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1. INTRODUCTION

Suppose we observe a random sample X1, . . . ,Xn from a distribution P , and we are in the classical
situation, where one maintains a parametric model M = {P (θ) : θ ∈ Θ} of probability measures P (θ)
indexed by the set Θ ⊆ R

b for statistical inference. Under the assumption of correct specification of the
parametric model, i.e., P = P (θ0) for a (unique) θ0 ∈ Θ, the maximum likelihood estimator (MLE) is
often a natural estimator of θ0 (as well as of P (θ0)), since it is asymptotically efficient under well-
known regularity conditions.

There are several reasons, however, why maximum likelihood might nevertheless not be the method
of choice, and alternatives, which ideally are also asymptotically efficient, are of interest.

A first such reason is rather classical (e.g., Huber (1972), Beran (1977), Millar (1981), Donoho and
Liu (1988), Lindsay (1994)) and comes from robustness considerations: A good estimator for θ0 should
be robust against misspecifications of M. A lesson from the above-mentioned literature is the following:
If one wants an estimator of θ0 that is robust against perturbations of P (θ0) in some metric χ(·, ·), then
one should rather use ‘minimum distance estimators’ of the following form: if P̃n is a suitable (typically
nonparametric) χ-consistent estimator of P , estimate θ by the minimizer over Θ of

Qn(θ) := χ(P̃n, P (θ)). (1)

Under several assumptions, Beran (1977) showed the interesting result that, if χ is the Hellinger-
distance, and if P̃n is some kernel density estimator, such minimum-distance estimators are not only
robust, but actually simultaneously asymptotically efficient, so that they outperform the MLE in this
sense. We will discuss the asymptotic efficiency aspect of his result in more detail below.

A second, more practical reason against the use of the MLE that has arisen in recent applications
in econometrics and biostatistics is related to the fact that in these applications analytic expressions
for the densities in the parametric model, and hence for the likelihood function, are not available (or
intractable for numerical purposes). For example, the data may be modeled by an equation of the form
Xi = g(εi, θ0), but the implied parametric density may not be analytically tractable, e.g., because g is
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complicated or εi is high-dimensional. The same problem occurs naturally also in estimation of dynamic
nonlinear models including stochastic differential equations, we refer to Smith (1993), Gourieroux et
al. (1993), Gallant and Tauchen (1996), Gallant and Long (1997) and the monograph Gourieroux and
Monfort (1996) for several concrete examples. This problem has led to a growing literature about so-
called indirect inference methods, where other estimators than the MLE are suggested, often based on
simulations, see the just mentioned references and Jiang and Turnbull (2004). From a conceptual point
of view, the main idea behind the indirect inference approach can be phrased as follows:

1. Simulate a sample X1(θ), . . . ,Xk(θ) of size k from the distribution P (θ) for θ ∈ Θ (which is often
possible in the examples alluded to above, e.g., by perusing the equations defining the model; see
also Remark 1).

2. Based on the simulated sample as well as on the true data, compute estimators P̃k(θ) and P̃n in a
not necessarily correctly-specified but numerically tractable auxiliary model Maux. [For example,
by maximum likelihood if Maux is finite-dimensional.]

3. Choose a suitable metric χ on Maux and estimate θ0 by minimizing over Θ the objective function

Qn,k(θ) := χ(P̃n, P̃k(θ)). (2)

In most of the indirect inference literature, the auxiliary model Maux is also finite-dimensional
(so that one in fact estimates a finite-dimensional parameter in Step 2 rather than the probability
measure directly), and the resulting procedure can be shown to be consistent and asymptotically normal
(under standard regularity conditions, see Gourieroux and Monfort (1996)). However, the procedure is
asymptotically efficient only if Maux happens to be correctly specified. This assumption is certainly
restrictive and often unnatural if Maux is of fixed finite dimension. Therefore Gallant and Long (1997)
suggested that choosing Maux with dimension increasing in sample size should result in estimators
that are asymptotically efficient, the idea being that this essentially amounts to choosing an infinite-
dimensional auxiliary model Maux for which the assumption of correct specification is much less
restrictive.

In the present paper we show in some generality that indirect inference estimators based on
suitable nonparametric estimators P̃n and P̃k(θ) with common choices for the tuning parameters
(‘sieve’-dimensions), including rate-optimal choices, are asymptotically efficient in the sense
that they are asymptotically normal with asymptotic variance equal to the Cramér–Rao bound.
To the best of our knowledge, no proof of this fact was known before, although there are some related
results that need mentioning. We comment on the literature in some detail below, but first wish to discuss
the main ideas behind our results. [Robustness issues, misspecification of M, as well as uniformity in
the asymptotic normality result are not treated explicitly in this paper; for the latter two issues in a related
context see Gach (2010).]

From the discussion so far it transpires that indirect inference estimators from (2) are minimum
distance estimators, with the important (and nontrivial) modification that P (θ) in (1) is replaced
by an estimator based on simulations from P (θ). It is therefore of interest to first briefly revisit
Beran’s (1977) asymptotic efficiency result: For simplicity, consider the Fisher-metric χF (f, g)2 :=∫

(f − g)2p−1
0 , where p0 is the density of P , instead of the Hellinger distance. [Note that the Fisher-

metric is closely related to the Hellinger distance when f and g are near p0.] If θ̂n is the minimizer of Qn

in (1), then, after a suitable Taylor expansion, asymptotic efficiency of
√

n(θ̂n − θ0) essentially reduces
to proving two separate results: The first is to prove asymptotic normality for the gradient of (1) at θ0,
namely

√
n

∫
s(θ0) d(P̃n − P (θ0)), (3)

where the ‘influence function’ s(θ0) equals ∇θp(θ0)p−1
0 . Note that s(θ0) coincides with the efficient

influence function in this problem, showing that χ = χF is a natural choice. The second step is to
control the remainder term in the Taylor expansion, which essentially requires convergence of P̃n to
P = P (θ0) (in the sense of Lp-convergence of the respective densities for certain values of p). Beran
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(1977) implicitly proved these two results under relatively restrictive conditions if P̃n is a kernel density
estimator with certain bandwidths, and if χ is the Hellinger metric. It is typically not sensible (and for
the most interesting metrics χ in fact not possible) to take P̃n to be the empirical measure itself, but
rather P̃n should be some smoothed version of it. In this case, one cannot directly apply a standard
central limit theorem to (3). However, recent results in empirical process theory (Nickl (2007), Giné and
Nickl (2008, 2009b)) establish exactly such limit theorems for various density estimators. Furthermore,
these limit theorems also hold for density estimators that simultaneously deliver optimal convergence
rates in Lp-type loss functions, which is potentially relevant for good control of the remainder term. (We
should note that this simultaneous optimality property is related to what Bickel and Ritov (2003) label
the ’plug-in property’ of the density estimator P̃n, cf. also Section 3 in Nickl (2007) for more discussion.)
Using similar methods we first prove a Beran-type result (Theorem 2) under quite weak (if not sharp)
conditions for the case where χ = χF (but with the unknown p0 replaced by an estimator) and where the
underlying nonparametric estimator is based on an L2-projection of the empirical measure onto spaces
of piecewise polynomials spanned by dyadic B-splines.

Once asymptotic normality of the minimum distance estimator in (1) is established, the question
arises how the simulation step in (2) should be approached. Here two proof strategies arise:

1. The first method is to show that the objective function Qn,k with simulations is stochastically
close, uniformly over Θ, to the objective function Qn, where no simulation is performed. If

sup
θ∈Θ

|Qn,k(θ) − Qn(θ)| (4)

has a sufficiently fast rate of convergence to zero (in probability), then it is not difficult to show, us-
ing a result from Gach (2010), that the asymptotic distribution of the simulated indirect inference
estimator obtained from minimizing (2) is the same as the one of the classical minimum distance
estimator discussed in the previous paragraph. It turns out that proving that the expression in (4)
has a sufficiently fast rate of convergence to zero can be done by deriving sharp bounds for the
stochastic processes

{√
n

∫
f d

(
P̃k(θ) − P (θ)

)
}

θ∈Θ,f∈F
,

where F is a relevant class of functions, and again we can apply recent techniques from empirical
processes here (cf. Nickl (2007), Giné and Nickl (2008, 2009b) together with moment inequalities
in Giné and Koltchinskii (2006)). We prove that if one performs simulations of order k � n2, then
the indirect inference estimators are asymptotically equivalent to the classical minimum distance
estimators. The main advantage of this proof strategy is that no differentiability properties of the
objective function Qn,k have to be used, and that in turn a large class of simulation mechanisms
is admissible. More importantly, this proof strategy allows for the presumably critical condition
τ > 1/2 on the underlying density p0, where τ is the index governing the regularity of p0.

2. The method of proof described above works if many simulations are performed (k � n2). How-
ever, this condition is not intrinsic to the problem, and the case where the number of simulations
k is of a smaller order than n2 is also of interest. In particular, as k/n → κ, 0 < κ < ∞, one has
to expect that the asymptotic variance of simulated indirect inference estimators is inflated by
the factor (1 + 1/κ). If one is interested in these cases, the (comparatively) ‘brute force’ methods
described in the previous paragraph cannot be used. Alternatively, one can try to apply the usual
M-estimation asymptotic normality proof to the criterion function Qn,k(θ). Among other things
this requires differentiation of the simulated estimators Pk(θ) with respect to θ. Since Pk(θ) is
constructed by applying an approximate identity to the empirical measure from the simulated
sample, the proofs become more delicate in this case. [Differentiating an approximate identity
h−1K(X(θ)/h) w.r.t. θ introduces a ’penalty’ of an additional h−1 from the chain rule.] We are
able, nevertheless, to establish asymptotic normality of the simulated indirect inference estimator
with these simulation sizes as well, under slightly stronger conditions (on the underlying density
and the simulation mechanism), and with the expected inflation of variances if limn k/n < ∞.
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Again, the empirical process techniques mentioned in the previous paragraphs, together with
some facts from approximation theory, are central to our proofs.

We should comment on some related literature. Related papers are Gallant and Long (1997) and
Fermanian and Salanié (2004). The first paper studies the case where P̃n is based on nonparametric
MLEs over sieves spanned by Hermite polynomials, but their limiting result is only informative if
the sieve dimension stays bounded (so that efficiency of the estimator is only established if the true
density is a finite linear combination of Hermite-polynomials). Fermanian and Salanié (2004) propose
different (but somewhat related) procedures, and establish asymptotic efficiency of their estimators
under several high level conditions, which, as they admit themselves, are very stringent. Even in the
simplest model they consider, they need to have simulations of order k ∼ n6, and the nonparametric
estimators considered seem to be only sensible if the true density is very smooth. There are also some
other related recent papers on this topic, Altissimo and Mele (2009) and Carrasco et al. (2007), whose
proofs, however, we were not able to follow.

The outline of the paper is as follows: After some preliminaries in Section 2, we introduce the
model and assumptions, define the auxiliary spline projection estimators as well as the indirect inference
estimator in Section 3 and present the main result (Theorem 1) on asymptotic efficiency of the indirect
inference estimator. Some basic facts on dyadic splines are summarized in Section 4. Section 5 is
devoted to the proof of Theorem 1. Section 6 develops auxiliary convergence rate results for the auxiliary
spline projection estimators needed in the proof of Theorem 1. Section 7 establishes a uniform central
limit theorem for spline projection estimators that is also essential in the proof of the main result. Three
appendices contain further technical results on Besov spaces, projections onto Schoenberg spaces, and
moment inequalities for empirical processes.

2. PRELIMINARIES AND NOTATION

We denote the Euclidean norm of a vector x ∈ R
b by ‖x‖ and the associated operator norm of a

matrix A by ‖A‖. With Lp := Lp([0, 1], λ), 1 ≤ p < ∞, we denote the vector space of Borel-measurable
p-fold integrable real-valued functions on [0, 1], where λ denotes Lebesgue measure on [0, 1], the
(semi)norm on Lp being denoted by ‖h‖p. Furthermore, ‖h‖∞ stands for the supremum norm (not the
essential supremum norm) of a real-valued function h defined on [0, 1]. If H is a vector- or matrix-
valued function on [0, 1], then ‖H‖p is shorthand for ‖ ‖H‖ ‖p and similarly for the supremum norm. We
denote by L∞ the space of all bounded Borel-measurable real-valued functions on [0, 1] endowed with
the supremum norm. For a (measurable) real-valued function g on R and 1 ≤ p < ∞ we write ‖g‖p,R to
denote its Lp-(semi)norm (w.r.t. Lebesgue measure on R); and we write ‖g‖∞,R for the supremum norm
(not the essential supremum norm). For sequences an and bn of positive real numbers we write an ∼ bn

to denote the fact that the sequence an/bn is bounded away from zero and infinity.
We next introduce Besov spaces. For a function g : R → R and z ∈ R, the difference operator Δz is

defined by Δzg(·) = g(· + z) − g(·) and inductively by Δa
zg(·) = Δz(Δa−1

z g(·)) for integer a ≥ 2. For
h : [0, 1] → R, we define Δa

z(h)(x) as above if x, x + az ∈ [0, 1], and set Δa
z(h)(x) = 0 otherwise. For

0 < s < ∞ we define function spaces Bs on [0, 1] as follows.

Definition 1. For s ∈ (0,∞), a ∈ (s,∞) ∩ N, and h ∈ L2 define

‖h‖s,2 := ‖h‖2 + sup
0�=|z|<1

|z|−s‖Δa
z(h)‖2.

Define further

Bs := Bs
2∞ = {h ∈ L2 : ‖h‖s,2 < ∞}.

The space Bs does not depend on a in the sense that different choices of a > s result in equivalent
(semi)norms. For definiteness we shall always choose a to be the smallest integer larger than s in the
sequel. It is well known (Proposition 7 in Appendix A) that for s > 1/2 every function in Bs is λ-almost
everywhere equal to a (uniquely determined) continuous function in Bs. It thus proves useful to define
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for s > 1/2 the Banach space (Bs, ‖ · ‖s,2), where Bs = Bs ∩ C([0, 1]) and C([0, 1]) denotes the set of
continuous real-valued functions on [0, 1].

A little reflection shows that Bs is just the usual Besov (or generalized Lipschitz) space Bs
2∞ as, e.g.,

defined in Chapter 2, Section 10 of DeVore and Lorentz (1993) (with the only difference that there Bs

is viewed as a space of equivalence classes of functions). The space Bs contains the classical Sobolev
space of order s as a subset. Recall that for integer s the Sobolev space of order s > 0 is given by

Ws
2 =

{
h ∈ L2 : Di

wh ∈ L2 for 0 ≤ i ≤ s, i integer
}
,

where Dw denotes the weak differential operator. Then for integer s > 0

‖h‖s,2 ≤ C(s)
∑

0≤i≤s

‖Di
wh‖2 (5)

holds for some universal constant C(s) and all h in the Sobolev space of order s; cf. p. 46 and p. 52f in
DeVore and Lorentz (1993). Some further properties of Besov spaces and their relationship to splines
that we shall need in the sequel are summarized in Appendix A.

3. MAIN RESULTS

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) on a compact interval in R with law
P and Lebesgue-density p0. Without loss of generality we shall take this interval to be [0, 1]. We assume
that a parametric model PΘ is given, i.e., PΘ = {p(θ) : θ ∈ Θ}, where the functions p(θ) : [0, 1] → R

are probability densities and the parameter space Θ is a subset of R
b. The probability measure on [0, 1]

corresponding to p(θ) will be denoted by P (θ). We consider here the case where direct likelihood methods
for estimation of θ cannot be used for the reasons outlined in the Introduction. Suppose, however, that it
is feasible to obtain for each θ ∈ Θ simulated data Xi(θ) via

Xi(θ) = ρ(Vi, θ), i = 1, . . . , k, (6)

that are i.i.d. with density p(θ) and that are independent of the original sample. [The simulation
mechanism may result from an equation for the data as described in Section 1, but may also be obtained
in some other way.] More precisely, we assume that the random variables Vi driving the simulation
mechanism are i.i.d. with values in some measurable space (V,V), the distribution on V induced
by Vi being denoted by μ; furthermore, we assume that for every θ ∈ Θ, the V-measurable function
ρ(·, θ) : V → [0, 1] is such that the law of ρ(Vi, θ) has density p(θ) and that the collection of random
variables {Vi} is independent of the collection {Xi}. As the main result depends only on the distribution
of the random variables Xi and Vi, we can assume without loss of generality that the original data Xi

as well as the variables Vi are defined as the respective coordinate projections on the product probability
space ([0, 1]∞ × V∞,B∞

[0,1] ⊗ V∞, P∞ ⊗ μ∞); we shall denote by Pr the product probability measure
P∞ ⊗ μ∞. The basic framework outlined above will be maintained throughout the rest of the paper.

Remark 1. To avoid possible misunderstanding we note the following: (i) Equation (6) implies that one
needs to obtain one and only one simulated sample V1, . . . , Vk in order to compute Xi(θ) for any θ ∈ Θ.
There is no need to separately draw random samples for every θ. (ii) Simulation mechanisms like (6)
naturally occur in the domain of application of indirect inference which consists of statistical models,
where the data Xi are assumed to arise as the output of an equation that is parameterized by θ and is
driven by some stochastic noise variables. These stochastic noise variables then often play the role of Vi.

We next construct auxiliary estimators for p0 from the original data as well as for p(θ) from the
simulated data. The estimator of p0 based on the original data is a spline projection estimator based
on B-splines of order r∗ ≥ 1 and is given by

pn,j,r∗(y) =
2j−1∑

l=−r∗+1

γ̂
(r∗)
lj N

(r∗)
lj (y)
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with

γ̂
(r∗)
lj =

2j−1∑

m=−r∗+1

2jg
(r∗)lm
j

∫

[0,1]

N
(r∗)
mj (x) dPn(x).

Here N
(r∗)
lj denote the B-spline basis functions forming a basis for the Schoenberg space Sj(r∗) and the

coefficients g
(r∗)lm
j are the elements of 2−j times the inverse of the Gram matrix of the B-spline basis

N
(r∗)
lj ; see Section 4 for definitions. Furthermore, Pn = n−1

∑n
i=1 δXi denotes the empirical measure of

the original data. The positive integer j represents a tuning parameter that governs the dimension of
the approximating space (‘sieve’) spanned by the B-spline basis. Similarly, from each simulated data set
Xi(θ), we construct estimators for p(θ) based on order-r B-splines via

pk,J,r(θ)(y) =
2J−1∑

l=−r+1

γ̂
(r)
lJ (θ)N (r)

lJ (y) (7)

with

γ̂
(r)
lJ (θ) =

2J−1∑

m=−r+1

2Jg
(r)lm
J

∫

[0,1]

N
(r)
mJ(x) dPk(θ)(x) (8)

and Pk(θ) = k−1
∑k

i=1 δXi(θ). Note that r∗ and r need not take the same value, nor need j and J . [For
example, r = 4 would correspond to using cubic splines for the construction of pk,J,r(θ), while r∗ = 1
would correspond to using the Haar basis for the construction of pn,j,r∗.] In the sequel we shall often
write pk,J,r(θ, y) for pk,J,r(θ)(y) and similarly p(θ, x) for p(θ)(x).

The idea behind indirect inference is that, given the parametric model is correctly specified in the
sense that p0 = p(θ0) λ-almost everywhere for some θ0 ∈ Θ, the particular value of θ corresponding
to the simulation-based estimator pk,J,r(θ) closest to pn,j,r∗ (in an appropriate metric) should provide
a reasonable estimator θ̂n,k of θ0, since pn,j,r∗ will estimate p0 = p(θ0) (λ-a.e.) consistently (under
appropriate assumptions and choices of j, J , and k). That is, as explained in Section 1, the estimator
θ̂n,k can be viewed as a simulation-based version of a minimum distance estimator.

To implement this idea we introduce the indirect inference objective function measuring closeness of
pn,j,r∗and pk,J,r(θ)

Qn,k(θ) := Qn,k,j,J,r∗,r(θ) =

{∫ 1
0 (pn,j,r∗ − pk,J,r(θ))2p−1

n,j,r∗ dλ on the event An,

0 otherwise,
(9)

where An =
{
pn,jn,r∗(y) > 0 for every y ∈ [0, 1]

}
, which is measurable as is easily seen. Note that

Qn,k(θ) : [0, 1]∞ × V∞ → R is B∞
[0,1] ⊗ V∞-measurable for every θ ∈ Θ as a consequence of Tonelli’s

Theorem since pn,j,r∗ and pk,J,r(θ) are both jointly measurable (w.r.t. the combined data and the
argument y) and since An is measurable. Furthermore, since all functions involved are piecewise
polynomials with dyadic breakpoints, the integral featuring in the definition of Qn,k(θ) can be computed
in a numerically efficient way.

Remark 2. (i) We have chosen to assign Qn,k(θ) the value zero on the complement of An for conve-
nience. Since the event An will be seen to have probability approaching 1 under our assumptions, this
particular assignment is irrelevant for asymptotic considerations. However, from a more practical point
of view, one might want to use the objective function

∫
pn,j,r∗>0(pn,j,r∗ − pk,J,r(θ))2p−1

n,j,r∗ dλ instead,

which clearly coincides with Qn,k on An.
(ii) In principle, auxiliary estimators other than spline projection estimators could be used in the

definition of Qn,k(θ). We do not pursue this in this paper but see Gach (2010). We note that standard
kernel density estimators are inappropriate here because of boundary effects.
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An indirect inference estimator θ̂n,k := θ̂n,k,j,J,r∗,r is now defined to be any measurable function
that satisfies

inf
θ∈Θ

Qn,k(θ) = Qn,k(θ̂n,k). (10)

For the sake of simplicity, we shall use the abbreviation Qn,k to denote Qn,k,j,J,r∗,r as well as
Qn,k,jn,Jk,r∗,r, the precise meaning always being clear from the context. [A similar comment applies
to θ̂n,k, as well as to Qn and θ̂n defined later in Section 5.5.2.] That such an estimator exists is shown in
the following proposition, the proof of which can be found in Appendix B.

Proposition 1. Suppose that Θ is compact in R
b and that the simulation mechanism ρ(v, ·) is

continuous on Θ for every v ∈ V . Furthermore, assume that r∗ ≥ 1 and r ≥ 2 hold. Then there
exists a B∞

[0,1] ⊗ V∞-measurable mapping θ̂n,k satisfying (10).

Remark 3. (Computational issues) (i) As noted in Remark 1, only one sample of V1, . . . , Vk needs to

be drawn before γ̂
(r)
lJ (θ) can be evaluated for any arbitrary θ ∈ Θ via (8). The computational costs for

evaluating γ̂
(r)
lJ (θ) are trivial.

(ii) The evaluation of the objective function Qn,k(θ) at an arbitrary θ ∈ Θ is not computationally
expensive either: Note that in view of (7) the objective function Qn,k(θ) can be written as a linear-

quadratic form in the variables γ̂
(r)
lJ (θ), where the entries of the weight-matrix and the coefficients of

the linear part are integrals of functions that do not depend on θ (and are simple functions of linear
combinations of B-spline basis functions). Consequently, the integrations have to be done only once
and the evaluation of Qn,k(θ) then reduces to computation of the linear-quadratic form in the variables

γ̂
(r)
lJ (θ).

(iii) Minimization of Qn,k(θ) over Θ is now a standard optimization problem and has a level of
computational complexity comparable to computation of common (non-simulation-based) optimization
estimators. Standard techniques like grid-search, Newton–Raphson-type procedures, or stochastic
search procedures as in Beran and Millar (1987) can be applied. Similarly as in the case of non-
simulation-based optimization estimators, it is in fact feasible to show that the estimators generated by
such a numerical procedure have the same asymptotic properties as the estimator θ̂n,k under appropriate
assumptions.

We now introduce the following assumptions on the parametric model that will be used to prove the
main result.

Assumption P1: (i) The parameter space Θ is a compact subset of R
b. There exists a θ0 ∈ Θ such

that p0 = p(θ0) λ-almost everywhere. Furthermore, p(θ) = p(θ0) λ-almost everywhere implies θ = θ0.
The mapping θ �→ p(θ, x) is continuous on Θ for every x ∈ [0, 1]. The density p(θ0) is positive on [0, 1].

(ii) PΘ is a bounded subset of Bτ for some τ > 1/2.

(iii) θ0 is an interior point of Θ. There is an open ball B(θ0) ⊆ Θ with center θ0 such that the map
θ �→ p(θ, x) is twice continuously differentiable on B(θ0) for every x ∈ [0, 1]. Furthermore,

1∫

0

sup
θ∈B(θ0)

‖∇θp(θ, x)‖2 dx < ∞,

1∫

0

sup
θ∈B(θ0)

‖∇2
θp(θ, x)‖ dx < ∞,

and
∫ 1
0 ∇θp(θ0, x)∇θp(θ0, x)′p(θ0, x)−1 dx is positive definite. [Here ∇θ denotes the gradient w.r.t. θ

written as a column vector and ∇2
θ denotes the matrix of second derivatives.]

(iv) For some ς > 1/2

∂p(θ0, ·)
∂θq

∈ Bς for every q = 1, . . . , b.
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Assumption P1 (i) is a standard assumption that implies consistency of the maximum likelihood
estimator. In particular, it expresses the fact that the parametric model is correctly specified and that the
true parameter value is identifiable. Assumption P1 (iii) in conjunction with P1 (i) is a typical assumption
used to establish asymptotic normality of the maximum likelihood estimator and the information matrix
equality. Assumption P1 (ii) requires the parametric density functions to behave “regularly” as functions
of x (uniformly in θ), the condition being quite weak: Note that if τ is close to 1/2 the density functions are
not even required to be differentiable, all that is required is essentially that the functions are “L2-Hölder
continuous” of order τ , uniformly over θ. [Given compactness of Θ, a sufficient condition for Assumption
P1 (ii) is that PΘ ⊆ Bτ for some τ > 1/2 and that the map θ → p(θ) from Θ to Bτ is continuous; in fact,
continuity of the map θ → ‖p(θ)‖τ,2 already suffices. A simple sufficient condition for this (with τ = 1)
is continuity of θ → ‖p(θ)‖2 and θ → ‖Dwp(θ)‖2 on Θ, cf. (5).] In a similar vein, Assumption P1 (iv)
imposes an analogous weak regularity condition on the derivative of p(θ) (w.r.t. θ) at θ = θ0.

For parts of the main result we will need to supplement Assumption P1 by the following assumption.

Assumption P2: (i) The set
{∂p(θ,·)

∂θq
: q = 1, . . . , b, θ ∈ B(θ0)

}
is a relatively compact subset of L2,

where B(θ0) is defined in Assumption P1.

(ii) The set
{∂2p(θ,·)

∂θq∂θq′
: q, q′ = 1, . . . , b, θ ∈ B(θ0)

}
is a bounded subset of L2, i.e.,

sup
θ∈B(θ0)

1∫

0

‖∇2
θp(θ, x)‖2 dx < ∞.

These assumptions are not restrictive. For example, Assumption P2 (i) is satisfied if the indicated set
of functions is a bounded subset of a Besov space Bs with s only satisfying s > 0, which is a very weak
condition.

We also need assumptions on the simulation mechanism ρ. The basic assumption will be that the
function ρ satisfies a Hölder continuity condition in θ (Assumption R (i)). For some of the results we
shall need an additional assumption including twice differentiability in a neighborhood of θ0 (Assump-
tion R (ii)).

Assumption R: (i) The function ρ is uniformly Hölder in θ, more precisely, for some 0 < L < ∞ and
some 0 < α ≤ 1

sup
v∈V

|ρ(v, θ) − ρ(v, θ′)| ≤ L‖θ − θ′‖α for all θ, θ′ ∈ Θ.

(ii) There is an open ball B(θ0) ⊆ Θ with center θ0 such that the map θ → ρ(v, θ) is twice continu-
ously differentiable on B(θ0) for every v ∈ V and

sup
v∈V ,θ∈B(θ0)

‖∇θρ(v, θ)‖ < ∞, sup
v∈V ,θ∈B(θ0)

‖∇2
θρ(v, θ)‖ < ∞.

Furthermore, for some 0 < L′ < ∞ and some 0 < β ≤ 1

sup
v∈V

‖∇2
θρ(v, θ) −∇2

θρ(v, θ′)‖ ≤ L′‖θ − θ′‖β for all θ, θ′ ∈ B(θ0).

Assumptions on the parametric model PΘ and assumptions on the simulation mechanism ρ are of
course interrelated. For example, one could in principle only impose appropriate assumptions on ρ and
then deduce the existence of a PΘ with the required properties from those assumptions; see Gach (2010)
for some discussion. However, as this does not seem to lead to a transparent catalogue of assumptions,
we have chosen to formulate the assumptions in the form given above.

We now first establish consistency of the indirect inference estimator. The assumptions used for the
consistency result in the subsequent proposition are stronger than what is actually needed for such a
result, but we do not strive for utmost generality in the consistency result as this is not the main focus of
the paper. The proof is given in Section 5.1.
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Proposition 2. Suppose that Assumptions P 1(i), (ii) and R (i) are satisfied and that r∗ ≥ 2 and
r ≥ 2 hold. If jn → ∞ as n → ∞ and Jk → ∞ as k → ∞ in such a way that for some δ > 1/2 we
have supn≥1 2jn(2δ+1)/n < ∞ and supk≥1 Jk2Jk(2δ+1)/k < ∞, then

θ̂n,k → θ0 in Pr -probability as n ∧ k → ∞.

We note that the condition on jn is, e.g., satisfied if 2jn ∼ nψ with 0 < ψ < 1/2. A similar comment
applies to Jk. In particular, the ‘textbook’-choice ψ = 1/(2τ + 1) with τ from Assumption P1 (ii) is
covered.

For the main result we need to distinguish several cases characterized by the behavior of the number
k(n) ∈ N of simulated data as a function of sample size n:

Assumption S1: limn→∞ k(n)/n2 = ∞.

Assumption S2: limn→∞ k(n)/n = ∞.

Assumption S3: limn→∞ k(n)/n = κ for some 0 < κ < ∞.

The theorem given below is the main result and shows that, under appropriate conditions on the
resolution levels jn and Jk, the indirect inference estimator θ̂n,k is asymptotically normal and has the
same limiting distribution as the maximum likelihood estimator provided the number k(n) of simulated
data grows sufficiently fast as a function of sample size n. This is established under the quite weak
Assumption R (i) if k(n) grows faster than n2. If k(n) is only required to grow faster than n, the same
result is obtained under somewhat stronger assumptions (Assumption R, τ > 3/2, r ≥ 4). Under the
latter assumptions, the theorem also shows that in case k(n) behaves asymptotically like n, the indirect
inference estimator is still asymptotically normal but its asymptotic variance-covariance matrix is then
inflated by a factor 1 + 1/κ, where κ = limn→∞ k(n)/n. We also note that the condition τ < r∗ ∧ r in the
subsequent theorem is virtually no restriction as discussed in Remark 4 below. The proof of the theorem
is deferred to Section 5.

Theorem 1. Suppose r ≥ 2 and r∗ ≥ 2 hold and Assumption P1 is satisfied for some 1/2 < τ <

r∗ ∧ r. Suppose that 2jn ∼ n1/(2τ+1) and 2Jk(n) ∼ k(n)1/(2τ+1).

(a). Suppose one of the following two conditions holds:

1. Assumptions R (i) and S1 hold.

2. Assumptions P2, R, and S2 hold, and that τ > 3/2, r ≥ 4 are satisfied.

Then
√

n
(
θ̂n,k(n) − θ0

)
→d N(0, I(θ0))

as n → ∞, where I(θ0) =
( ∫ 1

0 ∇θp(θ0, x)∇θp(θ0, x)′p(θ0, x)−1 dx
)−1 is the Cramér–Rao bound.

(b). Suppose that Assumptions P2, R, and S3 hold for some 0 < κ < ∞ and that τ > 3/2, r ≥ 4
are satisfied. Then

√
n
(
θ̂n,k(n) − θ0

)
→d N

(
0, (1 + 1/κ)I(θ0)

)
as n → ∞.

We note that the rates of increase for 2jn and 2Jk(n) specified in the above theorem are precisely
the rate-optimal choices based on mean integrated squared error. As already alluded to prior to the
theorem, in Part (a) of the theorem there is a trade-off between the stringency of assumptions on the
model and the simulation mechanism on the one hand and the assumptions on the rate of increase of
k(n) (Assumptions S1 versus S2) on the other hand. While the particular form of the trade-off is a
consequence of two different methods of proof employed for Part (a)1 and Part (a)2 (and thus may in
principle be an artefact), it seems plausible that some sort of trade-off is intrinsic to the problem.

MATHEMATICAL METHODS OF STATISTICS Vol. 19 No. 4 2010



336 NICKL, PÖTSCHER

Remark 4. (i) The condition τ < r∗ ∧ r in the above theorem is not really a restriction on PΘ and can
always be achieved in the following sense: If Assumption P1 holds with τ ≥ r∗ ∧ r, it holds with τ
replaced by any τ ′ satisfying 1/2 < τ ′ < r∗ ∧ r as well, since Bτ is continuously imbedded in Bτ ′ for
τ ′ ≤ τ . Consequently, the above theorem can be applied with τ ′ replacing τ (requiring also τ ′ > 3/2 for
Parts (a)2 and (b) ). [The restriction τ < r∗ ∧ r in the theorem simply expresses the fact that the rate of
increase of jn and Jk is not only governed by the degree of “regularity" τ of the densities in PΘ, but also
by the degrees of “regularity" of the splines used to estimate p0 and p(θ), respectively, i.e., by r∗ and r.]

(ii) The argument underlying (i) also shows that 2jn ∼ n1/(2τ ′+1) and 2Jk(n) ∼ k(n)1/(2τ ′+1) are
feasible in Theorem 1 as it stands as long as 1/2 < τ ′ ≤ τ (and τ ′ > 3/2 for Parts (a)2 and (b) ) are
satisfied. A careful examination of the proof shows that the range for 2jn and 2Jk(n) , under which the
conclusion of the theorem holds, is actually somewhat wider. However, we abstain from providing such
results as they quickly get unwieldy.

(iii) If in Part (a)2 of Theorem 1 the Assumption S2 is strengthened by assuming a particular growth-
rate for k(n) such as, e.g., k(n) = nδ, 1 < δ ≤ 2, this can be used to relax the assumption τ > 3/2. We
refrain from presenting such results.

(iv) If k(n) is such that 0 < lim inf k(n)/n < ∞, but lim sup k(n)/n = ∞, then the distribution√
n(θ̂n,k(n) − θ0) does not possess a limit, but ‘oscillates’ between accumulation points of the form

N(0, I(θ0)) and N(0, (1 + 1/κ)I(θ0)), where now κ varies through all accumulation points of k(n)/n.

(v) A result similar to Part (a)1 of Theorem 1 can be proved in case r∗ = 1. Since this requires a
separate proof, we do not give such a result for the sake of brevity.

Under Assumption P1 the expression Ψ(θ) =
∫ 1
0 ∇θp(θ)∇θp(θ)′p(θ)−1 dλ depends continuously

on θ by dominated convergence. Hence, Ψ(θ̄)−1 is a consistent estimator for I(θ0) for every consistent
estimator θ̄. However, this observation is not very helpful in the context of indirect inference as then
expressions for the density p(θ) are typically not available. An alternative consistent estimator that is
feasible to compute is described in the next proposition which is proved in Section 5.5. In the following
proposition let θ̄n,k stand for an arbitrary consistent estimator that depends on the original data and
perhaps also on the simulated data. Of course, under the assumptions of Proposition 2 we may take
θ̄n,k = θ̂n,k.

Proposition 3. Suppose Assumptions P1 (i)–(iii), P2 (i), and R (ii) hold. Suppose further that
θ̄n,k → θ0 in probability as n ∧ k → ∞. Assume r′∗ ≥ 2 and r′ ≥ 3. If j′n → ∞ as n → ∞ and
J ′

k → ∞ as k → ∞ in such a way that for some δ > 1/2 we have supn≥1 2j′n(2δ+1)/n < ∞ and also

J ′
k2

3J ′
k/k → 0, then

( 1∫

0

∇θpk,J ′
k,r′(θ̄n,k)∇θpk,J ′

k,r′(θ̄n,k)′p−1
n,jn,r′∗

dλ

)−1

is well defined on an event that has probability converging to 1, and is a consistent estimator for
I(θ0) as n ∧ k → ∞.

Observe that the condition on j′n is satisfied if 2j′n ∼ nψ with 0 < ψ < 1/2; similarly, the condition
on J ′

k is satisfied if 2J ′
k ∼ nψ with 0 < ψ < 1/3. The reason for allowing r′ to differ from r in Theorem 1

is to be able to construct a consistent estimator for I(θ0) also in cases, where r = 2. Allowing J ′
k to be

different from Jk has the advantage of avoiding a constraint on τ .
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4. DYADIC SPLINES
Let Tj = {tl := l2−j : l = 1, . . . , 2j − 1} be a dyadic set of knots in [0, 1], where j ∈ N, the set

of positive integers. A function S : [0, 1] → R is a (dyadic) spline of order r ≥ 2 if on each of the
intervals [0, t1), (tl, tl+1) for l = 1, . . . , 2j − 2, and (t2j−1, 1], it is a polynomial of degree not larger than
r − 1, and on at least one of the intervals it is a polynomial of degree exactly r − 1. The Schoenberg
spaces Sj(r) considered here consist of all splines of order less than or equal to r that are r − 2
times continuously differentiable on [0, 1] (using one-sided derivatives on the boundary of [0, 1]). For
r = 1 we define the Schoenberg space Sj(1) to be the space of all functions S : [0, 1] → R that are
constant on the intervals [0, t1), [tl, tl+1) for l = 1, . . . , 2j − 2, and [t2j−1, 1]. The Schoenberg spaces

are linear spaces of dimension 2j + r − 1. For r ≥ 2 the B-spline basis for Sj(r) is given by {N (r)
lj : l =

−r + 1, . . . , 0, 1, . . . , 2j − 1} with

N
(r)
lj (x) = N (r)(2jx − l) for x ∈ [0, 1],

where N (r) is the B-spline-function (of order r) given by the r -fold convolution

N (r)(u) = 1[0,1) ∗ · · · ∗ 1[0,1)(u) for u ∈ R;

cf., e.g., Chapter 5 in DeVore and Lorentz (1993). In case r = 1 we set

N
(1)
lj (x) = N (1)(2jx − l) for x ∈ [0, 1],

for l = 0, 1, . . . , 2j − 2, where N (1)(u) = 1[0,1)(u), but we set

N
(1)
lj (x) = 1[0,1](2

jx − l) for x ∈ [0, 1]

if l = 2j − 1. The B-spline basis functions N
(r)
lj are nonnegative, bounded by 1 in absolute value, and

form a partition of unity, i.e.,

2j−1∑

l=−r+1

N
(r)
lj (x) = 1 for x ∈ [0, 1], (11)

for every j, r ∈ N.

The Schoenberg space Sj(r) is a finite-dimensional linear subspace of L2. The ortho-projection π
(r)
j

from L2 onto Sj(r) is given by

π
(r)
j (f) =

2j−1∑

l=−r+1

γ
(r)
lj (f)N (r)

lj ,

where

γ
(r)
lj (f) =

2j−1∑

m=−r+1

2jg
(r)lm
j

1∫

0

N
(r)
mj (x)f(x) dx

and g
(r)lm
j is the (l,m)-element of the inverse of the (2j + r − 1) × (2j + r − 1) matrix

G
(r)
j =

( 2j∫

0

N (r)(u − l)N (r)(u − m) du

)

l,m

.

Note that G
(r)
j is a symmetric bandmatrix with bandwidth r. The projection can now also be written as

π
(r)
j (f)(y) =

1∫

0

K
(r)
j (x, y)f(x) dx (12)
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with the kernel given by

K
(r)
j (x, y) = 2j

2j−1∑

l=−r+1

2j−1∑

m=−r+1

g
(r)lm
j N (r)(2jx − m)N (r)(2jy − l).

We shall frequently need to bound the maximal row-sum of the absolute values of the elements of the

inverse of G
(r)
j , i.e., the �∞-operator norm of the inverse of G

(r)
j . For this we use the following special

case of a result in Shadrin (2001, Theorem I and Section 4.2).

Proposition 4. For every r ∈ N there exist constants 0 < dr < ∞ (independent of j) such that for
every j ∈ N

∥
∥(G(r)

j )−1
∥
∥
∞→∞ ≤ dr,

where ‖ · ‖∞→∞ denotes the �∞-operator norm on R
2j+r−1.

We furthermore note that for r ≥ 2 the Schoenberg space Sj(r) is contained in the Sobolev space of
order r − 1, and thus is also contained in Br−1. In fact, for every r ≥ 1 we have that Sj(r) is contained in
Bs for s ≤ r − 1/2 (DeVore and Lorentz (1993), Chap. 12, Lemma 3.1). Some approximation properties
of splines that we shall use in the sequel are summarized in Appendix A.

For the spline projection estimators defined in Section 3 we make the useful observation that for every
J ≥ 1 and r ≥ 1

‖pk,J,r(θ)‖∞ ≤ 2Jdr(2J + r − 1) (13)

holds uniformly in θ ∈ Θ, k ≥ 1, and v1, . . . , vk ∈ V . [To see this note that the B-spline basis functions

are uniformly bounded by 1 and that the coefficients satisfy |γ̂(r)
lJ (θ)| ≤ 2Jdr uniformly in θ ∈ Θ, k ≥ 1,

−r + 1 ≤ l ≤ 2J − 1, and v1, . . . , vk ∈ V by Proposition 4.] The analogous relation is true for ‖pn,j,r∗‖∞,
as well as for ‖Epk,J,r(θ)‖∞ and ‖Epn,j,r∗‖∞.

5. PROOFS

We shall use repeatedly in this section the fact that ξ0 := infx∈[0,1] p(θ0, x) > 0 under Assump-
tions P1 (i), (ii) (as p(θ0) is continuous and positive on [0, 1] under these assumptions).

5.1. Proof of Proposition 2

Define the function

Q(θ) =

1∫

0

(p(θ0) − p(θ))2p−1(θ0) dλ, (14)

which is real-valued and is continuous in θ by dominated convergence, observing that ξ0 > 0 and
that Assumption P1 (ii) implies sup-norm boundedness of PΘ in view of the discussion following
Proposition 7 in Appendix A. The unique minimizer of Q(θ) over Θ is θ0 in view of the identifiability
assumption made in Assumption P1 (i). To establish consistency, it is hence sufficient to prove

sup
θ∈Θ

|Qn,k(θ) − Q(θ)| → 0

in probability as n∧ k → ∞. Note that this supremum is measurable as Qn,k(θ) and Q(θ) are continuous
and Θ is separable. [For continuity of Qn,k see the proof of Proposition 1 in Appendix B.] Consider
the set A∗

n = {infy∈[0,1] pn,jn,r∗(y) ≥ ξ0/2}, which is clearly measurable. Since ξ0 > 0 as noted above,
Corollary 2 (applied with t = δ ∧ τ ∧ 1 and noting that p(θ0) is a continuous version of p0 in view of
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Assumption P1 (i)) implies that Pr(A∗
n) → 1 as n → ∞. A simple calculation now shows that on the

event A∗
n (since A∗

n ⊆ An)

Qn,k(θ) − Q(θ) =

1∫

0

(pn,jn,r∗ − p(θ0))
[

1 − p(θ)2

pn,jn,r∗p(θ0)

]

dλ +

1∫

0

(pk,Jk,r(θ) − p(θ))2p−1
n,jn,r∗

+ 2

1∫

0

(pk,Jk,r(θ) − p(θ))
[

p(θ)
pn,jn,r∗

− 1
]

dλ.

On A∗
n we can then obtain the bound

sup
θ∈Θ

|Qn,k(θ) − Q(θ)| ≤ ‖pn,jn,r∗ − p(θ0)‖∞
(
1 + 2ξ−2

0 sup
θ∈Θ

‖p(θ)‖2
∞

)

+ 2ξ−1
0 sup

θ∈Θ
‖pk,Jk,r(θ) − p(θ)‖2

∞

+ sup
θ∈Θ

‖pk,Jk,r(θ) − p(θ)‖∞
(
2 + 4ξ−1

0 sup
θ∈Θ

‖p(θ)‖∞
)
.

The sup-norm boundedness of PΘ together with Corollaries 1 and 2 (applied with t = δ ∧ τ ∧ 1) then
complete the proof.

5.2. An Intermediate Result

Consider the objective function

Qn(θ) := Qn,j,r∗(θ) =

{∫ 1
0 (pn,j,r∗ − p(θ))2p−1

n,j,r∗ dλ on the event An,

0 otherwise,
(15)

corresponding to the ‘ideal’ case k = ∞. Let θ̂n := θ̂n,j,r∗ denote an arbitrary measurable minimizer of
(15) over Θ. [The existence of such an estimator is established in Proposition 10 in Appendix B.]

Theorem 2. Suppose r∗ ≥ 2 holds and Assumption P1 is satisfied with 1/2 < τ < r∗. If 2jn ∼
n1/(2τ+1), then, as n → ∞,

√
n(θ̂n − θ0) →d N(0, I(θ0)).

Proof. Consistency of θ̂n follows from Proposition 11 in Appendix B by choosing δ in that proposition
sufficiently close to 1/2. It follows that θ̂n ∈ B(θ0) with probability tending to 1, and hence θ̂n belongs
to the interior of Θ with probability tending to 1. In the following we work only on the intersec-
tion of the event {θ̂n ∈ B(θ0)} with A∗

n = {infy∈[0,1] pn,jn,r∗(y) ≥ ξ0/2}, which also has probability
converging to 1 as a consequence of Corollary 2 (applied with some t satisfying 1/2 < t ≤ τ ∧ 1).
Note that ‖pn,jn,r∗‖∞ < ∞ holds and that ‖p−1

n,jn,r∗‖∞ ≤ 2/ξ0 on the event A∗
n. Furthermore, by

Assumption P1 (ii) the function p(θ) is bounded uniformly in θ, cf. Proposition 7 and the attending
discussion in Appendix A. Assumption P 1(iii) and dominated convergence then show that Qn(θ) is
twice continuously differentiable on the open ball B(θ0) with derivatives given by

∇θQn(θ) = −2

1∫

0

(
pn,jn,r∗ − p(θ)

)
p−1

n,jn,r∗∇θp(θ) dλ,

∇2
θQn(θ) = 2

1∫

0

p−1
n,jn,r∗∇θp(θ)∇θp(θ)′ dλ − 2

1∫

0

(
pn,jn,r∗ − p(θ)

)
p−1

n,jn,r∗∇
2
θp(θ) dλ, (16)
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and these derivatives are measurable functions for every θ ∈ B(θ0). Since θ̂n is an interior maximizer of
Qn (on the event considered), we have that ∇θQn(θ̂n) = 0. Consequently, a standard Taylor expansion
gives

0 = ∇θQn(θ̂n) = ∇θQn(θ0) + ∇2
θQ

∗
n(θ̂n − θ0), (17)

where the ith row of ∇2
θQ

∗
n equals the corresponding row of ∇2

θQn evaluated at a mean-value θ̃
(i)
n ,

which may depend on the row-index (measurability of θ̃
(i)
n being of no concern here). We now first

establish that n1/2∇θQn(θ0) is asymptotically normal with mean zero and variance-covariance matrix
4
∫ 1
0 ∇θp(θ0)∇θp(θ0)′p−1(θ0) dλ. To this end write (−1/2)n1/2∇θQn(θ0) as

√
n

1∫

0

(
pn,jn,r∗ − p(θ0)

)
p(θ0)−1∇θp(θ0) dλ

+
√

n

1∫

0

(
pn,jn,r∗ − p(θ0)

)(
p−1

n,jn,r∗ − p(θ0)−1
)
∇θp(θ0) dλ,

both terms being measurable. The first term in the above display now converges to the required limit
by Theorem 4 (applied with t = τ and some s satisfying 1/2 < s < 1, s ≤ ς ∧ τ ) and the Cramér–Wold
device. To see this, observe that p0 ∈ Bt by Assumption P1 (i), (ii) (since p0 = p(θ0) λ-a.e.). Further-
more, for every α ∈ R

b, α �= 0, the function f = p(θ0)−1α′∇θp(θ0) belongs to Bς∧τ as a consequence of
Assumption P1 (ii), (iv) and Proposition 7 in Appendix A. Hence F = {f} ⊆ Bs. The conditions on jn

in Theorem 4 follow from the assumption on jn in the current theorem. Finally note that P (f) = 0 under
Assumption P1. The second term in the above display is bounded in norm (on the event A∗

n) by

n1/2

1∫

0

(
pn,jn,r∗ − p(θ0)

)2
p(θ0)−1p−1

n,jn,r∗‖∇θp(θ0)‖ dλ

≤ (2/ξ2
0) sup

x∈[0,1]
‖∇θp(θ0, x)‖n1/2‖pn,jn,r∗ − p(θ0)‖2

2,

noting that ‖p(θ0)−1‖∞ ≤ ξ−1
0 and that ∂

∂θq
p(θ0) is bounded on [0, 1] for every q since it belongs to

Bς with ς > 1/2 by Assumption P1 (iv). By Lemma 3 the r.h.s. in the above display is Op(n−1/22jn +
n1/22−2jnτ ), which is op(1) because of τ > 1/2.

Next we show that ∇2
θQ

∗
n converges to the positive definite matrix ∇2

θQ(θ0) in (outer) probability. To
this end we first show that ∇2

θQn(θ) converges to ∇2
θQ(θ) uniformly over B(θ0) in probability, where

Q(θ) has been defined in (14). By Assumption P1 and dominated convergence we have that Q(θ) is
twice continuously differentiable on B(θ0) with

∇2
θQ(θ) = 2

1∫

0

p(θ0)−1∇θp(θ)∇θp(θ)′ dλ − 2

1∫

0

(
p(θ0) − p(θ)

)
p(θ0)−1∇2

θp(θ) dλ.

We now see that

∇2
θQn(θ) −∇2

θQ(θ) = 2

1∫

0

(p−1
n,jn,r∗

− p(θ0)−1)∇θp(θ)∇θp(θ)′

− 2

1∫

0

(
pn,jn,r∗ − p(θ)

)
(p−1

n,jn,r∗ − p(θ0)−1)∇2
θp(θ) + 2

1∫

0

(
p(θ0) − pn,jn,r∗

)
p(θ0)−1∇2

θp(θ)
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and we obtain (the supremum being measurable because of continuity of ∇2
θQn and ∇2

θQ on B(θ0))

sup
θ∈B(θ0)

‖∇2
θQn(θ) −∇2

θQ(θ)‖ ≤ 2‖pn,jn,r∗ − p(θ0)‖∞ sup
θ∈B(θ0)

[ 1∫

0

p−1
n,jn,r∗p(θ0)−1‖∇θp(θ)‖2 dλ

+

1∫

0

∣
∣pn,jn,r∗ − p(θ)

∣
∣p−1

n,jn,r∗p(θ0)−1‖∇2
θp(θ)‖ dλ +

1∫

0

p(θ0)−1‖∇2
θp(θ)‖ dλ

]

≤ ‖pn,jn,r∗ − p(θ0)‖∞
[

4ξ−2
0

1∫

0

sup
θ∈B(θ0)

‖∇θp(θ)‖2 dλ

+
(
4ξ−2

0

(
‖pn,jn,r∗‖∞ + sup

θ∈B(θ0)
‖p(θ)‖∞

)
+ 2ξ−1

0

) 1∫

0

sup
θ∈B(θ0)

‖∇2
θp(θ)‖ dλ

]

= op(1), (18)

by Assumption P1 and Corollary 2 (applied with a t satisfying 1/2 < t ≤ τ ∧ 1). Since ∇2
θQ(θ) is

continuous at θ0 as shown above and since θ̂n is consistent, convergence of ∇2
θQ

∗
n to ∇2

θQ(θ0) in (outer)
probability follows.

The central limit theorem for the score together with the convergence result for∇2
θQ

∗
n just established

delivers now the desired result: rewrite (17) as

0 = n1/2∇θQn(θ0) + ∇2
θQ(θ0)n1/2(θ̂n − θ0) +

(
∇2

θQ
∗
n −∇2

θQ(θ0)
)
n1/2(θ̂n − θ0),

observe that ∇2
θQ(θ0) is positive definite by Assumption P1 (iii), and that the third term on the r.h.s. is

of lower order than the second one. This implies that n1/2(θ̂n − θ0) is stochastically bounded, and the
desired result then easily follows.

For the same reasons as given in Remark 4, the condition τ < r∗ in the above theorem is not really
a restriction. Furthermore, examining the proof shows that the conclusions of the theorem also hold for
other choices of 2jn : e.g., the theorem (without the condition τ < r∗) holds for 2jn ∼ nν with ν satisfying
1/2

(
(τ ∧ r∗) + (ς ∧ τ ∧ 1)

)
< ν < 1/2.

5.3. Proof of Part (a)1 of Theorem 1

We first provide an auxiliary result that relates the objective function Qn,k(θ) to the somewhat simpler
objective function Qn(θ) studied in the preceding section. Note that k is not linked to n in the subsequent
proposition.

Proposition 5. Suppose r ≥ 2 and r∗ ≥ 2 hold and Assumptions P1 (i), (ii) are satisfied for some
1/2 < τ < r∗ ∧ r. Suppose further that Assumption R (i) is satisfied and that 2jn ∼ n1/(2τ+1) and
2Jk ∼ k1/(2τ+1). Then for every ε > 0 there exist a positive real number M(ε) and a positive integer
N(ε) such that

Pr
(
k1/2 sup

θ∈Θ
|Qn,k(θ) − Qn(θ)| > M(ε)

)
< ε (19)

holds for all n ≥ N(ε) and all k ≥ 1.

Proof. First note that the supremum in (19) is measurable since Qn,k(θ) and Qn(θ) are continuous
in θ as noted before, cf. Section 5.1. For given ε > 0 choose N(ε) large enough such that for n ≥ N(ε)
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we have Pr(A∗
n) > 1 − ε, where A∗

n = {infy∈[0,1] pn,jn,r∗(y) ≥ ξ0/2}. This is possible by Corollary 2. A
simple calculation shows that on the event A∗

n

Qn,k(θ) − Qn(θ) =

1∫

0

(
pk,Jk,r(θ) − p(θ)

)
[
pk,Jk,r(θ) + p(θ)

pn,jn,r∗
− 2

]

.

Choose s to satisfy 1/2 < s < τ ∧ 1. Applying Corollaries 1 and 2 (with t = s) shows that for the given
ε > 0 there exists a positive finite D such that the events

A∗∗
n,k =

{
sup
θ∈Θ

‖pk,Jk,r(θ)‖s,2 ≤ D, ‖pn,jn,r∗‖s,2 ≤ D
}

have probability not less than 1 − ε for every k ≥ 1 and n ≥ 1. Applying Proposition 7 in Appendix A,
we conclude that there exists a finite positive D′ depending only on D, ξ0, and supθ∈Θ ‖p(θ)‖s,2 (which
is finite by Assumption P1 (ii) and continuous embedding of Bτ in Bs), such that on A∗

n ∩ A∗∗
n,k

sup
θ∈Θ

‖
(
pk,Jk,r(θ) + p(θ)

)
p−1

n,jn,r∗ − 2‖s,2 ≤ D′.

Thus for every M > 0, all k ≥ 1, and all n ≥ N(ε)

Pr
(√

k sup
θ∈Θ

|Qn,k(θ) − Qn(θ)| > M
)

≤ Pr
({√

k sup
θ∈Θ

sup
‖f‖s,2≤D′

∣
∣
∣
∣

1∫

0

(pk,Jk,r(θ) − p(θ))fdλ

∣
∣
∣
∣ > M

}

∩ A∗
n ∩ A∗∗

n,k

)

+ 2ε

≤ Pr
({√

k sup
θ∈Θ

‖Pk,Jk,r(θ) − P (θ)‖F > M

})

+ 2ε,

where F denotes {f ∈ Bs : ‖f‖s,2 ≤ D′} and ‖ · ‖F is defined before Theorem 3. Choose an s′ satisfying
1/2 < s′ < s. Then Theorem 3 (applied with t = τ ) implies for every k ≥ 1√

k sup
θ∈Θ

‖Pk,Jk,r(θ) − P (θ)‖F ≤
√

k sup
θ∈Θ

‖Pk,Jk,r(θ) − Pk(θ)‖F +
√

k sup
θ∈Θ

‖Pk(θ) − P (θ)‖F

= Op

(√
k2−Jk(τ+s) + 2−Jk(s−s′) + 1

)
= Op(1).

[Measurability of the suprema on the r.h.s. in the first line of the above display is established in the proof
of Theorem 3. The argument given there also establishes measurability of the supremum on the l.h.s.]
This completes the proof (noting that the l.h.s. in the above display is certainly a real-valued random
variable for every k).

The closeness of Qn,k and Qn expressed in the previous result translates into closeness of the
minimizers of these functions with the help of the following simple but useful lemma which is taken
from Gach (2010). Note that M2 below is smooth but M1 need not be so. This is relevant as Qn,k is
not guaranteed to be smooth under the assumptions of Part (a)1 of Theorem 1, whereas Qn is in view of
Assumption P1.

Lemma 1. Let U be a nonempty convex open subset of R
b. Suppose we are given functions

M1 : U → R and M2 : U → R such that M2 is twice partially differentiable on U with Hessian
satisfying

inf
x∈U

y′∇2
xM2(x)y ≥ c‖y‖2 (20)

for every y ∈ R
b and some 0 < c < ∞. If m1 ∈ U and m2 ∈ U minimize M1 and M2 over U ,

respectively, we have

‖m1 − m2‖ ≤ 2c−1/2
√

sup
u∈U

|M1(u) − M2(u)|,

where ‖ · ‖ denotes the Euclidean norm on R
b.
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Proof. Assume that minimizers m1 and m2 exist, since otherwise there is nothing to prove. [By
convexity of U and the assumption on the Hessian the minimizer m2 is unique.] Since m2 is a minimizer
of the twice partially differentiable function M2 on the convex open set U , we have

M2(m1) = M2(m2) + 2−1(m1 − m2)′∇2
xM2(m̃)(m1 − m2)

(using a pathwise Taylor series expansion), where m̃ lies in the convex hull of {m1,m2}. We conclude
from the assumption on the Hessian that

‖m1 − m2‖ ≤ (2c−1)1/2
√

|M2(m1) − M2(m2)|. (21)

Observe next that

M1(m1) − M2(m2) ≤ M1(m2) − M2(m2) ≤ sup
u∈U

|M1(u) − M2(u)|

and

M1(m1) − M2(m2) ≥ M1(m1) − M2(m1) ≥ − sup
u∈U

|M1(u) − M2(u)|,

so that

|M1(m1) − M2(m2)| ≤ sup
u∈U

|M1(u) − M2(u)|.

Consequently,

|M2(m1) − M2(m2)| ≤ |M2(m1) − M1(m1)| + |M1(m1) − M2(m2)| ≤ 2 sup
u∈U

|M1(u) − M2(u)|,

which, when plugged into (21), proves the lemma.

The proof of Part (a)1 of Theorem 1 is now as follows: Let U ⊆ B(θ0) be a sufficiently small open
ball around θ0 such that the smallest eigenvalues of ∇2

θQ(θ) are bounded away from zero by a positive
constant, η say, uniformly in θ ∈ U . Such an U exists, since ∇2

θQ(θ) is continuous on B(θ0), as shown
in Section 5.2, and since ∇2

θQ(θ0) is positive definite by Assumption P1. Now apply Lemma 1 with
M1 = Qn,k(n), M2 = Qn, and the set U just mentioned. Note that condition (20) is then satisfied for
M2 = Qn and c = η/2 on an event En that has probability converging to 1 in view of the choice of U and
since it was shown in the proof of Theorem 2 that ∇2

θQn(θ) converges to ∇2
θQ(θ) uniformly on B(θ0) in

probability. Observe also that Proposition 5 implies

sup
θ∈Θ

|Qn,k(n)(θ) − Qn(θ)| = Op(k(n)−1/2).

Taken together, this implies

‖θ̂n,k(n) − θ̂n‖ = Op(k(n)−1/4), (22)

which is op(n−1/2) in view of Assumption S1. Part (a)1 of Theorem 1 now follows from asymptotic
normality of

√
n(θ̂n − θ0), which has already been established in Theorem 2.

5.4. Proof of the Remaining Parts of Theorem 1

Observe first that it suffices to show that every subsequence ni of n contains a further subsequence
ni(l) along which the claimed asymptotic normality result holds. Given ni, we may choose the subse-
quence ni(l) in such a way that liml→∞ k(ni(l))/n2

i(l) exists (possibly being ∞) since the extended real

line is compact. But the sequence k(ni(l)) can be viewed as the subsequence k̄(ni(l)) of a sequence k̄(n)
for which limn→∞ k̄(n)/n2 exists (and necessarily equals liml→∞ k(ni(l))/n2

i(l)). This shows that for the

proof we may assume without loss of generality that limn→∞ k(n)/n2 exists (possibly being ∞). In the
case where this limit is infinite, the results then follow from Part (a)1, which has already been proved in
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Section 5.3. Thus we may assume without loss of generality not only that the limit of k(n)/n2 exists, but
also that

lim
n→∞

k(n)/n2 < ∞. (23)

We shall make this assumption for the remainder of this section.
Under Assumption R and if r ≥ 4 the mapping

θ �→ pk,J,r(θ, y) =
2J−1∑

l=−r+1

2J−1∑

m=−r+1

2Jg
(r)lm
J

(

k−1
k∑

i=1

N
(r)
mJ (ρ(Vi, θ))

)

N
(r)
lJ (y)

is twice continuously differentiable on B(θ0) for every y and every realization of V1, . . . , Vk by the chain
rule. Similarly as in the proof of Theorem 2, it suffices to work only on the event A∗

n ∩ {θ̂n,k(n) ∈ B(θ0)}
which has probability converging to 1 in view of Proposition 2 (applied with δ > 1/2 sufficiently close to
1/2) and Corollary 2 (applied with some t satisfying 1/2 < t ≤ τ ∧ 1). Note that ‖p(θ0)−1‖∞ ≤ ξ0 and
that ‖p−1

n,jn,r∗‖∞ ≤ 2/ξ0 holds on the before mentioned event; we shall use these facts repeatedly in the

sequel. Using this, (13), boundedness of N
(r)
mJ and of its first two derivatives as well as Assumption R,

one concludes from the dominated convergence theorem that also the objective function Qn,k defined
in (9) is twice continuously differentiable on the neighborhood B(θ0) with derivatives (measurable for
every θ ∈ B(θ0))

∇θQn,k(θ) = −2

1∫

0

(
pn,jn,r∗ − pk,Jk,r(θ)

)
p−1

n,jn,r∗∇θpk,Jk,r(θ) dλ,

∇2
θQn,k(θ) = 2

1∫

0

p−1
n,jn,r∗∇θpk,Jk,r(θ)∇θpk,Jk,r(θ) dλ

− 2

1∫

0

(
pn,jn,r∗ − pk,Jk,r(θ)

)
p−1

n,jn,r∗∇
2
θpk,Jk,r(θ) dλ. (24)

Since θ̂n,k(n) is an interior maximizer of Qn,k(n) (on the event considered), we clearly have that

∇θQn,k(n)(θ̂n,k(n)) = 0. Consequently, a standard Taylor expansions gives

0 = ∇θQn,k(n)(θ̂n,k(n)) = ∇θQn,k(n)(θ0) + ∇2
θQ∗

n,k(n)(θ̂n,k(n) − θ0), (25)

where the ith row of ∇2
θQ∗

n,k(n) equals the corresponding row of ∇2
θQn,k(n) evaluated at a mean-value

θ̃
(i)
n,k(n), which may depend on the row-index (measurability of the mean-value being of no concern).

We next show that
√

n∇θQn,k(n)(θ0) is asymptotically normal and that ∇2
θQ∗

n,k(n) converges in (outer)

probability to the positive definite matrix ∇2
θQ(θ0). The asymptotic normality of

√
n(θ̂n,k(n) − θ0) then

follows along the same lines as in the last paragraph of the proof of Theorem 2.

Step 1: CLT for the score
√

n∇θQn,k(n)(θ0).

We decompose the score as follows:

∇θQn,k(n)(θ0) = −2

1∫

0

(
pn,jn,r∗ − p(θ0)

)
p(θ0)−1∇θp(θ0) dλ

+ 2

1∫

0

(
pk(n),Jk(n),r(θ0) − p(θ0)

)
p(θ0)−1∇θp(θ0) dλ
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+ 2

1∫

0

(
pn,jn,r∗ − pk(n),Jk(n),r(θ0)

)(
p(θ0)−1∇θp(θ0) − p−1

n,jn,r∗∇θpk(n),Jk(n),r(θ0)
)
dλ

= I + II + III,

with each of the terms being measurable. We further observe that the terms I and II are independent by
construction of the simulation mechanism.

About Term I: As shown in the proof of Theorem 2,
√

nI →d N(0,Σ),

where

Σ = 4

1∫

0

∇θp(θ0)∇θp(θ0)′p(θ0)−1 dλ.

About Term II: Exactly the same argument as given in the proof of Theorem 2 for term I, except for
using Theorem 3 instead of Theorem 4, establishes that

√
k(n)II →d N (0,Σ) .

But then
√

nII =
√

n/k(n)
√

k(n)II →d N
(
0,

1
κ

Σ
)

under Assumption S3, and
√

nII converges to zero in probability under Assumption S2.

About Term III: By the Cauchy–Schwarz and the triangle inequality we have the bound

‖III‖ ≤ 2
∥
∥pn,jn,r∗ − pk(n),Jk(n),r(θ0)

∥
∥

2

[∥
∥(p(θ0)−1 − p−1

n,jn,r∗)∇θp(θ0)
∥
∥

2

+
∥
∥p−1

n,jn,r∗

(
∇θpk(n),Jk(n),r(θ0) −∇θp(θ0)

)∥
∥

2

]

≤ 2
∥
∥pn,jn,r∗ − pk(n),Jk(n),r(θ0)

∥
∥

2

[
(2/ξ2

0)
∥
∥
(
pn,jn,r∗ − p(θ0)

)
∇θp(θ0)

∥
∥

2

+ (2/ξ0)
∥
∥∇θpk(n),Jk(n),r(θ0) −∇θp(θ0)

∥
∥

2

]

≤ (4/ξ0)
[
‖pn,jn,r∗ − p(θ0)‖2 + ‖p(θ0) − pk(n),Jk(n),r(θ0)‖2

]

×
[
(1/ξ0)‖pn,jn,r∗ − p(θ0)‖2‖∇θp(θ0)‖∞ + ‖∇θpk(n),Jk(n),r(θ0) −∇θp(θ0)‖2

]

with ‖∇θp(θ0)‖∞ being finite in view of Assumption P1 (iv) and Proposition 7 in Appendix A. The
r.h.s. of the above display is now

Op

((√
2jn

n
+ 2−jnτ +

√
2Jk(n)

k(n)
+ 2−Jk(n)τ

)(√
2jn

n
+ 2−jnτ +

√
23Jk(n)

k(n)
+ 2−Jk(n)s

))

for every 0 < s < r, s ≤ ς in view of Assumptions P1 and R as well as Lemmas 3 and 4. Fixing such an
s > 1/2, the expression in the above display is seen to be op(n−1/2) under the assumptions of Part (a)2
or Part (b) (in particular, τ > 3/2), showing that

√
nIII is asymptotically negligible.

This completes Step 1 and shows that
√

n∇θQn,k(n)(θ0) →d N
(
0, (1 + κ−1)Σ

)

under the assumptions of Part (b), whereas under the assumptions of Part (a)2
√

n∇θQn,k(n)(θ0) →d N(0,Σ).
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Step 2: Convergence of second order derivatives.
We have

‖∇2
θQ∗

n,k(n) −∇2
θQ(θ0)‖ ≤ ‖∇2

θQ∗
n,k(n) −∇2

θQ
†
n‖ + ‖∇2

θQ
†
n −∇2

θQ(θ0)‖,

where ∇2
θQ

†
n is the matrix ∇2

θQn row-wise evaluated at the mean-values θ̃
(i)
n,k(n). In view of (18),

consistency of θ̂n,k(n), and continuity of ∇2
θQ at θ0, the second term on the r.h.s. above converges to

zero in (outer) probability. We now show the same for the first term on the r.h.s. in the above display:
Note that the argument leading to (22) is also valid under the current assumptions, and therefore we can
conclude from (22), (23), and Theorem 2 that ‖θ̂n,k(n) − θ0‖ = Op(k(n)−1/4). Consequently, it suffices
to show that

sup
θ∈B(θ0),‖θ−θ0‖≤Mk(n)−1/4

‖∇2
θQn,k(n)(θ) −∇2

θQn(θ)‖ → 0

in probability for every 0 < M < ∞, the above supremum being measurable (as the functions involved
are continuous). Now, by (24) and (16)

1
2
(
∇2

θQn,k(n)(θ) −∇2
θQn(θ)

)
=

1∫

0

(pn,jn,r∗ − p(θ))p−1
n,jn,r∗

(
∇2

θp(θ) −∇2
θpk(n),Jk(n),r(θ)

)
dλ

−
1∫

0

(p(θ) − pk(n),Jk(n),r(θ))p−1
n,jn,r∗∇

2
θpk(n),Jk(n),r(θ) dλ

+

1∫

0

p−1
n,jn,r∗

(
∇θpk(n),Jk(n),r(θ)∇θpk(n),Jk(n),r(θ)′ −∇θp(θ)∇θp(θ)′

)
dλ

= I − II + III.

About Term I: By the Cauchy–Schwarz and the triangle inequalities

‖I‖ ≤ 2ξ−1
0

[
‖pn,jn,r∗ − p(θ0)‖2 + ‖p(θ0) − p(θ)‖2

]

×
[∥
∥∇2

θpk(n),Jk(n),r(θ) − E∇2
θpk(n),Jk(n),r(θ)

∥
∥

2
+

∥
∥∇2

θp(θ) − E∇2
θpk(n),Jk(n),r(θ)

∥
∥

2

]
.

The first term on the r.h.s. of the above display is Op(n−τ/(2τ+1)) in view of Lemma 3 and the choice
of jn. For the second term, observe that in view of Assumption P1 (iii) we have p(θ, x) − p(θ0, x) =
∇θp(θ̆(x), x)′(θ − θ0) by the pathwise mean value theorem, and hence

‖p(θ0) − p(θ)‖2 ≤
( 1∫

0

sup
θ∈B(θ0)

‖∇θp(θ, x)‖2 dx

)1/2

‖θ − θ0‖ = O(‖θ − θ0‖)

holds for all θ ∈ B(θ0). In view of Lemma 5 and the choice of Jk(n), the supremum over B(θ0) of the third

term is Op(k(n)(2−τ)/(2τ+1)
√

log k(n)). Furthermore, note that

E
∂2pk(n),Jk(n),r(θ)

∂θi∂θi′
= π

(r)
Jk(n)

(
∂2p(θ)
∂θi∂θi′

)

(26)

holds for θ ∈ B(θ0). [This is proved analogously as (39) in Section 6, making use of the dominance
assumptions on ∇2

θp in Assumption P1, the uniform boundedness assumption on the derivatives of ρ
in Assumption R (ii), the boundedness of the B-spline basis functions and their first two derivatives (as
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r ≥ 4 holds), as well as using that ∂2p(θ)
∂θi∂θi′

∈ L2 in view of Assumption P2 (ii).] The above established
relation, together with the fact that the spectral matrix norm is bounded by the Frobenius norm, implies
that the supremum over B(θ0) of the fourth term is bounded by

sup
θ∈B(θ0)

b∑

i,i′=1

∥
∥
∥
∥

∂2p(θ)
∂θi∂θi′

− π
(r)
Jk(n)

(
∂2p(θ)
∂θi∂θi′

)∥
∥
∥
∥

2

≤ sup
θ∈B(θ0)

b∑

i,i′=1

∥
∥
∥
∥

∂2p(θ)
∂θi∂θi′

∥
∥
∥
∥

2

< ∞,

the last inequality following from Assumption P2 (ii). Consequently, in view of (23),

sup
θ∈B(θ0),‖θ−θ0‖≤Mk(n)−1/4

‖I‖

≤
[
Op(n−τ/(2τ+1)) + O(k(n)−1/4)

][
Op(k(n)(2−τ)/(2τ+1)

√
log k(n)) + const

]
= op(1)

under either the assumptions of Part (a)2 or Part (b) (since τ > 3/2 > 4/3).

About Term II: By the Cauchy–Schwarz and the triangle inequalities

sup
θ∈B(θ0)

‖II‖ ≤ 2ξ−1
0 sup

θ∈B(θ0)

∥
∥p(θ) − pk(n),Jk(n),r(θ)

∥
∥

2

× sup
θ∈B(θ0)

[∥
∥∇2

θpk(n),Jk(n),r(θ) − E∇2
θpk(n),Jk(n),r(θ)

∥
∥

2
+

∥
∥E∇2

θpk(n),Jk(n),r(θ)
∥
∥

2

]

= Op(k(n)−τ/(2τ+1)
√

log k(n))
[
Op(k(n)(2−τ)/(2τ+1)

√
log k(n)) + const

]
, (27)

where we have made use of Lemmas 3 and 5; and we have used the bound

sup
θ∈B(θ0)

∥
∥E∇2

θpk(n),Jk(n),r(θ)
∥
∥

2
≤ sup

θ∈B(θ0)

b∑

i,i′=1

∥
∥
∥
∥

∂2p(θ)
∂θi∂θi′

∥
∥
∥
∥

2

< ∞,

which follows from (26) and Assumption P2 (ii). The r.h.s. of (27) is now op(1) since τ > 3/2 > 1.

About Term III: By the Cauchy–Schwarz and the triangle inequalities

‖III‖ ≤ 2ξ−1
0

∥
∥∇θpk(n),Jk(n),r(θ) −∇θp(θ)

∥
∥

2

[∥
∥∇θpk(n),Jk(n),r(θ) −∇θp(θ)

∥
∥

2
+ 2

∥
∥∇θp(θ)

∥
∥

2

]
.

Now

sup
θ∈B(θ0)

∥
∥∇θpk(n),Jk(n),r(θ) − E∇θpk(n),Jk(n),r(θ)

∥
∥

2
= Op

(
k(n)(1−τ)/(2τ+1)

√
log k(n)

)
= op(1)

by Lemma 5 and since τ > 3/2 > 1. Furthermore,

sup
θ∈B(θ0)

∥
∥E∇θpk(n),Jk(n),r(θ) −∇θp(θ)

∥
∥

2
≤

b∑

i=1

sup
θ∈B(θ0)

∥
∥
∥
∥E

∂pk(n),Jk(n),r(θ)

∂θi
− ∂p(θ)

∂θi

∥
∥
∥
∥

2

=
b∑

i=1

sup
θ∈B(θ0)

∥
∥
∥
∥π

(r)
Jk(n)

(
∂p(θ)
∂θi

)

− ∂p(θ)
∂θi

∥
∥
∥
∥

2

,

the last equality holding as shown in (39) in Section 6. By Proposition 8 in Appendix A and As-
sumption P2 (i) the r.h.s. in the above display is now o(1). Taken together, this provides a bound for
supθ∈B(θ0),‖θ−θ0‖≤Mk(n)−1/4 ‖III‖, which converges to zero in probability. This completes the proof of
Step 2.

5.5. Proof of Proposition 3

Since θ̄n,k → θ0 by assumption, since Φ(θ) :=
∫ 1
0 ∇θp(θ)∇θp(θ)′p(θ0)−1 dλ is continuous on the

neighborhood B(θ0) of θ0 by dominated convergence and Assumption P1 (iii), and since Φ(θ0) is
positive definite by the same assumption, it suffices to show that, uniformly over B(θ0), the expression
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Φ̂(θ) =
∫ 1
0 ∇θpk,J ′

k,r′(θ)∇θpk,J ′
k,r′(θ)′p−1

n,j′n,r′∗
dλ converges to Φ(θ) in probability as n ∧ k → ∞. Note

that Φ̂(θ) is well defined on the event A∗
n, which has probability converging to 1 in view of Corollary 2.

In the sequel we only work on that event. Now

|Φ̂(θ) − Φ(θ)| ≤
∣
∣
∣
∣

1∫

0

∇θp(θ)∇θp(θ)′
(
p−1

n,j′n,r′∗
− p(θ0)−1

)
dλ

∣
∣
∣
∣

+
∣
∣
∣
∣

1∫

0

(
∇θpk,J ′

k,r′(θ)∇θpk,J ′
k,r′(θ)′ −∇θp(θ)∇θp(θ)′

)
p−1

n,j′n,r′∗
dλ

∣
∣
∣
∣

≤ 2ξ−2
0 ‖pn,jn,r∗ − p(θ0)‖∞

1∫

0

sup
θ∈B(θ0)

‖∇θp(θ)‖2dλ

+ 2ξ−1
0 ‖∇θpk,Jk,r′(θ) −∇θp(θ)‖2

[
‖∇θpk,Jk,r′(θ) −∇θp(θ)‖2 + 2‖∇θp(θ)‖2

]
.

The first term on the r.h.s. is independent of θ and converges to zero in probability by Corollary 2. The
supremum over B(θ0) of the second term converges to zero by essentially repeating the argument that
has been used in the very last step of the proof of Theorem 1.

6. RATES OF CONVERGENCE FOR SPLINE PROJECTION ESTIMATORS

This section contains the main stochastic bounds used to control remainder terms in the proofs in
Section 5. We first collect some simple facts about the B-splines N (r) that will repeatedly be used in this
section:

‖N (r)‖∞,R ≤ 1, ‖N (r)‖1,R = 1, ‖N (r)‖2,R ≤ 1 for r ≥ 1. (28)

The first relation is a direct consequence of the definition of N (r), the second one follows since N(r)
is — as a convolution of probability densities — a probability density again, and the third relation is a
consequence of Young’s inequality. Furthermore, it is easy to see that N (r) is continuously differentiable
for r ≥ 3 with derivative N (r)′ given by

N (r)′ = N (r−1) − N (r−1)(· − 1). (29)

For r = 2, the B-spline N (2) is Lipschitz and only has a weak derivative N (2)′, which, in order to have it
defined everywhere, will always be taken as N (1) − N (1)(· − 1). The bounds

‖N (r)′‖∞,R ≤ 1, ‖N (r)′‖1,R ≤ 2, ‖N (r)′‖2,R ≤ 2 for r ≥ 2 (30)

are then an immediate consequence of (28), (29), and the fact that N (r−1) is nonnegative. By repeated
application of (29) we can obtain bounds for higher-order derivatives, for example, we shall need

‖N (r)′′‖∞,R ≤ 2, ‖N (r)′′‖2,R ≤ 4 for r ≥ 3, and ‖N (r)′′′‖∞,R ≤ 4 for r ≥ 4. (31)

The above discussion also implies that N (r) for r ≥ 2, N (r)′ for r ≥ 3, and N (r)′′ for r ≥ 4 are globally
Lipschitz on R with Lipschitz constants bounded by 1, 2, and 4, respectively.

For f ∈ Sj(r), r ≥ 3, we denote in the following by f ′ its derivative (using one-sided derivatives on
the boundary of [0, 1]); for r = 2 we use f ′ to denote the weak derivative.

Lemma 2. Let f =
∑2j−1

l=−r+1 αlN
(r)
lj , where αl are real numbers and r ≥ 1, i.e., f ∈ Sj(r). Then

‖f‖2 ≤ 2−j/2

( 2j−1∑

l=−r+1

α2
l

)1/2

, (32)
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‖f ′‖2 ≤ 21+j/2

( 2j−1∑

l=−r+1

α2
l

)1/2

for r ≥ 2, (33)

and

‖f ′′‖2 ≤ 22+3j/2

( 2j−1∑

l=−r+1

α2
l

)1/2

for r ≥ 3. (34)

Furthermore, for every 0 < s′ ≤ 1 there exists a finite constant C0(s′) such that for every r ≥ 2
and f as above

‖f‖s′,2 ≤ C0(s′)2j(s′−1/2)

( 2j−1∑

l=−r+1

α2
l

)1/2

. (35)

Proof. The first claim is well known, see, e.g., DeVore and Lorentz (1993), Theorem 5.4.2. To prove (33),
use (29) and the fact that N (r−1) vanishes outside of (0, r − 1) for r ≥ 3 and outside of [0, 1) for r = 2,
to obtain (interpreting the equality modulo λ-nullsets in case r = 2)

f ′(x) = 2j
2j−1∑

l=−r+1

αlN
(r)′(2jx − l) = 2j

2j−1∑

l=−r+1

αl

[
N (r−1)(2jx − l) − N (r−1)(2jx − l − 1)

]

= 2j
2j−1∑

l=−(r−1)+1

αlN
(r−1)(2jx − l) − 2j

2j−1∑

l=−(r−1)+1

αl−1N
(r−1)(2jx − l) =: f1 + f2.

Using (32) for f1 and f2, we obtain

‖f ′‖2 ≤ ‖f1‖2 + ‖f2‖2 ≤ 21+j/2

( 2j−1∑

l=−r+1

α2
l

)1/2

.

The third claim is proved similarly. To prove the final claim, we use the following interpolation inequality:
for every 0 < s′ ≤ 1 there exists a finite constant C∗(s′) such that for every h ∈ W1

2

‖h‖s′,2 ≤ C∗(s′)
(
‖h‖2 + ‖Dwh‖2

)s′ ‖h‖1−s′
2 . (36)

[This follows from (5) if s′ = 1; if s′ < 1, it follows from Theorem 6.7.1 in DeVore and Lorentz (1993)
applied to the intermediate spaces (R, R)s′,∞, (L2,W1

2 )s′,∞, and to the operator that maps any real
number a into ah, observing that (L2,W1

2 )s′,∞ is equal to Bs′ up to equivalence of norms, cf. p. 196
in DeVore and Lorentz (1993).] Observe that f ∈ W1

2 if r ≥ 2. Now, using (36) with h = f , (32), and
(33) completes the proof upon setting C0(s′) = (2.5)s

′
C∗(s′).

Lemma 3. Assume r ≥ 1 and let θ ∈ Θ.
(a). Suppose the density p(θ) is bounded. Then for all k ≥ 1 and J ≥ 1

E
∥
∥pk,J,r(θ) − Epk,J,r(θ)

∥
∥2

2
≤ C1(θ, r)

2J

k
,

where C1(θ, r) = ( r+1
2 ) d2

r‖p(θ)‖∞ with dr defined in Proposition 4. Furthermore, for r ≥ 2 and
0 < s′ ≤ 1

E‖pk,J,r(θ) − Epk,J,r(θ)‖2
s′,2 ≤ C0(s′)2C1(θ, r)

2J(2s′+1)

k

for all k ≥ 1 and J ≥ 1, where C0(s′) is given in Lemma 2.
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(b). If p(θ) ∈ L2, then for every k

lim
J→∞

‖Epk,J,r(θ) − p(θ)‖2 = 0.

If p(θ) ∈ Bt for some 0 < t < r, then for all k ≥ 1 and J ≥ 1

‖Epk,J,r(θ) − p(θ)‖2 ≤ 2−Jtc′t‖p(θ)‖t,2,

where c′t is the constant given in Proposition 8 in Appendix A.

(c). If the assumptions of Part (a) (Part (b) ) hold for (a version of) p0 and r∗ in place of p(θ)
and r, respectively, then the results in Part (a) (Part (b) ) also apply mutatis mutandis to pn,j,r∗.

Proof. In view of Lemma 2, the definition of pk,J,r(θ), (32) and (35), it suffices to bound E(γ̂(r)
lJ (θ) −

Eγ̂
(r)
lJ (θ))2 in order to prove Part (a). We obtain

E
(
γ̂

(r)
lJ (θ) − Eγ̂

(r)
lJ (θ)

)2 ≤ 22J

k
E

( 2J−1∑

m=−r+1

g
(r)lm
J N

(r)
mJ(ρ(Vi, θ))

)2

=
22J

k

1∫

0

( 2J−1∑

m=−r+1

g
(r)lm
J N

(r)
mJ(x)

)2

p(θ, x) dx

≤ 22J

k
‖p(θ)‖∞

∥
∥
∥
∥

2J−1∑

m=−r+1

g
(r)lm
J N

(r)
mJ

∥
∥
∥
∥

2

2

≤ 2J

k
‖p(θ)‖∞

2J−1∑

m=−r+1

(
g
(r)lm
J

)2

≤ 2J

k
‖p(θ)‖∞

( 2J−1∑

m=−r+1

|g(r)lm
J |

)2

≤ 2J

k
d2

r‖p(θ)‖∞, (37)

where we have used independence, (32), and Proposition 4. This establishes Part (a). [Measurability
of the L2-norm is obvious, and measurability of the Besov-norm follows from Appendix B.] Since

Epk,J,r(θ) = π
(r)
J (p(θ)), Part (b) follows from Proposition 8 in Appendix A. Part (c) is proved completely

analogously.

Lemma 4. Assume r ≥ 3 and let θ be an interior point of Θ such that the partial derivative ∂ρ(v,θ)
∂θq

at θ exists for every v ∈ V .

(a). Suppose the density p(θ) is bounded and supv∈V
∣
∣∂ρ(v,θ)

∂θq

∣
∣ < ∞. Then for all k ≥ 1 and J ≥ 1

E

∥
∥
∥
∥

∂pk,J,r(θ)
∂θq

− E
∂pk,J,r(θ)

∂θq

∥
∥
∥
∥

2

2

≤ C2(θ, r)
23J

k
,

where C2(θ, r) = 2(r + 1)d2
r‖p(θ)‖∞ supv∈V

∣
∣∂ρ(v,θ)

∂θq

∣
∣2.

(b). Suppose there exists an open ball B(θ) ⊆ Θ with center θ such that ∂p(·,x)
∂θq

and ∂ρ(v,·)
∂θq

exist

on B(θ) for every x ∈ [0, 1] and v ∈ V , suppose ∂p(θ,·)
∂θq

belongs to Bs for some 0 < s < r, and that

1∫

0

sup
θ′∈B(θ)

∣
∣
∣
∣
∂p(θ′, x)

∂θq

∣
∣
∣
∣ dx < ∞,

∫

V

sup
θ′∈B(θ)

∣
∣
∣
∣
∂ρ(v, θ′)

∂θq

∣
∣
∣
∣ dμ(v) < ∞.

Then for all k ≥ 1 and J ≥ 1
∥
∥
∥
∥E

∂pk,J,r(θ)
∂θq

− ∂p(θ)
∂θq

∥
∥
∥
∥

2

≤ 2−Jsc′s

∥
∥
∥
∥

∂p(θ)
∂θq

∥
∥
∥
∥

s,2

,

MATHEMATICAL METHODS OF STATISTICS Vol. 19 No. 4 2010



EFFICIENT SIMULATION-BASED MINIMUM DISTANCE ESTIMATION 351

where the constant c′s is defined in Proposition 8 in Appendix A. [If ∂p(θ,·)
∂θq

∈ Bs is weakened to
∂p(θ,·)

∂θq
∈ L2, then limJ→∞

∥
∥E

∂pk,J,r(θ)
∂θq

− ∂p(θ)
∂θq

∥
∥ = 0 holds.]

Proof. Observe that pk,J,r is differentiable at θ because r ≥ 3 is assumed. To prove Part (a) note that

∂pk,J,r(θ)
∂θq

− E
∂pk,J,r(θ)

∂θq
=

2J−1∑

l=−r+1

(
∂γ̂

(r)
lJ (θ)
∂θq

− E
∂γ̂

(r)
lJ (θ)
∂θq

)

N
(r)
lJ

and that the L2-norm of this expression is measurable by Fubini’s Theorem; also note that the
expectations in the above display exist since the B-spline basis functions are bounded and since
supv∈V

∣
∣∂ρ(v,θ)

∂θq

∣
∣ < ∞ has been assumed. Now, using the chain rule and (33), we obtain

E

(
∂γ̂

(r)
lJ (θ)
∂θq

− E
∂γ̂

(r)
lJ (θ)
∂θq

)2

≤ 22J

k
E

(
∂ρ(Vi, θ)

∂θq

2J−1∑

m=−r+1

g
(r)lm
J N

(r)′
mJ (x)|x=ρ(Vi,θ)

)2

≤ 22J

k
sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣

2
1∫

0

( 2J−1∑

m=−r+1

g
(r)lm
J N

(r)′
mJ (x)

)2

p(θ, x) dx

≤ 22J

k
sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣

2

‖p(θ)‖∞
∥
∥
∥
∥

2J−1∑

m=−r+1

g
(r)lm
J N

(r)′
mJ

∥
∥
∥
∥

2

2

≤ 23J+2

k
d2

r sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣

2

‖p(θ)‖∞. (38)

An application of Lemma 2 then completes the proof of Part (a).
To prove Part (b), note that

∫

V

∂

∂θq
N

(r)
mJ(ρ(v, θ)) dμ(v) =

∂

∂θq

∫

V

N
(r)
mJ(ρ(v, θ)) dμ(v)

=
∂

∂θq

1∫

0

N
(r)
mJ(x)p(θ, x) dx =

1∫

0

N
(r)
mJ(x)

∂

∂θq
p(θ, x) dx,

where the two-fold interchange of integration and differentiation is permitted by dominated convergence
in view of the maintained dominance assumptions on the derivatives of ρ and p as well as the
boundedness of the B-spline basis functions and their first derivative. Consequently,

E
∂pk,J,r(θ, y)

∂θq
= 2J

2J−1∑

l=−r+1

2J−1∑

m=−r+1

g
(r)lm
J

∫

V

∂

∂θq
N

(r)
mJ (ρ(v, θ)) dμ(v)N (r)

lJ (y)

= 2J
2J−1∑

l=−r+1

2J−1∑

m=−r+1

g
(r)lm
J

1∫

0

N
(r)
mJ (x)

∂

∂θq
p(θ, x) dxN

(r)
lJ (y) = π

(r)
J

(
∂

∂θq
p(θ)

)

, (39)

and Part (b) now follows immediately from Proposition 8 in Appendix A.

Lemma 5. (a). Suppose Assumption R (i) is satisfied, r ≥ 2, Θ is a bounded subset of R
b, and

supθ∈Θ ‖p(θ)‖∞ < ∞. Then there exist finite positive constants C3 and C4 depending only on Θ, b,
ρ, r, and supθ∈Θ ‖p(θ)‖∞ but not on k and J such that

E sup
θ∈Θ

∥
∥pk,J,r(θ) − Epk,J,r(θ)

∥
∥2

2
≤ C3

2JJ

k
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for all k ≥ 1 and J ≥ 1 satisfying 2JJ ≤ C4k. Furthermore, for 0 < s′ ≤ 1

E sup
θ∈Θ

‖pk,J,r(θ) − Epk,J,r(θ)‖2
s′,2 ≤ C0(s′)2C3

2J(2s′+1)J

k
(40)

for all k ≥ 1 and J ≥ 1 satisfying 2JJ ≤ C4k, where C0(s′) is given in Lemma 2.

(b). Suppose Assumption R (ii) is satisfied for some interior point θ0 of Θ, supθ∈B(θ0) ‖p(θ)‖∞ <

∞ and r ≥ 3 hold. Then there exist finite positive constants C5 and C6 depending only on B(θ0),
b, ρ, r, and supθ∈B(θ0) ‖p(θ)‖∞ but not on k and J such that for every q = 1, . . . , b

E sup
θ∈B(θ0)

∥
∥
∥
∥

∂

∂θq
pk,J,r(θ) − E

∂

∂θq
pk,J,r(θ)

∥
∥
∥
∥

2

2

≤ C5
23JJ

k

for all k ≥ 1 and J ≥ 1 satisfying 2JJ ≤ C6k.

(c). Suppose the assumptions of Part (b) are satisfied except that now r ≥ 4. Then there exist
finite positive constants C7 and C8 depending only on B(θ0), b, ρ, r, and supθ∈B(θ0) ‖p(θ)‖∞ but
not on k and J such that for every q, q′ = 1, . . . , b

E sup
θ∈B(θ0)

∥
∥
∥
∥

∂2

∂θq∂θq′
pk,J,r(θ) − E

∂2

∂θq∂θq′
pk,J,r(θ)

∥
∥
∥
∥

2

2

≤ C7
25JJ

k

for all k ≥ 1 and J ≥ 1 satisfying 2JJ ≤ C8k.

Proof. (a). By Lemma 2 we have

E sup
θ∈Θ

‖pk,J,r(θ) − Epk,J,r(θ)‖2
2 ≤ 2−J

2J−1∑

l=−r+1

E sup
θ∈Θ

(
γ̂

(r)
lJ (θ) − Eγ̂

(r)
lJ (θ)

)2
.

Note that the suprema in the above display are measurable as the functions over which the suprema are
taken depend continuously on θ in view of Assumption R (i) and r ≥ 2. We bound the r.h.s. in the above
display by applying the moment inequality given in Proposition 12 in Appendix C: fix an arbitrary l and
express the corresponding summand in the above display as

E sup
θ∈Θ

(
γ̂

(r)
lJ (θ) − Eγ̂

(r)
lJ (θ)

)2 =
22J

k2
E sup

θ∈Θ

∣
∣
∣
∣

k∑

i=1

hθ,l(Vi)
∣
∣
∣
∣

2

, (41)

where

hθ,l(v) =
2J−1∑

m=−r+1

g
(r)lm
J

[
N

(r)
mJ(ρ(v, θ)) − EN

(r)
mJ(ρ(Vi, θ))

]

and set Hl,J,r = {hθ,l : θ ∈ Θ}. Furthermore, set U = dr max
(
2, supθ∈Θ ‖p(θ)‖1/2

∞
)

and σ2 = 2−JU2.
Then 0 < σ ≤ U holds, and using the calculations that have led to (37) we obtain for every θ ∈ Θ

Eh2
θ,l(Vi) ≤ E

( 2J−1∑

m=−r+1

g
(r)lm
J N

(r)
mJ (ρ(v, θ))

)2

≤ 2−Jd2
r‖p(θ)‖∞ ≤ 2−Jd2

r sup
θ∈Θ

‖p(θ)‖∞ ≤ σ2.

Furthermore, using (28), we obtain for every θ ∈ Θ

sup
v∈V

|hθ,l| ≤ 2dr‖N (r)‖∞,R ≤ 2dr ≤ U.

We next bound the uniform L∞-covering numbers of Hl,J,r: observe that the elements of Hl,J,r satisfy
for θ, θ′ ∈ Θ

sup
v∈V

|hθ,l(v) − hθ′,l(v)| ≤ 2J+1drL‖θ − θ′‖α, (42)
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where L, α are the Hölder constants from Assumption R (i) and where we have made use of the fact
that N (r) has Lipschitz constant bounded by 1 for r ≥ 2; cf. the discussion at the beginning of this
section. Since Θ is assumed to be bounded in R

b, it can be covered by fewer than M/δb open balls with
centers θi ∈ Θ and radius δ, for 0 < δ ≤ 1, where M depends only on Θ. By (42), the functions hθi,l in
Hl,J,r corresponding to the θi’s give rise to a covering of Hl,J,r by sup-norm balls of radius 2J+1drLδα.
Consequently, the L∞-covering numbers satisfy

N
(
Hl,J,r,L

∞(V), ε
)
≤ M

(
2J+1drL

ε

)b/α

for 0 < ε ≤ 2J+1drL. (43)

Replacing M by M∗ = M max
(
1, (U/(2drL))b/α

)
in (43) guarantees that (43) then holds for 0 < ε ≤

2U , which leads to

N(Hl,J,r,L
∞(V), ε) ≤ (AU/ε)v for 0 < ε ≤ 2U, (44)

for v = max(b/α, 2) and A = max(2J+1M
α/b
∗ drLU−1, 2e), where we have also enforced v ≥ 2 and

A > e. Note that, apart from the factor 2J , A depends only on Θ, b, ρ (via α and L), r (via dr), and
supθ∈Θ ‖p(θ)‖∞. Observe that Hl,J,r contains a countable sup-norm dense subset in view of (42) and
separability of Θ. Hence the expectation bound in Part (a) of Proposition 12 in Appendix C applied to this
subset and with b0 = v−1 now yields the existence of positive finite constants C ′

3 and C ′
4, both depending

only on Θ, b, ρ, r, and supθ∈Θ ‖p(θ)‖∞, such that for all J ∈ N and all k ≥ C ′
42

JJ

E sup
θ∈Θ

∣
∣
∣
∣

k∑

i=1

hθ,l(Vi)
∣
∣
∣
∣

2

≤ C ′
3k2−JJ. (45)

Since this bound does not depend on the summation index l, the proof of the first claim is complete
upon setting C3 = (r + 1)C ′

3/2 and C4 = 1/C ′
4. The second claim follows immediately from applying

(35) in Lemma 2 to the l.h.s. of (40) and using (41), (45) with the measurability of the supremum in (40)
following from Appendix B.

(b). Observe that pk,J,r is continuously differentiable on B(θ0) because of r ≥ 3 and Assump-
tion R (ii). Similarly as in Part (a) we have measurability of the suprema and obtain from Lemma 2

E sup
θ∈B(θ0)

∥
∥
∥
∥

∂

∂θq
pk,J,r(θ) − E

∂

∂θq
pk,J,r(θ)

∥
∥
∥
∥

2

2

≤ 2−J
2J−1∑

l=−r+1

E sup
θ∈B(θ0)

(
∂

∂θq
γ̂

(r)
lJ (θ) − E

∂

∂θq
γ̂

(r)
lJ (θ)

)2

= 2−J
2J−1∑

l=−r+1

24J

k2
E sup

θ∈B(θ0)

∣
∣
∣
∣

k∑

i=1

h
(1)
θ,l (Vi)

∣
∣
∣
∣

2

,

where

h
(1)
θ,l (v) =

∂ρ(v, θ)
∂θq

2J−1∑

m=−r+1

g
(r)lm
J

[
N (r)′(2Jρ(v, θ) − m) − EN (r)′(2Jρ(Vi, θ) − m)

]
.

Set H(1)
l,J,r = {h(1)

θ,l : θ ∈ B(θ0)} and define

U = 2dr sup
θ∈B(θ0)

sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣max

(

1, sup
θ∈B(θ0)

‖p(θ)‖1/2
∞

)

and σ2 = 2−JU2. Then 0 < σ ≤ U holds (where we exclude the trivial case U = 0). Observing that

N
(r)′
mJ (x) = 2JN (r)′(2Jx − m) by the chain rule, we obtain, using the same calculations that have led

to (38), for θ ∈ B(θ0)

Eh
(1)2
θ,l (Vi) ≤ 2−J+2d2

r sup
θ∈B(θ0)

sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣

2

sup
θ∈B(θ0)

‖p(θ)‖∞ ≤ σ2.
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Furthermore, for every θ ∈ B(θ0)

sup
v∈V

|h(1)
θ,l | ≤ 2 sup

v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣dr‖N (r)′‖∞,R ≤ 2dr sup

θ∈B(θ0)
sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∣
∣
∣
∣ ≤ U,

where we have made use of (30). To bound the uniform L∞-covering numbers of H(1)
l,J,r, observe that the

elements of H(1)
l,J,r satisfy for θ, θ′ ∈ B(θ0)

sup
v∈V

|h(1)
θ,l (v) − h

(1)
θ′,l(v)| ≤ 2dr‖N (r)′‖∞,R sup

θ∈B(θ0)
sup
v∈V

‖∇2
θρ(v, θ)‖ ‖θ − θ′‖

+ 2J+1dr sup
θ∈B(θ0)

sup
v∈V

‖∇θρ(v, θ)‖2 ‖θ − θ′‖

≤ 2J+1dr

{
sup

θ∈B(θ0)
sup
v∈V

‖∇2
θρ(v, θ)‖ + sup

θ∈B(θ0)
sup
v∈V

‖∇θρ(v, θ)‖2
}
‖θ − θ′‖

≤ 2Jc∗‖θ − θ′‖,

where we have made use of (30), of the bound on the Lipschitz constant of N (r)′ given at the beginning
of this section, and of the boundedness of B(θ0); the constant c∗ is finite and depends only on ρ, r, and
B(θ0). Proceeding as in the proof of Part (a) we obtain

N(H(1)
l,J,r,L

∞(V), ε) ≤ (AU/ε)v for 0 < ε ≤ 2U,

for v = max(b, 2) and A = max
(
2JM1/b max(c∗U−1, 1), 2e

)
with M only depending on B(θ0). Note

that, apart from the factor 2J , A depends only on B(θ0), b, ρ, r, and supθ∈B(θ0) ‖p(θ)‖∞. Part (a) of

Proposition 12 in Appendix C applied to a countable sup-norm dense subset of H(1)
l,J,r and with b0 = v−1

now yields the existence of positive finite constants C ′
5 and C ′

6 depending only on B(θ0), b, ρ, r, and
supθ∈B(θ0) ‖p(θ)‖∞ such that for all J ∈ N and all k ≥ C ′

62
JJ

E sup
θ∈Θ

∣
∣
∣
∣

k∑

i=1

h
(1)
θ,l (Vi)

∣
∣
∣
∣

2

≤ C ′
5k2−JJ.

Since this bound does not depend on l, the proof is completed upon setting C5 = (r + 1)C ′
5/2 and

C6 = 1/C ′
6.

(c). The proof is similar to the proof of Part (b): Observe that pk,J,r is twice continuously differentiable
on B(θ0) because of r ≥ 4 and Assumption R (ii). By Lemma 2 we have

E sup
θ∈B(θ0)

∥
∥
∥
∥

∂2

∂θq∂θq′
pk,J,r(θ) − E

∂2

∂θq∂θq′
pk,J,r(θ)

∥
∥
∥
∥

2

2

≤ 25J

k2

2J−1∑

l=−r+1

E sup
θ∈B(θ0)

∣
∣
∣
∣

k∑

i=1

h
(2)
θ,l (Vi)

∣
∣
∣
∣

2

,

where

h
(2)
θ,l (v) = 2−J ∂2ρ(v, θ)

∂θq∂θq′

2J−1∑

m=−r+1

g
(r)lm
J

[
N (r)′(2Jρ(v, θ) − m) − EN (r)′(2Jρ(Vi, θ) − m)

]

+
∂ρ(v, θ)

∂θq

∂ρ(v, θ)
∂θq′

2J−1∑

m=−r+1

g
(r)lm
J

[
N (r)′′(2Jρ(v, θ) − m) − EN (r)′′(2Jρ(Vi, θ) − m)

]
.

Set H(2)
l,J,r = {h(2)

θ,l : θ ∈ B(θ0)}, set

U = dr max
{

sup
θ∈B(θ0)

sup
v∈V

‖∇2
θρ(v, θ)‖ + 4 sup

θ∈B(θ0)
sup
v∈V

‖∇θρ(v, θ)∇θρ(v, θ)′‖,
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sup
θ∈B(θ0)

‖p(θ)‖1/2
∞

[
2 sup

θ∈B(θ0)
sup
v∈V

‖∇2
θρ(v, θ)‖2 + 32 sup

θ∈B(θ0)
sup
v∈V

‖∇θρ(v, θ)∇θρ(v, θ)′‖2
]1/2}

and σ2 = 2−JU2. Then 0 < σ ≤ U holds (where we exclude the trivial case U = 0), and for θ ∈ B(θ0)
we have

Eh
(2)2
θ,l (Vi) ≤ 23−3Jd2

r sup
θ∈B(θ0)

‖p(θ)‖∞ sup
θ∈B(θ0)

sup
v∈V

∣
∣
∣
∣
∂2ρ(v, θ)
∂θq∂θq′

∣
∣
∣
∣

2

+ 25−Jd2
r sup

θ∈B(θ0)
‖p(θ)‖∞ sup

θ∈B(θ0)
sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∂ρ(v, θ)
∂θq′

∣
∣
∣
∣

2

≤ σ2,

using a calculation similar to the one that has led to (38) and making use of Lemma 2. Similarly, for
θ ∈ B(θ0) we obtain

sup
v∈V

|h(2)
θ,l (v)| ≤ 2dr

{

2−J sup
v∈V

∣
∣
∣
∣
∂2ρ(v, θ)
∂θq∂θq′

∣
∣
∣
∣ ‖N

(r)′‖∞,R + sup
v∈V

∣
∣
∣
∣
∂ρ(v, θ)

∂θq

∂ρ(v, θ)
∂θq′

∣
∣
∣
∣ ‖N

(r)′′‖∞,R

}

≤ U,

using ‖N (r)′‖∞,R ≤ 1 and ‖N (r)′′‖∞,R ≤ 2, cf. (30), (31). Furthermore, for θ, θ′ ∈ B(θ0) we get again
using (30), (31), the bounds for the Lipschitz constants of N (r)′ and N (r)′′ given at the beginning of this
section, and boundedness of B(θ0)

sup
v∈V

|h(2)
θ,l (v) − h

(2)
θ′,l(v)| ≤ 21−JdrL

′‖θ − θ′‖β

+ 12dr sup
θ∈B(θ0)

sup
v∈V

‖∇θρ(v, θ)‖ sup
θ∈B(θ0)

sup
v∈V

‖∇2
θρ(v, θ)‖ ‖θ − θ′‖

+ 2J+3dr sup
θ∈B(θ0)

sup
v∈V

‖∇θρ(v, θ)‖ sup
θ∈B(θ0)

sup
v∈V

‖∇θρ(v, θ)‖2‖θ − θ′‖

≤ 2Jc∗∗‖θ − θ′‖β

with the constant c∗∗ being finite and depending only on B(θ0), r, ρ. Proceeding as in the proof of Part (a)
we obtain

N(H(2)
l,J,r,L

∞(V), ε) ≤ (AU/ε)v for 0 < ε ≤ 2U,

where now v = max(b/β, 2) and A = max
(
2JMβ/b max(c∗∗U−1, 1), 2e

)
with M only depending on

B(θ0). Again, apart from the factor 2J , A depends only on B(θ0), b, ρ, r, and supθ∈B(θ0) ‖p(θ)‖∞.

Part (a) of Proposition 12 in Appendix C applied to a countable sup-norm dense subset of H(2)
l,J,r and

with b0 = v−1 now yields the existence of positive finite constants C ′
7 and C ′

8 depending only on B(θ0),
b, ρ, r, and supθ∈B(θ0) ‖p(θ)‖∞ such that for all J ∈ N and all k ≥ C ′

82
JJ

E sup
θ∈Θ

∣
∣
∣
∣

k∑

i=1

h
(2)
θ,l (Vi)

∣
∣
∣
∣

2

≤ C ′
7k2−JJ.

Since this bound does not depend on l, the proof is completed upon setting C7 = (r + 1)C ′
7/2 and

C8 = 1/C ′
8.

Corollary 1. Suppose Assumption R (i) is satisfied and r ≥ 2. Suppose further that Θ is a bounded
subset of R

b and that {p(θ) : θ ∈ Θ} is bounded in Bt for some 1/2 < t ≤ 1. If Jk ∈ N satisfies

sup
k≥1

2Jk(2t+1)Jk/k < ∞, (46)

then supθ∈Θ ‖pk,Jk,r(θ)‖t,2 is stochastically bounded, i.e.,

lim
M→∞

sup
k≥1

Pr
(
sup
θ∈Θ

‖pk,Jk,r(θ)‖t,2 > M
)

= 0.

If (46) holds and Jk → ∞ for k → ∞, then, for every 0 < t′ < t, supθ∈Θ ‖pk,Jk,r(θ)− p(θ)‖t′,2 as well
as supθ∈Θ ‖pk,Jk,r(θ) − p(θ)‖∞ converge to zero in (outer) probability as k → ∞.
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Proof. Observe that under (46) we have 2JkJk ≤ C4k for k large enough, where C4 is as in Lemma 5,
and that {p(θ) : θ ∈ Θ} is sup-norm bounded. Now, using Lemma 5 together with Lyapunov’s inequality
as well as Proposition 9 in Appendix A, we arrive, for k large enough, at

E sup
θ∈Θ

‖pk,Jk,r(θ)‖t,2 ≤ E sup
θ∈Θ

‖pk,Jk,r(θ) − Epk,Jk,r(θ)‖t,2 + sup
θ∈Θ

‖Epk,Jk,r(θ)‖t,2

≤ C0(t)
√

C32Jkt

√
2JkJk

k
+ sup

θ∈Θ
‖π(r)

Jk
(p(θ))‖t,2

≤ C0(t)
√

C3 sup
k≥1

2Jkt

√
2JkJk

k
+ c′′t sup

θ∈Θ
‖p(θ)‖t,2 < ∞,

where we have used the already established fact that Epk,Jk,r(θ) = π
(r)
Jk

(p(θ)). [Measurability of
supθ∈Θ ‖pk,Jk,r(θ)‖t,2 follows from Appendix B.] Together with the observation that

E sup
θ∈Θ

‖pk,Jk,r(θ)‖t,2 < ∞

for every k ≥ 1, this completes the proof of the first claim. Next, Lemma 5 (applied with s′ = t′) gives for
k large enough (E∗ denoting outer expectation)

E∗ sup
θ∈Θ

‖pk,Jk,r(θ) − p(θ)‖t′,2 ≤ E sup
θ∈Θ

‖pk,Jk,r(θ) − Epk,Jk,r(θ)‖t′,2 + sup
θ∈Θ

‖π(r)
Jk

(p(θ)) − p(θ)‖t′,2

≤ C0(t′)
√

C32Jkt′
√

2JkJk

k
+ 2−Jk(t−t′)c′′′t,t′ sup

θ∈Θ
‖p(θ)‖t,2,

where we have used Proposition 9 in Appendix A in the final step. The upper bound now converges to
zero as k → ∞. The claim regarding the sup-norm now follows from Proposition 7 in Appendix A.

The following corollary is proved analogously using Lemma 3 instead of Lemma 5, with measurability
of the relevant quantities following from Appendix B.

Corollary 2. Suppose that r∗ ≥ 2 and that p0 ∈ Bt for some 1/2 < t ≤ 1. If jn ∈ N satisfies

sup
n≥1

2jn(2t+1)/n < ∞, (47)

then ‖pn,jn,r∗‖t,2 is stochastically bounded, i.e.,

lim
M→∞

sup
n≥1

Pr
(
‖pn,jn,r∗‖t,2 > M

)
= 0.

If (47) holds and jn → ∞ for n → ∞, then, for every 0 < t′ < t, ‖pn,jn,r∗ − p0‖t′ as well as
‖pn,jn,r∗ − p̃0‖∞ converge to zero in probability as n → ∞, where p̃0 is the continuous version of p0.

7. UNIFORM CENTRAL LIMIT THEOREMS
FOR SPLINE PROJECTION ESTIMATORS

We now study the difference between the random (signed) measure Pk,J,r(θ) given by

dPk,J,r(θ)(y) = pk,J,r(θ, y) dy

and Pk(θ) acting on Besov classes by integration. In the following ‖ν‖F stands for supf∈F |ν(f)|, where
ν is a (signed) measure.

Theorem 3. Suppose Assumption R (i) is satisfied, r ≥ 2, Θ is a bounded subset of R
b, and

{p(θ) : θ ∈ Θ} is a bounded subset of Bt for some t, 0 < t < r. Let F be a (non-empty) bounded
subset of Bs for some s, 1/2 < s < 1. Then for every 1/2 < s′ ≤ s there is a finite positive constant
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C9 depending only on s, s′, t, F , Θ, b, α, L, and {p(θ) : θ ∈ Θ} but not on J and k such that for
every J ≥ 1 and k ≥ 1

E sup
θ∈Θ

‖Pk,J,r(θ) − Pk(θ)‖F ≤ C9(2−J(t+s) + 2−J(s−s′)k−1/2). (48)

Furthermore,

sup
θ∈Θ

‖Pk(θ) − P (θ)‖F = Op(k−1/2). (49)

Finally, if Jk → ∞ as k → ∞ satisfies 2−Jk(t+s) = o(k−1/2), then for every θ ∈ Θ
√

k
(
Pk,Jk,r(θ) − P (θ)

)
��∞(F) GP (θ),

where GP (θ) is a sample-bounded and sample-continuous generalized P (θ)-Brownian bridge
indexed by F . Here ��∞(F) denotes convergence in law as defined in Chapter 1 of van der Vaart
and Wellner (1996).

Proof. We first note that supθ∈Θ ‖Pk,J,r(θ) − Pk(θ)‖F and supθ∈Θ ‖Pk(θ) − P (θ)‖F are measurable
since they can be represented as suprema over countable dense subsets of Θ and F in view of
Assumption R (i), r ≥ 2, and separability of F . For f ∈ F we can write, using (7), (8), (12), and

symmetry of the projection kernel K
(r)
J ,

(Pk,J,r(θ) − Pk(θ))(f) =
1
k

k∑

i=1

( 1∫

0

f(y)K(r)
J (Xi(θ), y) dy − f(Xi(θ))

)

=
1
k

k∑

i=1

(π(r)
J (f) − f)(Xi(θ)) = (Pk(θ) − P (θ))(π(r)

J (f) − f) +

1∫

0

(π(r)
J (f) − f)(y)p(θ)(y) dy

= A + B.

Consider first the term B: Using f ∈ L2, p(θ) ∈ L2, self-adjointness and idempotency of the projection

Id − π
(r)
J we obtain

∣
∣
∣
∣

1∫

0

(
π

(r)
J (f) − f

)
(y)p(θ)(y) dy

∣
∣
∣
∣ =

∣
∣
∣
∣

1∫

0

(
(Id − π

(r)
J )f

)
(y)

(
(Id − π

(r)
J )p(θ)

)
(y) dy

∣
∣
∣
∣

≤ ‖f − π
(r)
J (f)‖2 ‖p(θ) − π

(r)
J (p(θ))‖2

≤ c′sc
′
t‖f‖s,2‖p(θ)‖t,22−J(s+t), (50)

where we have used Proposition 8 for the last inequality. Consider next the term A: Define for J ≥ 1 the
class of functions

FJ,r,ρ =
{ 1∫

0

K
(r)
J (ρ(·, θ), y)f(y) dy − f(ρ(·, θ)) : f ∈ F , θ ∈ Θ

}

=
{
(π(r)

J (f) − f)(ρ(·, θ)) : f ∈ F , θ ∈ Θ
}
, (51)

which allows us to write

E sup
θ∈Θ

sup
f∈F

∣
∣(Pk(θ) − P (θ))(π(r)

J (f) − f)
∣
∣ =

1
k
E sup

h∈FJ,r,ρ

∣
∣
∣
∣

k∑

i=1

(
h(Vi) − Eh(Vi)

)
∣
∣
∣
∣. (52)
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Choose an arbitrary s′ satisfying 1/2 < s′ ≤ s and observe that (π(r)
J (f) − f) ∈ Bs ⊆ Bs′ since F ⊆

Bs by assumption and that SJ(r) ⊆ Bs ⊆ Bs′ in view of s < 1 < r − 1/2. Propositions 7 and 9 in
Appendix A then give

sup
h∈FJ,r,ρ

sup
v∈V

|h(v) − Eh(Vi)| ≤ 2 sup
h∈FJ,r,ρ

sup
v∈V

|h(v)| ≤ 2 sup
f∈F

‖π(r)
J (f) − f‖∞

≤ 2cs′ sup
f∈F

‖π(r)
J (f) − f‖s′,2 ≤ 2cs′c

′′′
s,s′ sup

f∈F
‖f‖s,22−J(s−s′) =: U,

where U < ∞ since F is a (non-empty) bounded subset of Bs. We may assume U > 0, the case U = 0
being trivial. Since FJ,r,ρ contains a countable sup-norm dense subset in view of Proposition 6 below, we
may apply the moment inequality from Proposition 12, Part (b), in Appendix C to (52) (with U as above,
σ = U , A′ = c∗s

′
/
(
2cs′c

′′′
s,s′ supf∈F ‖f‖s,2

)
, and with w = 1/s′) and make use of the entropy bound in

Proposition 6 below with ε∗ = 4cs′c
′′′
s,s′ supf∈F ‖f‖s,2 ≥ 2U . This gives the bound

E sup
θ∈Θ

sup
f∈F

∣
∣(Pk(θ) − P (θ))(π(r)

J (f) − f)
∣
∣ ≤ 2−J(s−s′)+1k−1/2cs′c

′′′
s,s′ sup

f∈F
‖f‖s,2b2,

where the constant b2 only depends on A′ and w. Together with (50), this proves the bound (48). To
prove the second claim, define the class

Fρ =
{
f(ρ(·, θ)) : f ∈ F , θ ∈ Θ

}
(53)

and note that Fρ is uniformly bounded since F is and that

sup
θ∈Θ

‖Pk(θ) − P (θ)‖F =
1
k

sup
h∈Fρ

∣
∣
∣

k∑

i=1

(
h(Vi) − Eh(Vi)

)∣∣
∣.

Now (49) follows since Fρ is a universal Donsker class by Proposition 6 below. The third claim of the
theorem follows immediately from (48) with s′ chosen to satisfy s′ < s, from the assumptions on Jk, and
from the universal Donsker property of

{
f(ρ(·, θ)) : f ∈ F

}
for every θ, which it inherits from Fρ.

Proposition 6. Suppose Assumption R (i) is satisfied, r ≥ 2, and Θ is a bounded subset of R
b.

Let F be a (non-empty) bounded subset of Bs, 1/2 < s < 1. Let FJ,r,ρ and Fρ be defined as in (51)
and (53). Then for every 1/2 < s′ ≤ s and every ε∗ > 0 there exists a (positive) finite constant c∗

depending only on s, s′, F , Θ, b, α, L, and ε∗ but not on J such that for every J ≥ 1

log N(FJ,r,ρ,L
∞(V), ε) ≤ 2−J(s−s′)/s′c∗ε−1/s′ for 0 < ε ≤ ε∗. (54)

Furthermore, for every ε∗ > 0 there exists a (positive) finite constant c∗∗ (depending only on s, F ,
Θ, b, α, L, and ε∗) such that

log N(Fρ,L
∞(V), ε) ≤ c∗∗ε−1/s for 0 < ε ≤ ε∗. (55)

In particular, Fρ and FJ,r,ρ are universal Donsker classes.

Proof. Let s′ be as in the proposition. By Proposition 9

sup
f∈F

‖π(r)
J (f) − f‖s′,2 ≤ 2−J(s−s′)c′′′s,s′ sup

f∈F
‖f‖s,2 = 2−J(s−s′)D < ∞, (56)

where the constant D depends only on s, s′, and F . As a consequence,

GJ :=
{
(π(r)

J (f) − f) : f ∈ F
}

is contained in a ball UJ in Bs′ of radius 2−J(s−s′)D. Using entropy bounds for balls in Besov spaces
(e.g., Theorem 15.6.1 in Lorentz et al. (1996)) we obtain

log N(GJ ,L∞([0, 1]), ε) ≤ 2−J(s−s′)/s′c(s, s′,F)ε−1/s′ for 0 < ε < ∞,
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where the finite and positive constant c(s, s′,F) depends only on s, s′, and F (in particular, it is
independent of J). [Setting p = 2, q = ∞ in Lorentz et al. 1996) we actually obtain the above bound
only in the ess-sup norm. However, since GJ consists of continuous functions only and since we can
always assume that the centers of the covering ess-sup norm balls belong to GJ (perhaps at the expense
of doubling ε), we immediately obtain the same bound for the supremum-norm.]

To prove the entropy bound for FJ,r,ρ =
{
g(ρ(·, θ)) : g ∈ GJ , θ ∈ Θ

}
we proceed as follows: Note that

the elements of GJ are Hölder continuous of order s′ − 1/2 with Hölder constants uniformly bounded by
2−J(s−s′)c1(s′,D) with 0 < c1(s′,D) < ∞ depending only on s′ and D, since GJ ⊆ UJ ⊆ Bs′ and since
for 1/2 < s′ < 1 the space Bs′ is continuously embedded into Cs′−1/2, cf. Proposition 7 in Appendix A.
Define η = (α(s′ − 1/2))−1 with α defined in Assumption R (i). For 0 < ε ≤ 1 set δ = (2J(s−s′)ε)η and
cover Θ by δ-balls with centers θ1, . . . , θN(δ,Θ), where N(δ,Θ) satisfies N(δ,Θ) ≤ max(1,M(Θ)/δb)
for some constant M(Θ) only depending on Θ. Let g1, . . . , gN(GJ ,L∞([0,1]),ε) be the centers of L∞([0, 1])-
balls of radius ε covering Gj . We then have for g(ρ(·, θ)) ∈ FJ,r,ρ using Assumption R (i)

sup
v∈V

∣
∣g(ρ(v, θ)) − gi(ρ(v, θl)

∣
∣

≤ sup
v∈V

∣
∣g(ρ(v, θ)) − g(ρ(v, θl))

∣
∣ + sup

v∈V

∣
∣g(ρ(v, θl)) − gi(ρ(v, θl))

∣
∣

≤ 2−J(s−s′)c1(s′,D)(L|θ − θl|α)s
′−1/2 + sup

x∈[0,1]
|g(x) − gi(x)| ≤

(
c1(s′,D)L1/η + 1

)
ε

for suitable choice of i and l. Consequently, we obtain for 0 < ε ≤ 1

log N
(
FJ,r,ρ,L

∞(V), (c1(s′,D)L1/η + 1)ε
)
≤ log N(GJ ,L∞([0, 1]), ε) + log N(δ,Θ)

≤ c(s, s′,F)(2J(s−s′)ε)−1/s′ + log+
(
M(Θ)/(2J(s−s′)ε)bη

)
≤ c•2−J(s−s′)/s′ε−1/s′ ,

for a suitable finite constant c• only depending on s, s′, F , Θ, b, and α, but not on J . After a simple
substitution, this gives (54) for 0 < ε ≤ c1(s′,D)L1/η + 1. Appropriately adjusting the multiplicative
constant in this so-obtained bound gives (54) for all 0 < ε ≤ ε∗; note that the adjustment of the constant
only introduces an additional dependence on ε∗ (but no dependence on J). The entropy bound (55) forFρ

is proved in a similar (even simpler) way. The Donsker property of FJ,r,ρ and Fρ now follows from (54),
(55), and Theorem 2.8.4 in van der Vaart and Wellner (1996), noting that FJ,r,ρ and Fρ are uniformly
bounded in view of Proposition 7 and that the bracketing covering numbers are dominated by the sup-
norm covering numbers.

An analogous result holds for the random (signed) measure Pn,j,r∗ given by dPn,j,r∗(y)=pn,j,r∗(y)dy.
The proof of this result is similar to, in fact simpler than, the proof of Theorem 3 and thus is omitted.

Theorem 4. Suppose r∗ ≥ 2 and p0 ∈ Bt for some t, 0 < t < r∗. Let F be a (non-empty) bounded
subset of Bs for some s, 1/2 < s < 1. Then for every 1/2 < s′ ≤ s there is a finite positive constant
C10 independent of j (only depending on s, s′, t, F , and p0) such that for every j ≥ 1 and k ≥ 1

E‖Pn,j,r∗ − Pn‖F ≤ C10(2−j(t+s) + 2−j(s−s′)n−1/2).

Furthermore, ‖Pn − P‖F = Op(n−1/2). Finally, if jn → ∞ as n → ∞ satisfies 2−jn(t+s) = o(n−1/2),
then

√
n(Pn,jn,r∗ − P ) ��∞(F) GP ,

where GP is a sample-bounded and sample-continuous generalized P -Brownian bridge indexed
by F .
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A. APPENDIX: SOME PROPERTIES OF BESOV SPACES
AND APPROXIMATION BY SPLINES

In the following, we summarize some simple properties of the spaces Bs. For 0 < s ≤ 1 and bounded
f : [0, 1] → R denote by

‖f‖s,∞ = ‖f‖∞ + sup
x,y∈[0,1],x �=y

|f(x) − f(y)|
|x − y|s

the usual Hölder norm and denote by Cs the set of all functions f with finite ‖f‖s,∞. For simplicity we
restrict ourselves to the case s < 1 in the following proposition.

Proposition 7. Let 1/2 < s < 1.

(a). Every f ∈ Bs is λ-a.e. equal to a function f̃ ∈ Cs−1/2 and

‖f̃‖∞ ≤ ‖f̃‖(s−1/2),∞ ≤ cs‖f̃‖s,2 = cs‖f‖s,2

holds for some finite (positive) constant cs, which depends only on s.

(b). If f ∈ Bs and h∈ Bs, then ‖fh‖s,2 ≤ 2cs‖f‖s,2‖h‖s,2. If h∈ Bs satisfies ζ := infx∈[0,1] h(x)> 0,
then ‖1/h‖s,2 ≤ ζ−1 + ζ−2‖h‖s,2.

Proof. (a). Observe thatBs coincides (up to norm equivalence) with the intermediate space (L2,W1
2 )s,∞

(DeVore and Lorentz (1993), p. 196) and hence coincides with the Besov space Bs;2,∞((0, 1)) defined in
Adams and Fournier (2003) (the fact that the latter is defined on the open unit interval being irrelevant).
The claim then follows from applying Theorem 7.37 in Adams and Fournier (2003) (with m = n = 1,
j = 0, p = 2, q = ∞).

(b). Since s < 1 by assumption, we may set a = 1 in the definition of the Besov (semi)norm.
Elementary calculations then show that

‖fh‖s,2 ≤ ‖f‖s,2 ess sup |h| + ‖h‖s,2 ess sup |f | ≤ 2cs‖f‖s,2‖h‖s,2

in view of Part (a). The second claim follows since clearly ‖1/h‖2 ≤ ζ−1 and since elementary calcula-
tions give ‖Δzh

−1‖2 ≤ ζ−2‖Δzh‖2.

The above proposition, together with the continuous embedding of Bt into Bs for t ≥ s (DeVore
and Lorentz (1993), p. 56), immediately guarantees for every t > 1/2 the existence of a constant ct,
0 < ct < ∞, such that for every f ∈ Bt there exists a (unique) continuous f̃ , λ-a.e. equal to f , such that
‖f̃‖∞ ≤ ct‖f̃‖t,2 = ct‖f‖t,2. In particular, bounded subsets of Bt, t > 1/2, are sup-norm bounded.

As is well known, functions in Bs can be approximated by elements of the Schoenberg spaces Sj(r),
the error decreasing as j increases. We summarize these facts in the following proposition.

Proposition 8. Suppose r ∈ N.

(a). If h ∈ L2, then the ortho-projection operator π
(r)
j from L2 onto the Schoenberg space Sj(r)

satisfies

lim
j→∞

‖π(r)
j (h) − h‖2 = 0.

If H is a relatively compact subset of L2, then

lim
j→∞

sup
h∈H

‖π(r)
j (h) − h‖2 = 0.

(b). If h ∈ Bs for some s ∈ (0, r), then

‖π(r)
j (h) − h‖2 ≤ 2−jsc′s‖h‖s,2,

for every j ∈ N, where the (positive) finite constant c′s depends only on s.
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Proof. To prove the first claim in Part (a), observe that by Proposition 2.4.1 and (12.3.2) in DeVore and
Lorentz (1993)

‖π(r)
j (h) − h‖2 ≤ 2C(r) sup

0<z≤2−j

‖Δr
z(h)‖2

for some universal constant C(r). By continuity of translation in L2(R) (cf., e.g., Folland (1999),
Proposition 8.5) the right-hand side converges to zero as j → ∞ (note that ‖Δr

z(h)‖2 is less than or
equal to the corresponding expression obtained when h is viewed as a function on R vanishing outside
of [0, 1]). The second claim in Part (a) follows since for every ε > 0 and ε-net {hl : 1 ≤ l ≤ N(ε)} for H
we have that ‖h − hl‖2 ≤ ε implies ‖π(r)

j (h) − π
(r)
j (hl)‖2 ≤ ε and thus

sup
h∈H

‖π(r)
j (h) − h‖2 ≤ max

1≤l≤N(ε)
‖π(r)

j (hl) − hl‖2 + 2ε.

For the proof of Part (b) use Proposition 2.4.1 and (12.3.2) in DeVore and Lorentz (1993) (where one
sets p = 2, n = 2j) together with the definition of the Besov-norm.

Proposition 9. Suppose r ∈ N. Let h ∈ Bs for some s ∈ (0, r − 1/2). Then

‖π(r)
j (h)‖s,2 ≤ c′′s‖h‖s,2

for every j ∈ N, where the (positive) finite constant c′′s depends only on s. Furthermore, for every
s′ ∈ (0, s]

‖π(r)
j (h) − h‖s′,2 ≤ 2−j(s−s′)c′′′s,s′‖h‖s,2

for every j ∈ N, where the (positive) finite constant c′′′s,s′ depends only on s and s′.

Proof. By Theorem 12.3.3 in DeVore and Lorentz (1993) (with p = 2, λ = r − 1/2, q = ∞, α = s, and
dn,r(·)2 defined on p. 358 of that reference) we have

‖π(r)
j (h)‖s,2 = ‖π(r)

j (h)‖2 + sup
0�=|z|<1

|z|−s‖Δr
z(π

(r)
j (h))‖2

≤ ‖h‖2 + es sup
n≥0

2nsdn,r(π
(r)
j (h))2

≤ ‖h‖2 + es sup
n≥0

2ns‖π(r)
n (π(r)

j (h)) − π
(r)
j (h)‖2

≤ ‖h‖2 + es sup
0≤n<j

2ns‖π(r)
n (h) − π

(r)
j (h)‖2 ≤ ‖h‖s,2 + 2esc

′
s‖h‖s,2

for some universal constant es, where we have used Proposition 8 in the last step. To prove the second
claim we argue as before and then use Proposition 8 to obtain

‖π(r)
j (h) − h‖s′,2 ≤ ‖π(r)

j (h) − h‖2 + es′ sup
n≥0

2ns′‖π(r)
n (π(r)

j (h) − h) − (π(r)
j (h) − h)‖2

≤ ‖π(r)
j (h) − h‖2 + es′

[
2js′‖π(r)

j (h) − h‖2 + sup
n>j

2ns′‖π(r)
n (h) − h‖2

]

≤ 2−jsc′s‖h‖s,2 + es′
[
2j(s′−s)c′s‖h‖s,2 + sup

n>j
2n(s′−s)c′s‖h‖s,2

]

≤ 2−j(s−s′)(1 + 2es′)c′s‖h‖s,2.

MATHEMATICAL METHODS OF STATISTICS Vol. 19 No. 4 2010



362 NICKL, PÖTSCHER

B. APPENDIX: CONSISTENCY OF THE INDIRECT INFERENCE ESTIMATOR
AND MEASURABILITY ISSUES

Proof of Proposition 1. Because of continuity of the B-spline basis functions for r ≥ 2 and continuity
of θ → ρ(v, θ) for every v ∈ V , the map θ → pk,J,r(θ)(y) is continuous for every y ∈ [0, 1]. Furthermore,
pn,j,r∗ and pk,J,r(θ) are bounded on [0, 1], the latter one uniformly in θ, in view of the discussion
surrounding (13). Next note that the set An appearing in the definition of Qn,k coincides with the event
{infy∈[0,1] pn,j,r∗(y) > 0}, since pn,j,r∗ is continuous on [0, 1] in case r∗ > 1, and is piecewise constant in
case r∗ = 1. Hence, by the dominated convergence theorem, Qn,k is continuous (and real-valued) on Θ if
pn,j,r∗(y) > 0 for every y ∈ [0, 1]; and the same conclusion trivially holds in the other case. As mentioned
before, Qn,k(θ) : [0, 1]∞ × V∞ → R is B∞

[0,1] ⊗ V∞-measurable for every θ ∈ Θ. Since Θ is compact,
existence of a measurable minimizer then follows, e.g., from Lemma A3 in Pötscher and Prucha (1997).

Proposition 10. Suppose that Θ is compact in R
b, that the map θ → p(θ, x) is continuous on Θ for

every x ∈ [0, 1], and that supθ∈Θ ‖p(θ)‖∞ < ∞. Furthermore, assume that r∗ ≥ 1 holds. Then there
exists a B∞

[0,1] ⊗V∞-measurable θ̂n that minimizes Qn(θ) over Θ. (In fact, θ̂n is B∞
[0,1]-measurable

as it does not depend on the simulations.)

Proof. Since ‖pn,j,r∗‖∞ < ∞ and since on the event An also infy∈[0,1] pn,j,r∗ > 0 holds, the assump-
tions on p(θ) and the dominated convergence theorem imply that Qn is real-valued and continuous
in θ on the event An; and the same conclusion trivially holds on the complement of An. Furthermore,
B∞

[0,1] ⊗V∞-measurability of Qn(θ) : [0, 1]∞ ×V∞ → R for every θ ∈ Θ follows from Tonelli’s Theorem
since pn,j,r∗ is jointly measurable (and An is measurable). Since Θ is compact, existence of a measurable
minimizer then follows, e.g., from Lemma A3 in Pötscher and Prucha (1997).

Proposition 11. Suppose Assumptions P1 (i), (ii) are satisfied and r∗ ≥ 2 holds. If jn → ∞ as
n → ∞ in such a way that for some δ > 1/2 we have supn≥1 2jn(2δ+1)/n < ∞, then

θ̂n → θ0 in Pr -probability as n → ∞,

where θ̂n has been defined in Section 5.2.

The proof of this result is completely analogous to the proof of Proposition 2 and is thus omitted.

Remark 5. (Measurability issues)

(i) For every J ≥ 1, r ≥ 1, and θ ∈ Θ, the expressions ‖pk,J,r(θ)‖2, ‖pk,J,r(θ)‖∞, and ‖pk,J,r(θ)‖s,2

(for s ≤ r − 1/2) are measurable functions of v1, . . . , vk, since the coefficients γ̂
(r)
lJ (θ) are measurable.

This is obvious for the L2-norm, but holds in general for the following reason: observe that any one

of the norms mentioned, when restricted to SJ(r), is a continuous function of the coefficients γ̂
(r)
lJ (θ)

because SJ(r) is finite-dimensional. The same is true if pk,J,r(θ) is replaced by pk,J,r(θ) − Epk,J,r(θ) or
pk,J,r(θ) − p(θ), in the latter case provided the respective norm of p(θ) is finite. [The argument is the
same, except that SJ(r) is to be replaced by the linear span of SJ(r) ∪ {p(θ)} for establishing the latter
claim.] Analogous statements obviously also hold for pn,j,r∗ for every j ≥ 1, r ≥ 1.

(ii) The reasoning just given in fact establishes that the above mentioned norms of pk,J,r(θ) and

pk,J,r(θ) − Epk,J,r(θ) are continuous functions of θ, provided the coefficients γ̂
(r)
lJ (θ) (and Eγ̂

(r)
lJ (θ)) are

continuous in θ (which is, e.g., the case if r ≥ 2 and Assumption R (i) holds); consequently, suprema
over θ of the above mentioned norms of pk,J,r(θ) and pk,J,r(θ) − Epk,J,r(θ) are then measurable. [We
note that this argument does not apply to suprema of norms of pk,J,r(θ) − p(θ), because p(θ) may not
vary in a finite-dimensional space when θ varies.]
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C. APPENDIX: MOMENT BOUNDS FOR EMPIRICAL PROCESSES

The following moment inequalities can be deduced from a general theorem in Giné and Koltchinskii
(2006) and a refinement with explicit constants in Giné and Nickl (2009a).

Proposition 12. Let Zi, i ∈ N, be i.i.d. random variables with values in a measurable space (S,A)
and common law R. Let F be a countable R-centered class of real-valued measurable functions
from (S,A) to R. Assume that F is uniformly bounded by a finite positive constant U and let
further σ, 0 < σ ≤ U , be some constant satisfying supf∈F Ef2(Zi) ≤ σ2.

(a). Assume that the L2(Q)-covering numbers satisfy

sup
Q

log N(F ,L2(Q), τ) ≤ v log
(

AU

τ

)

, 0 < τ ≤ 2U,

for some A > e and v ≥ 2 (the supremum extending over all probability measures Q on S). Then,
for every b0 > 0 satisfying

nσ2 ≥ b0vU2 log(5AU/σ) for all n ∈ N, (57)

there exists a finite positive constant b1(v, b0) that depends only on v and b0 such that for every
n ∈ N

E

∥
∥
∥
∥

n∑

i=1

f(Zi)
∥
∥
∥
∥

2

F
≤ b1(v, b0)nσ2 log

AU

σ
.

(b). Assume that the L2(Q)-covering numbers satisfy

sup
Q

log N(F ,L2(Q), τ) ≤
(

A′U

τ

)w

, 0 < τ ≤ 2U,

for some 0 < A′ < ∞ and 0 < w < 2. Then, for all n ∈ N and some positive constant b2 that
depends only on A′, w, we have

E

∥
∥
∥
∥

n∑

i=1

f(Zi)
∥
∥
∥
∥
F
≤ b2

√
nU.

Proof. Since the results depend only on the distribution of ‖
∑n

i=1 f(Zi)‖F , we may assume w.l.o.g.
that — as in Giné and Koltchinskii (2006) — the random variables are realized as coordinate projections
on the infinite product space of (S,A). The second claim of the proposition then follows directly from
Theorem 3.1 in Giné and Koltchinskii (2006) applied to the class F ′ = {f/U : f ∈ F} with envelope
F = 1 and H(x) = (A′x)w for x ≥ 1/2 and H(x) = 0 for 0 ≤ x < 1/2. The first claim is proved as
follows: By Proposition 3.1 in Giné et al. (2000) (applied to F ∪ (−F) and observing that σ2 in that
reference is bounded by nσ2 in our notation) we have

E

∥
∥
∥
∥

n∑

i=1

f(Zi)
∥
∥
∥
∥

2

F
≤ K2

[(

E‖
n∑

i=1

f(Zi)‖F
)2

+ 2nσ2 + 4U2

]

,

where K is a universal constant. We then bound the first term on the right-hand side by using
Proposition 3 in Giné and Nickl (2009a) and simplify the resulting bound using (57), A > e, and
U/σ ≥ 1 to arrive at the result.
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