̂n − β0) = n−1/2
n∑

i=1

(I∗)−1�̇∗(Xi, δi, Zi) + oP (1) d→ N{0, (I∗)−1}, (20)

where the efficient score �̇∗ and the efficient information I∗ are given by Eqs. (16) and (17),
respectively, and N{0, (I∗)−1} is a normal distribution with mean zero and variance (I∗)−1.

Proof. In the following, the set of assumptions (R0)–(R3) in Theorem 1 are verified. Then the claim
follows from Theorem 1.

Condition (R0): This condition is verified by three lines below Eqs. (12) and (16).
Condition (R1): Equation (13) is twice continuously differentiable with respect to β with the first and

second derivatives (14) and (15). We show that Eq. (13) is Hadamard differentiable with respect to F .
Suppose Λt be a path such that Λt → Λ and t−1(Λt − Λ) → g as t ↓ 0. Then, as t ↓ 0,

t−1{�(x, δ, z;β,Λt) − �(x, δ, z;β,Λ)} = δt−1{log ΔΛt(x) − log ΔΛ(x)} − eβT zt−1{Λt(x) − Λ(x)}

→ δ
Δg(x)
ΔΛ(x)

− eβT zg(x) ≡ dΛ�(δ, z;β,Λ)(g)(x).

This shows �(x, δ, z;β,Λ) is Hadamard differentiable with respect to Λ.
If we show Hadamard differentiability of the function Λ̂β,F (t) (defined by Eq. (12)) with respect to F ,

then, by the chain rule of Hadamard differentiable maps, Eq. (13) is Hadamard differentiable with respect
to F .

Suppose Ft be a path such that Ft → F and t−1(Ft − F ) → h as t ↓ 0. Then, as t ↓ 0,

t−1
{

Λ̂β,Ft(s) − Λ̂β,F (s)
}

= t−1

[ s∫

0

EFt {dN(u)}
EFt{Y (u)eβT Z}

−
s∫

0

EF {dN(u)}
EF {Y (u)eβT Z}

]

→
s∫

0

Eh {dN(u)}
EF {Y (u)eβT Z}

−
s∫

0

EF {dN(u)}Eh{Y (u)eβT Z}
[EF {Y (u)eβT Z}]2

≡ dF Λ̂β,F (h)(s).

Therefore, the function Λ̂β,F (t) is Hadamard differentiable with respect to F and hence Condi-
tion (R1) is verified.

Condition (R2): We assumed that the efficient information matrix given by Eq. (17) is invertible (C3).

Condition (R3): Let F be the set of cdf functions and Cρ be defined by (2). For some ρ > 0, we show
that the class

{�̇(X, δ, Z;β, F ) : β ∈ Θ, F ∈ Cρ}
is Donsker with square integrable envelope function and the class

{

�̈(X, δ, Z;β, F ) : β ∈ Θ, F ∈ Cρ

}

is Glivenko–Cantelli with integrable envelope function.
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The set of cdf functions F is uniformly bounded Donsker. Hence the subset Cρ ⊂ F is uniformly
bounded Donsker.

We assumed Z is bounded. The classes of functions {N(t) : t ∈ [0, τ ]} and {Y (t) : t ∈ [0, τ ]} are
uniformly bounded Donsker. The class {βT Z : β ∈ Θ} with compact set Θ is uniformly bounded
Donsker. Since f(x) = ex is a Lipschitz continuous function, we have that {eβT Z : β ∈ Θ} is uniformly
bounded Donsker.

By Example 2.10.8 in van der Vaart and Wellner [22], the class of functions {Y (t)eβT Z : t ∈
[0, τ ], β ∈ Θ} is uniformly bounded Donsker. Since the map (f, F ) → EF (f) =

∫

f dF is Lipschitz,

by Theorem 2.10.6 in van der Vaart and Wellner [22], {EF {Y (t)eβT Z} : t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ} is
Donsker since it is uniformly bounded. Similarly, the class {EF {N(t)} : t ∈ [0, τ ], F ∈ Cρ} is uniformly
bounded Donsker.

We assumed P (X ≥ τ) = E{Y (τ)} > 0. Since the map F → EF (f) =
∫

f dF is continuous, there
are ρ > 0 and ρ1 > 0 such that for all F ∈ Cρ,

EF {Y (τ)} ≥ ρ1 > 0.

Since Z is bounded and β is in the compact set Θ, 0 < m < eβT Z < M for some 0 < m < M < ∞. It
follows that

0 < ρ1m ≤ mEF{Y (s)} ≤ EF {Y (s)eβT Z} ≤ MEF{Y (s)} ≤ M < ∞.

By Example 2.10.9 in van der Vaart and Wellner [22], the class
{

1
EF{Y (t)eβT Z}

: t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
Since the map (f, F ) → EF (f) =

∫

f dF is Lipschitz, by Theorem 2.10.6 in van der Vaart and
Wellner [22], the class of functions

{

Λ̂β,F (t) =

t∫

0

dEF {N(s)}
EF {Y (s)eβT Z}

: t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
By Examples 2.10.7, 2.10.8, and 2.10.9 in van der Vaart and Wellner [22], the class

{

N(t) − Y (t)eβZ
Λ̂β,F (t) : t ∈ [0, τ ], β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
Clearly, the class of functions

{

Z − EF {ZY (t)eβT Z}
EF {Y (t)eβT Z}

: β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker.
Again, since the map (f, F ) →

∫

f dF is Lipschitz, by Theorem 2.10.6 in van der Vaart and
Wellner [22], the class of functions

{

�̇(X, δ, Z;β, F ) =

τ∫

0

{

Z − EF {ZY (t)eβT Z}
EF{Y (t)eβT Z}

}
{

dN(t) − Y (t)eβT Z dΛ̂β,F (t)
}

: β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker and hence it has square integrable envelope function.
Similarly, we can show that

{

�̈(X, δ, Z;β, F ) : β ∈ Θ, F ∈ Cρ

}

is uniformly bounded Donsker, hence it is Glivenko–Cantelli with integrable envelope function.
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