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Abstract—The problems of estimation and detection of an infinitely-variate signal f observed in
the continuous white noise model are studied. It is assumed that f belongs to a certain weighted
tensor product space. Several examples of such a space are considered. Special attention is given
to the tensor product space of analytic functions with exponential weights. In connection with
estimating and detecting unknown signal, the problems of rate and sharp optimality are investigated.
In particular, it is shown that the use of a weighted tensor product space makes it possible to avoid
the “curse of dimensionality” phenomenon.
Key words: nonparametric estimation, nonparametric goodness-of-fit testing, multivariate func-
tions, white noise model, weighted tensor product space.
2000 Mathematics Subject Classification: primary 62G10; secondary 62G20.

DOI: 10.3103/S1066530709040024

1. INTRODUCTION

Suppose that an unknown signal f defined on [0, 1]d is observed in the continuous white noise model

Xε = f + εN, (1)

where f ∈ L2([0, 1]d) = Ld
2, N is a d-dimensional white Gaussian noise, and ε > 0 is a small parameter

(noise intensity). In this model, the “observation” is the function Xε : Ld
2 → G taking its values in the set

G of normal random variables such that if ξ = Xε(φ), η = Xε(ψ), where φ,ψ ∈ Ld
2, then E(ξ) = (f, φ),

E(η) = (f, ψ), and Cov(ξ, η) = ε2(φ,ψ). For any f ∈ Ld
2, the observation Xε determines the Gaussian

measure Pε,f (see [4], [15] for references), the corresponding expectation is denoted Eε,f . In this paper
we study the case d = ∞. Some results are also valid in case of growing dimension d = dε → ∞.

Model (1) can be equivalently represented by the Gaussian sequence space model

X� = θ� + εξ�, ξ�
i.i.d.∼ N (0, 1), � ∈ L,

where L is a countable set, θ� = (f, φ�) are the Fourier coefficients of f with respect to an orthonormal
basis {φ�}�∈L in Ld

2, and the X� = Xε(φ�) are the empirical Fourier coefficients.

One problem of interest is to estimate an unknown signal f using quadratic loss. Another problem
of interest is to detect f , that is, to test the hypothesis H0 : f = 0 versus a family of nonparametric
alternatives of the form H1ε : ‖f‖2 ≥ rε, where ‖ · ‖2 is the L2-norm and rε → 0 is a positive family.
These two problems are closely related to each other, see relations (12)–(15) below. Within the
framework of the minimax approach, the problems are known to have no good solutions unless some
“regularity” constraints on f are imposed. A popular constraint has the form f ∈ F , where the set
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F ⊂ Ld
2 consists of “regular enough” functions. It is often the case that the regularity constraints are

determined in terms of ellipsoids with coefficients c� ≥ 0, � ∈ L:

F =
{

f(t) =
∑
�∈L

θ�φ�(t) :
∑
�∈L

c2
�θ

2
� ≤ 1

}
. (2)

Dealing with estimation and detection of multivariate signals, we are often faced with the “curse of
dimensionality” when the quality of minimax estimation and testing deteriorates as d gets large.

In particular, for Sobolev balls of σ-smooth functions defined on the cube [0, 1]d the rates Rε(F)
of minimax estimation (using quadratic loss) and the separation rates r∗ε(F) of minimax testing (see
Section 2.3 for precise definitions) satisfy

Rε(F) 
 ε2σ/(2σ+d), r∗ε(F) 
 ε4σ/(4σ+d). (3)

See [4], [13], [17] for estimation and [5] for testing.

For balls in Sobolev spaces of tensor product structure with order σ and domain [0, 1]d (see [12] for
definition) one has

Rε(F) 

(
ε log(d−1)/2(ε−1)

)2σ/(2σ+1)
, r∗ε(F) 


(
ε log(d−1)/4(ε−1)

)4σ/(4σ+1)
. (4)

See [4], [12] for estimation and [9] for testing.

For classes of analytic functions defined on [0, 1]d (this space has a natural tensor product structure,
see [9]) one has

Rε(F) 
 ε logd/2(ε−1), r∗ε(F) 
 ε logd/4(ε−1). (5)

See [5], [11] for estimation and [9] for testing.

Now, taking formally d 
 log(ε−1) in (3) we get Rε(F) 
 r∗ε(F) 
 1. Similarly, we may take d 

log(ε−1)/ log log(ε−1) in (4) and (5) to have the families Rε(F) and r∗ε(F) bounded away from zero. That
is, asymptotically no minimax consistent estimators exist, and the detection of signals in the minimax
sense is impossible.

Certainly, these substitutions are not correct since relations (3)–(5) are not uniform in the dimen-
sion d. For the functional sets under consideration, the case d = dε → ∞ as ε → 0 was studied in [7] and
[9]. It was shown that for the Sobolev classes and for the balls in tensor product spaces, the asymptotics
of quadratic risks and separation rates are of essentially different types for the cases d � log(ε−1) and
d � log(ε−1). In particular, if log d 
 log(ε−1), then minimax consistent estimation and testing are
impossible.

In a specific real-life problem of estimating and detecting a d-variate signal f , the dimension d is
fixed and the noise intensity ε is set at a prescribed level. Under the asymptotic approach, the problem
is “embedded” into a family of problems with ε → 0 and d being fixed or tending to infinity. When
estimating and detecting a d-variate analytic function in case of fixed d, the dimensionality only affects
the optimal rates of convergence and separation rates on the log(ε−1) scale. However, in case of growing
dimension d = dε satisfying d � log(ε−1) the situation is different: the curse of dimensionality reveals
itself by dramatic changes in the optimal rates of convergence and separation rates (see, for example,
Theorem 6.3 of [9]).

One way to avoid the curse of dimensionality is to assume that f belongs to a certain weighted tensor
product space. The idea behind such a space is to reduce the “working dimension” of the problem.
Informally, it is assumed that: (i) f can be approximated by a sum of a small number of functions of a
small number of variables, and (ii) the variables are ordered according to their importance, see [10], [12],
[16], [18]. The “weighted approach” to the problem of estimating and detecting multivariate functions
was recently developed for classes of functions of finite smoothness by Ingster and Suslina [8]. In this
paper we treat in a similar manner the case of analytic functions. We also consider several examples of
weighted tensor product spaces related to classes of functions of finite smoothness.

The description of a general weighted tensor product space and some important examples of such a
space are given in Section 2.1. In Section 2.2, the detailed construction of the tensor product space of
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analytic functions with exponential weights is presented. Section 2.3 contains the precise statement of
the problems and relevant notation.

When studying the rate optimality problem, we are looking for the rate-optimal estimators of f
(estimation problem), and the conditions under which the alternative is distiguishable from the null
hypothesis (detection problem). The scheme of the study is presented in Sections 4.1–4.2 in general
settings for an arbitrary tensor product space determined by two weight sequences. One sequence
controls the smoothness properties of the estimated and detected signal, whereas the other characterizes
the importance of variables. When applied to the examples of interest, the scheme produces logarithmic
asymptotics of quadratic risk of asymptotically minimax estimators and gives conditions under which
minimax consistent families of tests exist. The results thus obtained are then improved for tensor product
spaces of analytic functions with exponential weights, see Sections 4.3 and 4.4. The main results of
Section 4, Theorems 1 and 2, illustrate the advantage of using tensor product spaces in multivariate
settings: for such spaces the curse of dimensionality effect can be lifted.

In connection with estimating a signal f , the sharp optimality problem consists of finding sharp rates
of asymptotically minimax estimators, i.e., optimal rates including constants. With regard to detection
problem, the sharp optimality problem involves finding asymptotics of the total probability error and
constructing asymptotically minimax families of tests. In Section 5, using some refined reasoning, we
obtain, in an implicit form, the sharp asymptotics for both problems at hand, see Theorems 3 and 4.
Finding explicit forms for these asymptotics requires solving nonlinear equations, which can hardly be
done analytically.

Appendices I and II serve as references. They contain some well-known results related to estimating
and detecting signals in minimax settings for ellipsoids. The proposed estimators and tests described in
Appendices I and II have a standard structure. The estimators are of projection type and are based on the
“empirical Fourier coefficients” Xε(φ�) that correspond to “small” coefficients c� ≤ T of the ellipsoid.
The tests are based on the normalized χ2-statistics that correspond to similar collections of Xε(φ�).
The family T = Tε is determined by the “balance equations” (12) (or (69)) for the estimation problem
and (13) (or (79)) for the detection problem. The key point is the study of asymptotic behavior of the
“counting function” N(t) = card{� ∈ L : c� ≤ t}, as t → ∞, in the balance equations.

Auxiliary results are collected in Appendix III. The proofs of lemmas are presented in Appendix IV,
while the verification of relations (48)–(51) is given in Appendix V.

2. STATEMENT OF THE PROBLEMS

2.1. Weighted Tensor Product Space. Examples

In this section we define a tensor product space Lλ,γ of the following structure. Let λ = {λk}k∈Z be
a sequence such that λ0 = 1, λk = λ−k > 1, λk increases in k > 0 and λk → ∞. Let γ = {γj}j∈N be an
increasing sequence such that γj ≥ 1, γj → ∞. Define Zd

0 = {� = (l1, . . . , ld, 0, . . . , 0, . . .) ∈ Z∞} and
put

Z∞
0 =

∞⋃
d=1

Zd
0.

Suppose that {φ�(t)}�∈Z∞
0

, t ∈ [0, 1]∞, is a tensor product basis in L∞
2 , where {φk(t)}k∈Z is an

orthonormal basis in L2[0, 1]. For a function f(t) =
∑

�∈Z∞
0

θ�φ�(t) we set

‖f‖2
λ,γ =

∑
�∈Z∞

0

c2
�θ

2
�,

where

c� =
∏

j : lj �=0

γjλlj , (6)

and define the weighted tensor product space as follows:

Lλ,γ = {f ∈ L∞
2 : ‖f‖2

λ,γ < ∞}.
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Clearly

Lλ,γ =
∞⊗

j=1

Lλ,γj
,

where the space Lλ,γj
consists of the functions f(t) =

∑
k∈Z θkφk(t), t ∈ [0, 1], such that

‖f‖2
λ,γj

=
∑
k∈Z

b2
kjθ

2
k < ∞, b0j = 1, bkj = γjλk, k = 0. (7)

The sequence λ = {λk} characterizes smoothness properties of univariate functions in the spaces Lλ,γj
,

while the sequence γ = {γj} characterizes the “importance” of variables. Consider several important
examples of the space Lλ,γ.

Example 1. Let λk = eλ|k|, λ > 0, k ∈ Z, and γj = eμj , μ > 0, j ∈ N. This is the main example of our
interest that corresponds to 1-periodic functions f(t) that can be analytically continued to the complex
strip {z ∈ C : | Im z| ≤ λ/(2π)}. The weight sequence γ = {γj} is exponential. The space Lλ,γ with
such a choice of λ and γ corresponds to the space Aλ,μ whose construction is presented in detail in the
next section.

Example 2. Let λk = eλ|k|α, λ > 0, α > 0, k ∈ Z, and γj = eμjβ
, μ > 0, β > 0, j ∈ N. This is a

generalization of Example 1. The main results obtained for the weighted tensor product space Aλ,μ can
be carried over to the present case with arbitrary α > 0 and β > 1/2.

Example 3. Let λk = A|k|σ , σ > 0, A > 1, k ∈ Z, and γj = js, s > 0, j ∈ N. If A = (2π)σ , then

‖f‖2
λ,γj

= (f, 1)2 + γ2
j ‖f (σ)‖2,

where f (σ) is the σ-derivative of the function f . This norm corresponds to the Sobolev norm of σ-smooth
functions. The weight sequence γ = {γj} is polynomial. The space Lλ,γ with such a choice of λ and γ
is a Sloan–Woźniakowski (weighted Sobolev) space, see [10], [16] for references. The rate and sharp
asymptotics in the problems of estimating and detecting signals from the Sloan–Woźniakovski space
were obtained in [8].

Example 4. Let λk = eλ|k|, λ > 0, k ∈ Z, and γj = js, s > 0, j ∈ N. This case corresponds to 1-
periodic functions f(t) that can be analytically continued to the complex strip {z ∈ C : | Im z| ≤
λ/(2π)}. The weight sequence that controls the importance of variables is polynomial.

Example 5. Let λk = A|k|σ , σ > 0, A > 1, k ∈ Z, and γj = eμj , μ > 0, j ∈ N. This case corresponds
to σ-smooth functions. The weight sequence γ = {γj} is exponential.

2.2. Tensor Product Space of Analytic Functions with Exponential Weights

Now we present in detail the construction of the space Aλ,μ. We start with the class Fλ(M) of
functions f(t), t = (t1, . . . , td) ∈ Rd such that:

(a) f is 1-periodic in each of its arguments;

(b) f can be analytically continued from Rd to the strip Sλ = {z ∈ Cd : | Im z| < λ/(2π)}, and
|f(z)| ≤ M for all z ∈ Sλ and some constant M > 0.

Put φ�(t) =
∏d

k=1 φlk(tk), � = (l1, . . . , ld) ∈ Zd, where {φk(t)}k∈Z is a standard Fourier basis in
L2[0, 1], and denote θ� = (f, φ�). Then f ∈ Fλ(M) can be decomposed into the Fourier series

f(t) =
∑

�∈Zd

θ�φ�(t),
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with Fourier coefficients θ� decreasing at an exponential rate, cf. [11, Lemma 1]:

|θ�| ≤ Me−λ
∑d

j=1 |lj |. (8)

Using this fact, we now introduce the weighted tensor product space of analytic functions. Our definition
is given in terms of the Fourier expansion.

Let u = (j1, . . . , jm), 1 ≤ j1 < . . . < jm ≤ d, and let tu denote the |u|-dimensional vector containing
those components of t whose indices belong to the set u. Assume that a function f ∈ Ld

2 can be written
in the form

f(t) =
∑

u⊂{1,...,d}
fu(tu),

1∫

0

fu(tu) dtj = 0 for all j ∈ u, (9)

where the summation extends over all 2d subsets of the set {1, . . . , d}, fu = const if u = ∅, and

fu(tu) =
∑

�∈Zd : lj �=0 iff j∈u

θ�φ�(tu).

Each function fu depends only on variables in tu and describes the “interaction” between these variables.
Decomposition (9) is known in the statistical literature as the functional ANOVA decomposition.

Now let μ be a positive parameter. For the function f in (9) we define its weighted norm ‖f‖λ,μ as
follows:

‖f‖2
λ,μ =

∑
u⊂{1,...,d}

∏
j∈u

e2μj ‖fu‖2
λ, (10)

where, in view of (8), we set

‖fu‖2
λ =

∑

�∈Zd : lj �=0 iff j∈u

θ2
�a

2
�, a� = a(l1,...,ld) = eλ

∑d
j=1 |lj |.

Thus, from (10)

‖f‖2
λ,μ =

∑
u⊂{1,...,d}

∏
j∈u

e2μj
∑

�∈Zd : lj �=0 iff j∈u

θ2
�a

2
� =

∑

�∈Zd

θ2
�

∏
j∈{1,...,d} : lj �=0

e2μj+2λ|lj | =
∑

�∈Zd

θ2
�c

2
�,

c� =
∏

j∈{1,...,d} : lj �=0

eμj+λ|lj |.

The tensor product space of d-variate analytic functions with exponential weights, Ad
λ,μ, consists of

functions f ∈ Ld
2 such that ‖f‖λ,μ < ∞. This is a Hilbert space of a tensor product structure:

Ad
λ,μ =

d⊗
j=1

Lj
λ,μ,

where the Hilbert space Lj
λ,μ consists of functions f(t) =

∑
k∈Z

θkφk(t), t ∈ [0, 1], with the norm ‖f‖j,λ,μ

defined by

‖f‖2
j,λ,μ =

∑
k∈Z

θ2
kc

2
j,k, cj,0 = 1, cj,k = eμj+λ|k|, k = 0. (11)

The definition of Ad
λ,μ can be extended to the case of infinitely-variate functions. For � ∈ Z∞

0 , define
the Fourier basis of L∞

2 by

φ�(t) =
∞∏
i=1

φlk(tk), t = (t1, t2, . . .) ∈ R∞,

MATHEMATICAL METHODS OF STATISTICS Vol. 18 No. 4 2009



ESTIMATION AND DETECTION 315

and let θ� = (f, φ�) be the Fourier coefficients. We say that the function f belongs to the class Aλ,μ if:
(a) f ∈ L∞

2 and (b) ‖f‖∞,λ,μ < ∞, where

‖f‖2
∞,λ,μ =

∑
�∈Z∞

0

θ2
�c

2
�, c� =

∏
j∈N : lj �=0

eμj+λ|lj |.

The space defined in this way is the Hilbert space with an infinite tensor product structure:

Aλ,μ =
∞⊗

j=1

Lj
λ,μ.

2.3. Estimation and Detection for Ellipsoids

Now we can state the problems more precisely. For rε > 0, put

F = {f ∈ Lλ,γ : ‖f‖λ,γ ≤ 1}, F(rε) = {f ∈ F : ‖f‖2 ≥ rε},
and define the minimax (integrated) quadratic risk by

R2
ε(F) = inf

f̃ε

sup
f∈F

Eε,f‖f − f̃ε‖2
2,

where the infimum is taken over all possible estimators f̃ε of f based on the observation Xε. When
dealing with the estimation problem, we wish to find asymptotically minimax estimator f̂ε of f for
which

sup
f∈F

Eε,f‖f − f̂ε‖2
2 ∼ R2

ε(F), ε → 0,

and establish asymptotics for the risk R2
ε(F). In the problem of detecting f , we test the hypotheses

H0 : f = 0 vs. H1ε : f ∈ F(rε).

For a test ψ, define the error probabilities

αε(ψ) = Eε,0ψ,

βε(ψ, f) = Eε,f (1 − ψ),
γε(ψ, f) = αε(ψ) + βε(ψ, f).

The maximum probability of type II error is then given by

βε(rε, ψ) = sup
f∈F(rε)

βε(ψ, f).

The quantity

γε(rε) = inf
ψ

γε(rε, ψ),

where

γε(rε, ψ) = αε(ψ) + βε(rε, ψ),

and the infimum is taken over all tests ψ, is called the minimax total error probability. We say that a
family of tests ψ∗

ε is asymptotically minimax if

γε(rε, ψ
∗
ε) = γε(rε) + o(1), ε → 0.

We are interested in finding asymptotics of γε(rε) and determining the structure of asymptotically
minimax tests. We are also interested in finding asymptotics for the separation rate r∗ε(F). We say
that a family r∗ε(F) is a separation rate in the problem of testing H0 versus H1ε if γε(rε) → 0
as rε/r

∗
ε(F) → ∞ and γε(rε) → 1 as rε/r

∗
ε(F) → 0. In other words, for small ε, it is impossible to

distinguish between the null hypothesis and the alternative if the ratio rε/r
∗
ε(F) is small, whereas the

alternative is distinguishable from the null hypothesis when the ratio rε/r
∗
ε(F) is large.
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The ball F = {f ∈ Lλ,γ : ‖f‖λ,γ ≤ 1} in the space Lλ,γ corresponds to the ellipsoid

Θ =
{

θ = (θ�)�∈Z∞
0

:
∑

�∈Z∞
0

θ2
�c

2
� ≤ 1

}

in the space of Fourier coefficients. Therefore the set F(rε) that specifies the alternative hypothesis can
be equivalently written in the form

Θε =
{

θ = (θ�)�∈Z∞
0

:
∑

�∈Z∞
0

θ2
�c

2
� ≤ 1 and

∑
�∈Z∞

0

θ2
� ≥ r2

ε

}
.

3. BASIC ELEMENTS OF THE STUDY
3.1. Counting Function

In this section we define the so-called counting function N(t) that determines the “distribution”
of the coefficients c�. This function is known to determine the rate asymptotics of quadratic risk in the
estimation problem and of separation rate in the detection problem. In addition, it controls the sharp
asymptotics of R2

ε(F) and γε(rε).
For t > 0, consider the set

N (t) = {� ∈ Z∞
0 : c� ≤ t}

and put

N(t) = card{N (t)}.
Note that in Examples 1–5

N(t) < ∞ for any t > 0, N(t) → ∞ as t → ∞.

The function N(t) is called the counting function. It is known (see, for example, [9, Sect. 2]) that for
the estimation problem:

Rε(F) 
 T−1, where ε2T 2N(T ) 
 1, (12)

and for the detection problem:

r∗ε(F) 
 T−1, where ε4T 4N(T ) 
 1. (13)

Moreover, if N(t) is a slowly varying function, that is, for any c > 0,

lim
t→∞

N(ct)/N(t) = 1,

then the sharp asymptotics hold true:

R2
ε(F) ∼ ε2N(T ), where ε2T 2N(T ) 
 1, (14)

and

γε(rε) = 2Φ(−uε/2) + o(1), u2
ε ∼ r4

ε/2ε
4N(T ), (15)

where

ε4T 4N(T ) 
 1.

The details on the derivation of relations (12)–(15) are given in Appendices I and II. Here the limits are
taken as ε → 0. The relation Aε ∼ Bε means lim Aε/Bε = 1, and the relation Aε 
 Bε means that there
exist constants 0 < c < C and a number ε0 > 0 such that c < Aε/Bε < C for ε ∈ (0, ε0).

In this paper we present, step-by-step, a general scheme for the study of asymptotics of N(t), t → ∞,
in the problems at hand. The results of this study yield asymptotics of Rε(F), r∗ε(F), and γε(rε). For
illustration, the scheme is applied to the space Aλ,μ of analytic functions. Most of the results obtained
for Aλ,μ can be carried over to a general weighted tensor product space Lλ,γ that includes Aλ,μ as a
particular case.

Technically, the problem of finding rate and sharp asymptotics is rather difficult. Often, the quantities
that determine these asymptotics turn out to be solutions of nonlinear equations that cannot be solved
analytically. For this reason, the main results of the paper are given in terms of logarithmic asymptotics.
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3.2. Probability Measures
The rate and sharp asymptotics in the problems under study are determined by the function N(t) (see

(12)–(15)). In the next section we examine the asymptotic behavior of N(t) as t → ∞. A general method
consists of defining a family of prior distributions Ph on the set of indices Z∞

0 and investigating the
behavior of the function N(t) = card{� ∈ Z∞

0 : c� ≤ t} based on representation (20) using probabilistic
and analytic tools.

First, we define a family of probability measures Ph depending on parameter h on the set Z∞:

Ph(�) =
∞∏

j=1

Ph,j(lj), � ∈ Z∞
0 .

It is convenient to rewrite the coefficients c� in the form c� = exp(S(�)), where, cf. (7),

S(�) =
∞∑

j=1

Yj(lj), � ∈ Z∞
0 ; Yj(k) =

{
0, k = 0,
log(λk) + log(γj), k = 0,

, k ∈ Z, (16)

and define the measures Ph,j by

Ph,j(k) = exp
(
− hYj(k) − Zj(h)

)
, (17)

where

Zj(h) = log
( ∑

k∈Z

exp(−hYj(k))
)

= log
(
1 + G(h)γ−h

j

)
, G(h) = 2

∞∑
k=1

λ−h
k .

This leads to the formula

Ph(�) =
∞∏

j=1

Ph,j(lj) = exp
(
− hS(�) − Z(h)

)
, � ∈ Z∞

0 , (18)

where Z(h) =
∑∞

j=1 Zj(h).
The measures Ph are well defined for h > h∗ ≥ 0, where

h∗ = inf{h > 0: Z(h) < ∞} = max(h∗
λ, h∗

γ)

with

h∗
λ = inf

{
h : G(h) < ∞

}
, h∗

γ = inf
{

h :
∞∑

j=1

γ−h
j < ∞

}
.

Let us specify the value of h∗ in Examples 1–5.

Example 1. The series
∑∞

k=1 λ−h
k =

∑∞
k=1 e−hλk and

∑∞
j=1 γ−h

j =
∑∞

j=1 e−hμj are convergent for all
h > 0, so that h∗ = 0.

Example 2. The series
∑∞

k=1 λ−h
k =

∑∞
k=1 e−λhkα

and
∑∞

k=j γ−h
j =

∑∞
j=1 e−μhjβ

are convergent for

all h > 0. Indeed, setting m = (λh)−1/α

∞∑
k=1

e−λhkα
= 2m

∞∑
k=1

e−(k/m)α
m−1 = 2m

∞∫

0

e−xα
dx + O(1)

=
2m
α

∞∫

0

e−yy1/α−1 dy + O(1) =
2mΓ(1/α)

α
+ O(1)

= Bh−1/α + O(1), B =
2Γ(1/α)
αλ1/α

. (19)

The same arguments apply to the second series. Therefore, as in Example 1, h∗ = 0.
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Example 3. Here
∑∞

k=1 λ−h
k =

∑∞
k=1 k−σh and

∑∞
k=j γ−h

j =
∑∞

j=1 j−sh. The series are convergent
when σh > 1 and sh > 1, respectively. Therefore h∗ = max(1/σ, 1/s).

Example 4. In this case
∑∞

k=1 λ−h
k =

∑∞
k=1 e−λhk and

∑∞
k=j γ−h

j =
∑∞

j=1 j−sh. Applying the above
arguments, we get h∗ = max(0, 1/s) = 1/s.

Example 5. Similarly,
∑∞

k=1 λ−h
k = A

∑∞
k=1 k−σh and

∑∞
j=1 γ−h

j =
∑∞

j=1 e−hμj . Therefore h∗ =
max(1/σ, 0) = 1/σ.

4. RATE OPTIMALITY

4.1. Rough Log-Asymptotics. Lifting the Curse of Dimensionality

Consider the counting function N(t) = card{� ∈ Z∞
0 : c� ≤ t}. Setting

H = log t

leads to the representation, for any h > h∗,

N(t) = card{� ∈ Z∞
0 : c� ≤ t} = card{� ∈ Z∞

0 : S(�) ≤ H}
= eZ(h)+hH

∑
�∈Z∞

0 : S(�)≤H

eh(S(�)−H)Ph(�) = eZ(h)+hHIh, (20)

where Ih = Eh

(
eh(S−H)

I{S≤H}
)
≤ 1. Hence

log N(t) ≤ Z(h) + hH for all h > h∗.

This immediately leads to the relation, as t → ∞,

log N(t) ≤ H(h∗ + o(1)) = log t(h∗ + o(1)). (21)

At the same time, in view of (12) and (13),

log Rε(F) = − log T + O(1), where log N(T ) + 2 log T = 2 log(ε−1) + O(1), (22)

log r∗ε(F) = − log T + O(1), where log N(T ) + 4 log T = 4 log(ε−1) + O(1). (23)

Combining these relations with (21) we arrive at the upper bounds

log Rε(F) ≤ (2 + o(1)) log ε

2 + h∗ , log r∗ε(F) ≤ (4 + o(1)) log ε

4 + h∗ . (24)

In particular, for the weighted tensor product spaces in Examples 1 and 2, for which h∗ = 0, since
log N(T ) ≥ 0 for T ≥ 1,

log Rε(F) ∼ log r∗ε(F) ∼ log ε, ε → 0. (25)

In order to obtain rough asymptotics in Examples 3–5, we need to establish appropriate lower bounds
on log N(T ). First, consider Example 3, where

c� =
∏

j∈N : lj �=0

Ajs|lj |σ, � ∈ Z∞
0 , and h∗ = min(1/σ, 1/s).

It can be shown that

log N(T ) ≥ h∗ log T + O(1). (26)

From (26) using (22) and (23) we get the lower bounds

log Rε(F) ≥ 2 log ε

2 + h∗ + O(1), log r∗ε(F) ≥ 4 log ε

4 + h∗ + O(1),

which together with (24) yields

log Rε(F) ∼ 2 log ε

2 + h∗ , log r∗ε(F) ∼ 4 log ε

4 + h∗ , ε → 0. (27)
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Inequality (26) is based on the following simple arguments. Let σ ≤ s. Then the set N (T ) contains
all the points �(k) = (k, 0, . . . , 0, . . .), k ∈ Z, k = 0, A|k|σ ≤ T , and the number of such points is
(T/A)1/σ(1 + o(1)). Hence log N(T ) ≥ (1/σ) log T + O(1). Let s < σ. Then N (T ) includes all the
points �(j) = (0, . . . , 0, 1, 0, . . . , ), with 1 on the jth place, j ∈ N, Ajs ≤ T , and the number of such
points is (T/A)1/s(1 + o(1)). Therefore log N(T ) ≥ (1/s) log T + O(1).

Asymptotics (27) can be also obtained as consequences of Theorems 1 and 2 in [8]. In case of
Example 3, these theorems provide the sharp asymptotics for the problems at hand.

The same logarithmic asymptotics (27) hold true in Examples 4 and 5, where

c� =
∏

j∈N : lj �=0

jseλ|lj |, � ∈ Z∞
0 , h∗ = 1/s,

c� =
∏

j∈N : lj �=0

A|lj |σeμj , � ∈ Z∞
0 , h∗ = 1/σ,

respectively. In these examples, the above arguments lead to the lower bounds

log N(T ) ≥ (1/s) log T + O(1) = h∗ log T + O(1) in Example 4,

log N(T ) ≥ (1/σ) log T + O(1) = h∗ log T + O(1) in Example 5.

Rough asymptotics as in (25) are similar to what we have for univariate analytic functions, whereas
(27) are similar to the case of σ∗-smooth univariate functions, where σ∗ = 1/h∗. Thus, the use of
weighted tensor product space in estimating and detecting multivariate signals makes it possible to
avoid the curse of dimensionality phenomenon.

4.2. Refined Log-Asymptotics: General Case

In order to improve (25), let us rewrite Ih = Eh

(
eh(S−H)

I{S≤H}
)

in the form

Ih = Eh

(
ehshτhI{τh≤0}

)
,

where the random variables τh, h > 0, are given by

τh = (S − H)/sh, sh > 0,

and the parameter h = h(H) is chosen to satisfy the normalization conditions

EhS = H, Varh S = s2
h.

These conditions can be equivalently written in the form

Z ′(h) = −H, Z ′′(h) = s2
h. (28)

Indeed, it can be seen, cf. relations (5.15) in [9], that

Eh,j(Yj) = −Z ′
j(h), Varh,j(Yj) = Z ′′

j (h), s4
h,j(Yj) = Z

(4)
j (h), (29)

where s4(Y ) is the 4th cumulant of Y , and, as shown in the proof of Lemma 1, the kth derivative of Z(h),
k = 1, 2, 3, 4, satisfies

Z(k)(h) =
∞∑

j=1

Z
(k)
j (h). (30)

With this choice of the parameter h > 0, the random variables τh are suitably standardized:

Ehτh = 0, Varh τh = 1.

Denote by L
(k)
h the Lyapunov ratio of order k > 2:

L
(k)
h =

∑∞
j=1 Eh|Yj − EhYj |k(∑∞

j=1 Eh|Yj − EhYj|2
)k/2

. (31)
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Recall (see [14, eq. (1.13)]) that the cumulant sk(Y ) of arbitrary order k is expressed in terms of the
moments α1 = E(Y ), . . . , αk = E(Y k) by the formula

sk(Y ) = k!
∑

(−1)r−1(r − 1)!
k∏

l=1

1
ml!

(
αl

l!

)ml

,

where the summation is extended over all non-negative integer solutions of the equation m1 + 2m2 +
. . . + kmk = k, and r = m1 + . . . + mk. This formula implies

E(Y −E(Y ))4 = s4(Y ) + 3
(
Var(Y )

)2
. (32)

Taking into account (29), (30), and (32), we can express the Lyapunov ratio of order four as follows:

L
(4)
h =

Z(4)(h) + 3
∑∞

j=1(Z
′′
j (h))2

(Z ′′(h))2
.

By the Lyapunov theorem, the relation

L
(4)
h → 0, h → 0, (33)

implies

τh → ξ ∼ N (0, 1), h → 0. (34)

This, in its turn, gives

log(Ih) ≥ −δhhsh + log δh, δh → 0, i.e. log(Ih) = o(hsh),

and hence by (20)

log N(t) = Z(h) + hH + o(hsh), H = log(t) → ∞, (35)

with h and sh satisfying (28).

Verification of (33) requires the study of the function Z(h), as h → 0, and its derivatives up to the
fourth order. The behavior of Z(h) and its derivatives depends heavily on the weight sequences λ = {λk}
and γ = {γj} that determine Lλ,γ. Below we present the corresponding results obtained for the spaces
in Examples 1 and 2. The computational technique developed in the next section for the space Aλ,μ

(Example 1) will be extended to Example 2 in Section 4.4.

4.3. Refined Log-Asymptotics: Example 1

Consider the space Aλ,μ for which

Yj(k) =

{
0, k = 0,
λ|k| + μj, k = 0,

k ∈ Z; S(�) =
∞∑

j=1

Yj(lj), � ∈ Z∞
0 , (36)

and

Ph(�) =
∞∏

j=1

Ph,j(lj) = exp(−hS(�) − Z(h)), � ∈ Z∞
0 , h > 0,

where

Z(h) =
∞∑

j=1

Zj(h) =
∞∑

j=1

log
(
1 + G(h)e−hμj

)
, G(h) = 2

∞∑
k=1

e−hλk =
2

eλh − 1
.
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Lemma 1. Let F (h) = h−1
∫ ∞
0 log

(
1 + G(h)e−μx

)
dx, h > 0. Then

Z(h) = F (h) + O
(
log(h−1)

)
=

log2(h−1)
2μh

+ O

(
log(h−1)

h

)
, h → 0, (37)

and for k = 1, 2, 3, 4,

Z(k)(h) = F (k)(h) + O

(
logk(h−1)

hk

)

=
(−1)kk! log2(h−1)

2μhk+1
+ O

(
log(h−1)

hk+1

)
, h → 0.

The proof of Lemma 1 is given in Appendix IV.

Remark 1. It can be seen from the proof of Lemma 1 that the major contribution to the asymptotic
representation of Z(k)(h), as h → 0, is made by the integral

(−1)kh−k

J∫

0

log
(
1 + G(h)e−μx

)
dx, J = μ−1log G(h).

This fact allows us to carry over the main results of the paper from the infinite-dimensional case under
consideration to the d-dimensional case of growing dimension d (see Remarks 2 and 3 for details).

Lemma 1 implies that

Z ′(h) = − log2(h−1)
2μh2

+ O

(
log(h−1)

h2

)
, (38)

Z ′′(h) =
log2(h−1)

μh3
+ O

(
log(h−1)

h3

)
, (39)

Z ′′′(h) = −3 log2(h−1)
μh4

+ O

(
log(h−1)

h4

)
, (40)

Z(4)(h) =
12 log2(h−1)

μh5
+ O

(
log(h−1)

h5

)
. (41)

Using (37)–(41) we can prove the following result (see Appendix IV).

Lemma 2. As h → 0, the Lyapunov ratio L
(4)
h satisfies

L
(4)
h → 0.

Let us return to the log-asymptotics of N(t) given by (35):

log N(t) = Z(h) + hH + o(hsh), H = log t → ∞.

It follows from (28) and (38) that

H = −Z ′(h) =
log2(h−1)

2μh2
+ O

(
log(h−1)

h2

)
, h → 0. (42)

Solving this equation for h yields the approximate relation

h2 ∼ log2(h−1)
2μH

∼ log2 H

8μH
or h ∼ log H

2
√

2μH
.

Next, using (28)

hsh = h
(
Z ′′(h)

)1/2 
 h−1/2 log(h−1) 
 H1/4 log1/2 H. (43)
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Therefore taking into account (37)

log N(t) =
log2(h−1)

μh
+ O

(
log(h−1)

h

)
+ o

(
log(h−1)√

h

)

= 2hH
(
1 + O(1/log(h−1))

)
=

√
H log H√

2μ
(
1 + O(1/log H)

)

=
√

H log H√
2μ

+ O
(√

H
)

, H = log t → ∞. (44)

Now we can state and prove the main result of this section, Theorem 1, which provides the refined log-
asymptotics of quadratic risk and separation rate. Compared to the problem of estimating and detecting
a d-variate signal f ∈ Ad

λ,μ observed in the white Gaussian noise (with d being fixed), in which case, cf.
[11, Th. 2], log Rε(F) = log ε + (d/2) log log(ε−1) + O(1) and log r∗ε(F) = log ε + (d/4) log log(ε−1) +
O(1), the effect of dimensionality in Theorem 1 is completely lifted.

Theorem 1. Consider the weighted tensor product space Aλ,μ. Then, as ε → 0,

log Rε(F) = log ε +

√
log(ε−1) log log(ε−1)

2
√

2μ
+ O

(√
log(ε−1)

)
,

log r∗ε(F) = log ε +

√
log(ε−1) log log(ε−1)

4
√

2μ
+ O

(√
log(ε−1)

)
.

Proof. It follows from (12) that

log Rε(F) ∼ log N(T )
2

− log(ε−1), (45)

where log N(T ) + 2H = 2 log(ε−1) + O(1). Similarly, (13) implies

log r∗ε(F) ∼ log N(T )
4

− log(ε−1), (46)

where log N(T ) + 4H = 4 log(ε−1) + O(1). In view of (42) and (44) the above restrictions on N(t) can
be written in the form √

H log H√
2μ

+ 2H + O
(√

H
)

= 2 log(ε−1),
√

H log H√
2μ

+ 4H + O
(√

H
)

= 4 log(ε−1).

This yields

H = log(ε−1) −
√

log(ε−1) log log(ε−1)
2
√

2μ
+ O

(√
log(ε−1)

)
,

and hence

log N(T ) =

√
log(ε−1) log log(ε−1)√

2μ
+ O

(√
log(ε−1)

)
.

Substituting this relation into (45) and (46) completes the proof.

Remark 2. In view of Remark 1, the logarithmic asymptotics in Theorem 1 continue to hold for
d-variable function f when the dimension d = dε grows to infinity at least as fast as log G(h) =
O(log(h−1)). Since h ∼ log H/(2

√
2μH), where H ∼ log(ε−1), it follows that

h ∼ log log(ε−1)
2
√

2μ log(ε−1)
.

Therefore, Theorem 1 remains valid not only when d = ∞, but also when d = dε is at least as large as
O(log log(ε−1)).
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4.4. Refined Log-Asymptotics: Example 2

The results of the previous section can be easily extended to the space Lλ,γ of analytic functions for

which λk = eλ|k|α, λ > 0, α > 0, k ∈ Z, and γj = eμjβ
, μ > 0, β > 0, j ∈ N (Example 2). In this case,

the method described in Section 4.2, and applied in Section 4.3 to the space Aλ,μ, continues to work
provided β > 1/2.

According to (16)–(18), the family of probability measures Ph, h > 0, is now defined as follows:

Ph(�) = exp
(
− hS(�) − Z(h)

)
, � ∈ Z∞

0 ,

where

Z(h) =
∞∑

j=1

Zj(h) =
∞∑

j=1

log(1 + G(h)e−μhjβ
), G(h) = 2

∞∑
k=1

e−hλkα ∼ 2Γ(1/α)
αλ1/αh1/α

.

Introduce a new parameter

δ = δ(h) = (μh)1/β .

Then, in terms of δ, Z(h) can be conveniently written in the form

Z(h) = Z̃(δ) =
∞∑

j=1

log(1 + G̃(δ)e−(δj)β
),

where

G̃(δ) = G(h) =
2Γ(1/α)μ1/α

αλ1/αδβ/α
+ O(1).

That is,

Z̃(δ) =
∞∑

j=1

f̃(jδ, δ), f̃(x, δ) = log(1 + G̃(δ)e−xβ
).

By analogy with Example 1, cf. (85),

Z̃(δ) = F̃ (δ) + O(f̃(0, δ)),

where f̃(0, δ) = O(log(δ−1)) and (see relation (82) in Appendix III)

F̃ (δ) =
1
δ

∞∫

0

f̃(x, δ) dx =
β2+1/β log1+1/β(δ−1)

(β + 1)α1+1/βδ
+ O

(
log1/β(δ−1)

δ

)
.

Hence, as h → 0,

Z(h) =
β2+1/β log1+1/β(h−1)

(β + 1)α1+1/βμ1/βh1/β
+ O

(
log1/β(h−1)

h1/β

)
. (47)

Furthermore, using the same reasoning as in the proof of Lemma 1, we can show (see Appendix V) that
for k = 1, 2, 3, 4, the derivative Z̃(k)(δ) can be obtained by differentiating the series Z̃(δ) =

∑∞
j=1 f̃(jδ, δ)

term-by-term k times, and as δ → 0,

Z̃(k)(δ) =
(−1)kk!β2+1/β

(1 + β)α1+1/β

log1+1/β(δ−1)
δk+1

+ O

(
log1/β(δ−1)

δk+1

)
. (48)

From this, noting that Z(k)(h) =
dk

dhk
Z̃(δ(h)), where δ = (μh)1/β , we get (see Appendix V)

Z ′(h) = − β1+1/β log1+1/β(h−1)
(β + 1)α1+1/βμ1/βh1+1/β

+ O

(
log1/β(h−1)

h1+1/β

)
, (49)
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Z ′′(h) =
β1/β log1+1/β(h−1)
α1+1/βμ1/βh2+1/β

+ O

(
log1/β(h−1)

h2+1/β

)
, (50)

Z ′′′(h) 
 log1+1/β(h−1)
h3+1/β

, Z(4)(h) 
 log1+1/β(h−1)
h4+1/β

. (51)

Also, using (84) and noting that

∂2

∂x2
f̃(x, δ) =

βG̃(δ)xβ−2e−xβ(
βxβ − (β − 1)(1 + e−xβ

)
)

(1 + G̃(δ)e−xβ )2
,

we get as h → 0
∞∑

j=1

(
Z ′′

j (h)
)2 =

∞∑
j=1

(
∂2

∂h2
Z̃j(δ(h))

)2

= (δ′(h))2
∞∑

j=1

(
Z̃ ′′

j (δ)
)2 + 2δ′(h)δ′′(h)

∞∑
j=1

Z̃ ′
j(δ)Z̃

′′
j (δ) + (δ′′(h))2

∞∑
j=1

(
Z̃ ′

j(δ)
)2


 (δ′(h))2
∞∑

j=1

(
Z̃ ′′

j (δ)
)2 
 (δ′(h))2

δ4

∞∑
j=1

(jδ)4
(

∂2

∂x2
f̃(jδ, δ)

)2


 (δ′(h))2

δ5

∞∫

0

x4

(
∂2

∂x2
f̃(x, δ)

)2

dx 
 (δ′(h))2

δ5
log3+1/β(δ−1)


 log3+1/β(h−1)
h2−2/βh5/β

=
log3+1/β(h−1)

h2+3/β
.

Therefore, applying (50) and (51), for β > 1/2 the Lyapunov ratio satisfies as h → 0,

L
(4)
h =

Z(4) + 3
∑∞

j=1(Z
′′
j (h))2

(Z ′′(h))2

= O
(
h1/β log−(1+1/β)(h−1)

)
+ O

(
h2−1/β log1−1/β(h−1)

)
= o(1),

and thus (35) holds true:

log N(t) = Z(h) + hH + o(hsh), H = log t → ∞.

Taking into account (28) and (49),

H =
β1+1/β log1+1/β(h−1)

(β + 1)α1+1/βμ1/βh1+1/β
+ O

(
log1/β(h−1)

h1+1/β

)
, h → 0. (52)

Solving this equation for h, we get the approximate relation

h ∼ β2 log H

(β + 1)(2β+1)/(1+β)αμ1/(β+1)Hβ/(1+β)
.

Next, thanks to (28) and (50)

hsh = h(Z ′′(h))1/2 
 log(1+1/β)/2(h−1)
h1/(2β)


 H1/(2β+2) log1/2(H).

Therefore

log N(t) =
β1+1/β

α1+1/βμ1/β

log1+1/β(h−1)
h1/β

+ O

(
log1/β(h−1)

h1/β

)

=
β2H1/(1+β) log H

α(β + 1)β/(1+β)μ1/(β+1)

(
1 + O(log−1 H)

)
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=
β2H1/(1+β) log H

α(β + 1)β/(1+β)μ1/(1+β)
+ O

(
H1/(1+β)

)
. (53)

Based on the above results, we can state and prove the following extension of Theorem 1.

Theorem 2. Consider the weighted tensor product space Lλ,γ for which λk = eλ|k|α , λ > 0, α > 0,

and γj = eμjβ
, μ > 0, β > 1/2. Then, as ε → 0,

log Rε(F) = log ε +
β2 log1/(β+1)(ε−1) log log (ε−1)

2α(1 + β)β/(1+β)μ1/(1+β)
+ O

(
log1/(1+β)(ε−1)

)
,

log r∗ε(F) = log ε +
β2 log1/(β+1)(ε−1) log log (ε−1)

4α(1 + β)β/(1+β)μ1/(1+β)
+ O

(
log1/(1+β)(ε−1)

)
.

The proof of Theorem 2 repeats that of Theorem 1, with (52) and (53) in place of (42) and (44), and
therefore is omitted.

Remark 3. Similarly to Theorem 1, cf. Remark 2, the logarithmic asymptotics in Theorem 2 continue
to hold for a d-variable signal f when d = dε grows to infinity at least as fast as O

(
log log(ε−1)

)
.

5. SHARP OPTIMALITY

5.1. Sharp Asymptotics for Analytic Functions

In this section we deal with the class Aλ,μ of analytic functions in Example 1. For deriving sharp
asymptotics in the estimation and detection problems at hand relation (44) is not sufficient. We need
a more accurate result on asymptotics of N(t) as t → ∞. In order to get such a result, we strengthen
limiting relation (34) by proving the following version of the Local Limit Theorem.

Lemma 3. Let hsh → ∞. Then there exists ρ = ρh > 0, ρh = o((hsh)−1) such that, for any a = o(1),

Ph

(
τh ∈ (a, a + ρ)

)
∼ P(τ ∈ (a, a + ρ)), τ ∼ N (0, 1). (54)

The proof of Lemma 3 is given in Appendix IV. Note that

P(τ ∈ (a, a + ρ)) ∼ ρ√
2π

, a → 0, ρ → 0.

Therefore, as shown in [8, Lemma 5.2], Lemma 3 implies

Ih ∼ (hsh

√
2π)−1. (55)

By (20) this yields, compared with (35),

N(t) ∼ exp(Z(h) + hH)
hsh

√
2π

, H = log t → ∞, (56)

with h and sh defined in (28).

According to Proposition 6.4 of [9], under the validity of Lemma 3, the counting function N(t)
is slowly varying if h∗ = 0, hsh → ∞, and there exists a decreasing positive function φ(h) such that
Z ′′(h) ∼ φ2(h) as h → 0. In case of Aλ,μ (Example 1), these assumptions are trivially satisfied in view
of (38) and (39). Therefore N(t) is a slowly varying function and hence by (14) and (15)

R2
ε(F) ∼ ε2N(T ), where log N(T ) + 2 log T = 2 log ε−1 + O(1),

u2
ε ∼ r4

ε/2ε
4N(T ), where log N(T ) + 4 log T = 4 log ε−1 + O(1).

At the same time, due to (56)

log N(T ) = Z(h) + hH − log(hsh) + O(1).

Thus we arrive at the following result.
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Theorem 3. For the weighted tensor product space Aλ,μ of analytic functions, we have for the
estimation problem:

R2
ε(F) ∼ ε2 exp(Z(h) + hH)

hsh

√
2π

, ε → 0, (57)

where H = −Z ′(h), sh =
√

Z ′′(h), and h satisfies the equation

Z(h) − (2 + h)Z ′(h) − log(hsh) = 2 log(ε−1) + O(1), (58)

and for the detection problem:

γε(rε) = 2Φ(−uε/2) + o(1), u2
ε ∼

√
2πhshr4

ε

2ε4 exp(Z(h) + hH)
, ε → 0, (59)

where H = −Z ′(h), sh =
√

Z ′′(h), and h solves the equation

Z(h) − (4 + h)Z ′(h) − log(hsh) = 4 log(ε−1) + O(1). (60)

Implicit forms of sharp asymptotics (57) and (59) are not very informative. In the next section we use
the Euler–Maclaurin expansions of Z(h) and Z ′(h) to give a more precise form of Theorem 3.

5.2. Sharp Asymptotics for Analytic Functions: Further Improvements
The Euler–Maclaurin formula that provides a powerful connection between integrals and sums can

be written as follows (see [2], formula (11.5))

n∑
k=0

f(k) =

n∫

0

f(x) dx +
1
2
f(n) + Cm + R2m, (61)

where f ∈ C2m(0,∞), Cm is a constant defined by

Cm =
1
2
f(0) − B2

2!
f ′(0) − . . . − B2m

(2m)!
f (2m−1)(0),

and R2m is a remainder term of the form

R2m = −
n∫

0

f (2m)(x)
B2m(x − [x])

(2m)!
dx.

Here Bn are the Bernoulli numbers and Bn(x) =
∑n

k=0

(n
k

)
Bkx

n−k are the Bernoulli polynomials. It is
well known (see [3, no 9.71]) that B0 = 1, B1 = −1/2, B2 = 1/6. Therefore for 0 ≤ x ≤ 1

B2(x) = x2 − x + 1/6 and max
0≤x≤1

|B2(x)| = 1/6.

Recalling that Z(h) =
∑∞

j=1 f(jh, h), where f(x, h) = log(1 + G(h)e−μx), and applying (61) with
m = 1 we get, as n → ∞,

Z(h) = F (h) − f(0, h)
2

− 1
12

∂

∂x
f(0, h) − h

2

∞∫

0

∂2

∂x2
f(x, h)B2(x − [x]) dx, (62)

where F (h) = h−1
∞∫
0

log
(
1 + G(h)e−μx

)
dx 
 h−1log2(h−1), f(0, h) 
 log(h−1), ∂

∂xf(0, h) 
 1, and

since |B2(x)| ≤ 1/6,
∣∣∣∣
h

2

∞∫

0

∂2

∂x2
f(x, h)B2(x − [x]) dx

∣∣∣∣ ≤
h

12

∣∣∣∣
∂

∂x
f(0, h)

∣∣∣∣ 
 h.
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Therefore, as h → 0,

Z(h) = F (h) − log(1 + G(h))
2

+ O(1). (63)

Next, upon differentiation of both sides of (62), we obtain as h → 0

Z ′(h) = F ′(h) − 1
2

∂

∂h
f(0, h) − 1

12
∂2

∂x∂h
f(0, h)

− d

dh

(
h

2

∞∫

0

∂2

∂x2
f(x, h)B2(x − [x]) dx

)

= −F (h)
h

+
G′(h) log(1 + G(h))

μhG(h)
− G′(h)

2(1 + G(h))
+

μG′(h)
12(1 + G(h))2

− 1
2

∞∫

0

∂2

∂x2
f(x, h)B2(x − [x]) dx − h

2

∞∫

0

∂3

∂x2∂h
f(x, h)B2(x − [x]) dx

= −F (h)
h

+
G′(h) log(1 + G(h))

μhG(h)
− G′(h)

2(1 + G(h))
+ O(1), (64)

where h−1F (h) = O
(
h−2log2(h−1)

)
is the main term, and

G′(h) log(1 + G(h))
μhG(h)

= O
(
h−2log(h−1)

)
,

G′(h)
2(1 + G(h))

= O(h−1).

Note also, cf. (39) and (83), that

Z ′′(h) =
2F (h)

h2
+ O

(
log(h−1)

h3

)
,

and hence

hsh = h
√

Z ′′(h) =
√

2F (h)(1 + O(1/ log(h−1))) ∼
√

2F (h). (65)

Let us now return to relations (57)–(60). At this point, it is convenient to represent the integral F (h)
as a function of G = G(h):

I(G) =
1

μh

G∫

0

log(1 + t)
t

dt. (66)

As seen from (58) and (60), the precision required for solving the equation H = −Z ′(h) is controlled
by the term log(hsh). Using (65) and (83), we have

log(hsh) = log
(
h
√

Z ′′(h)
)
∼ 1

2
log(h−1) + log log(h−1) + O(1).

Then, due to (63) and (64), with the required precision, H = H(h) that appears in (57) and (59) solves
the equation

−I(G)
μh2

+
G′ log(1 + G)

μhG
− G′

2(1 + G)
= H,

and the parameter h is chosen to satisfy, cf. (58),

I(G) − log(1 + G)
2

+ (2 + h)H − log(h−1)
2

− log log(h−1) = 2 log(ε−1) + O(1)
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for the estimation problem, and, cf. (60),

I(G) − log(1 + G)
2

+ (4 + h)H − log(h−1)
2

− log log(h−1) = 4 log(ε−1) + O(1)

for the detection problem. Summarizing the above discussion we arrive at the following improvement of
Theorem 3.

Theorem 4. Consider estimating and detecting signal f ∈ Aλ,μ in the Gaussian white noise
model. Then, as ε → 0,

R2
ε(F) ∼ ε2 exp (T (G))

2
√

πI(G)
,

where G = G(h) = 2/(eλh − 1), I(G) is defined by (66),

T (G) = I(G) − log(1 + G)
2

− I(G)
μG

+
G′ log(1 + G)

μG
,

and h = h(ε) solves the equation

I(G) − log(1 + G)
2

− (2 + h) I(G)
μh2

+
(2 + h)G′ log(1 + G)

μhG
− G′

1 + G

− 1
2

log(h−1) − log log(h−1) = 2 log(ε−1) + O(1), (67)

and the total error probability is γε(rε) ∼ 2Φ(−uε/2) + o(1), where

u2
ε ∼ r4

ε

√
πI(G)

ε4 exp (T (G))
,

with G, I(G), and T (G) as above, and h = h(ε) satisfying

I(G) − log(1 + G)
2

− (4 + h) I(G)
μh2

+
(4 + h)G′ log(1 + G)

μhG
− G′

1 + G

− 1
2

log(h−1) − log log(h−1) = 4 log(ε−1) + O(1). (68)

Again, the sharp asymptotics of Rε(F) and γε(rε) are given in an implicit form. An attempt to
obtain explicit expressions encounters an obstacle: one has to solve nonlinear equations (67) and (68).
Analytically, this can hardly be done. Unlike the case of analytic functions under consideration, the
Sloan–Woźniakowski space in Example 3 admits explicit forms of sharp asymptotics of Rε(F) and
γε(rε) (see [8, Sec. 3] for details).

APPENDIX I: ESTIMATION PROBLEM

Consider estimating the signal f ∈ Lλ,γ in the model (1) for which d = ∞. With the tensor product
basis φ�(t) =

∏∞
k=1 φlk(tk), t = (t1, t2, . . .) ∈ R∞, in L∞

2 and the Fourier coefficients θ� = (f, φ�), the
norm of the function f(t) =

∑
�∈Z∞

0
θ�φ�(t) is determined by

‖f‖2
λ,γ =

∑
�∈Z∞

0

c2
�θ

2
�, c� =

∏
j : lj �=0

γjλlj .

We estimate f by means of the projection-type estimator

f̂ε,t(t) =
∑

�∈N (t)

X�φ�(t),
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where N (t) = {� ∈ Z∞
0 : c� ≤ t} and the X� = Xε(φ�) are the empirical Fourier coefficients. Under the

validity of model (1), the X� are i.i.d. normal N(θ�, ε
2) random variables, and the usual variance-bias

decomposition leads to

Eε,f‖f̂ε,t − f‖2
2 = Eε,f

∥∥∥∥
∑

�∈N (t)

(X� − θ�)φ�

∥∥∥∥
2

2

+
∥∥∥∥

∑
�∈Z∞

0 : c�>t

θ�φ�

∥∥∥∥
2

2

= ε2N(t) +
∑

�∈Z∞
0 : c�>t

θ2
�,

where N(t) = card{N (t)} is the counting function that satisfies N(t) ↑ ∞ as t → ∞.

The arguments that lead to relations (12) and (14) involve the van Trees inequality and can be found,
for example, in [9, Sec. 2.1]. For the reader’s convenience, these arguments are presented below.

First, consider the rate optimality problem. Let B = Bε 
 1 and let T = T (Bε) satisfy the balance
equation

T = sup{t : ε2t2N(t) ≤ B}. (69)

Choose t1 < T and t2 > T . Then the balance equation implies the following upper bounds:

Rε(F) ≤ t−1
1

√
1 + B, Rε(F) ≤ ε

√
N(t2)(1 + 1/B). (70)

The appropriate lower bounds are obtained by using the van Trees inequality, a Bayesian analog of the
Cramér–Rao inequality. Recall that the ball F = {f ∈ Lλ,γ : ‖f‖λ,γ ≤ 1} corresponds to the ellipsoid

Θ =
{

θ = (θ�)�∈Z∞
0

:
∑

�∈Z∞
0

θ2
�c

2
� ≤ 1

}

in the space of Fourier coefficients. The prior distribution on Θ is defined as follows. First, note that Θ
contains the N(t)-dimensional ball BN(t)(0, 1/t) = {θ :

∑
� : c�≤t θ2

� ≤ 1/t2} of radius t−1, and hence

it also contains the N(t)-dimensional cube with side 2L, L = (t
√

N(t))−1. Using this fact, the prior
distribution Π is taken to be

Π(dθ) =
N(t)∏
j=1

L−1h(L−1θj)λ(dθ), h(x) = cos2

(
πx

2

)
I(|x| ≤ 1),

where λ is the Lebesgue measure on RN(t). It is easy to see that Π(Θ) = 1. Let R(Π) denote the Bayes
risk with respect to prior Π, that is,

R2(Π) = inf
θ̂ε

∫

Θ

Eε,θ‖θ − θ̂ε‖2Π(dθ) = inf
θ̂ε

∫

Θ

Eε,θ

( N(t)∑
j=1

|θj − θ̂ε,j|2
)

Π(dθ).

Applying the van Trees inequality (see [1, Prop. 1]) and recalling that L2 = (t2N(t))−1, we get

R2
ε(F) = R2

ε(Θ) = inf
θ̂ε

sup
θ∈F

Eε,θ‖θ − θ̂ε‖2 ≥ R2(Π) ≥ ε2N(t)
1 + π2ε2t2N(t)

. (71)

Now take t1 > T and t2 < T , where T is defined in (69). Then (71) implies the following lower bounds:

Rε(F) ≥ t1
−1

√
B/(1 + π2B), Rε(F) ≥ ε

√
N(t2)/(1 + π2B). (72)

Comparing (70) and (72) we arrive at relation (12):

Rε(F) 
 T−1, where ε2T 2N(T ) 
 1.

Let us now turn to the sharp optimality problem and show that (14) holds true provided the function
N(t) is slowly varying. Note that the asymptotics of N(T ), where T = T (Bε) is determined by the
balance equation (69), does not depend on the family Bε 
 1. Indeed, if B1 = B1,ε 
 1 is another family
that appears in (69), then T (Bε) ∼ T (B1,ε) and N(T (Bε)) ∼ N(T (B1,ε)). Using again the fact that
N(t) is a slowly varying function, we can choose positive families Bε → ∞ and bε → 0 such that
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N(T (Bε)) ∼ N(T (bε)) ∼ N(T (1)). Finally, setting t2 = T (Bε) in (70) and t1 = T (bε) in (72) leads
to (14):

Rε(F) ∼ εN1/2(t), where ε2T 2N(T ) 
 1.

APPENDIX II: DETECTION PROBLEM

This Appendix is here for the reader’s convenience. It presents some well-known results of the theory
of nonparametric goodness-of-fit testing under Gaussian models scattered among various publications
and chapters of the book [6].

Consider testing

H0 : f = 0 vs. H1ε : f ∈ F(rε).

Below we provide simple arguments that lead to (13) and (15). The proof of these asymptotic relations
is performed in two steps (lower bound and upper bound).

Lower bound. The lower bound on the minimax total error probability γε(rε) is obtained by
reducing the problem of testing H0 versus H1ε to the problem of testing H0 versus a suitable family
of finite-dimensional alternatives. For this, consider the family of (N(t) − 1)-dimensional spheres that
correspond to the first N(t) coordinates of θ = (θ�)�∈Z∞

0
in l2:

SN(t)−1(rε) =
{

θ ∈ Θt :
∑

�∈N (t)

θ2
� = r2

ε

}
,

where Θt =
{
θ = {θ�} : θ� = 0 if � /∈ N (t)

}
, and t is chosen to have trε ≤ 1. Then for any θ ∈

SN(t)−1(rε),
∑

�∈N (t)

θ2
�c

2
� ≤ t2

∑
�∈N (t)

θ2
� = t2r2

ε ≤ 1,

and hence SN(t)−1(rε) ⊂ Θε, where

Θε =
{

θ = (θ�)�∈Z∞
0

:
∑

�∈Z∞
0

θ2
�c

2
� ≤ 1 and

∑
�∈Z∞

0

θ2
� ≥ r2

ε

}
.

The lower bound now follows from [6, Prop. 2.15]. Namely, if t → ∞ and ε → 0 in such a way that
trε ≤ 1, then

γε(rε) ≥ γε

(
SN(t)−1(rε)

)
= Φ(−uε(t)/2) + o(1), uε(t) =

r2
ε

ε2
√

2N(t)
, (73)

where γε(SN(t)−1(rε)) is the minimax total error probability that corresponds to testing H0 : θ = 0
versus H ′

1ε : θ ∈ SN(t)−1(rε).

Upper bound. The required upper bound is achieved for the χ2-type test ψε,t = I{Tε,t > hε(t)/2}
based on the statistic

Tε,t =
1√

2N(t)

∑
�∈N (t)

(
(X�/ε)2 − 1

)
, (74)

where hε(t) is defined in (77) and the X� = Xε(φ�) are the empirical Fourier coefficients. Under H0, the
statistic Tε,t is asymptotically normal with mean 0 and variance 1. Under the alternative, the (X�/ε) are
i.i.d. normal N (θ�/ε, 1) random variables. Therefore

hε(θ, t) = EθTε,t =
1

ε2
√

2N(t)

∑
�∈N (t)

θ2
�. (75)
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When studying the total probability error, we can assume that EθTε,t = O(1), see [6, Corollary 3.1]. For
θ ∈ Θε, ∑

�∈N (t)

θ2
� =

∑
�∈Z∞

0

θ2
� −

∑
�∈Z∞

0 : c�>t

θ2
� ≥

∑
�∈Z∞

0

θ2
� − t−2

∑
�∈Z∞

0 : c�>t

c2
�θ

2
� ≥ r2

ε − t−2

= r2
ε

(
1 − (trε)−2

)
≥ r2

ε

(
1 − C−2

)
,

where the constant C is such that trε > C > 1, and hence

hε(θ, t) ≥ r2
ε

ε2
√

2N(t)
(1 − C−2). (76)

Next, using (75)

Varθ Tε,t =
1

2N(t)

∑
�∈N (t)

Varθ(X�/ε)2 =
1

2N(t)

∑
�∈N (t)

(
2 + 4E2

θ(X�/ε)
)

= 1 +
2

ε2N(t)

∑
�∈N (t)

θ2
� = 1 +

4√
2N(t)

EθTε,t.

From this, recalling that EθTε,t = O(1) we get as t → ∞,

Varθ Tε,t = 1 + o(1).

Set

hε(t) = inf
θ∈Θε

hε(θ, t) = inf
θ∈Θε

EθTε,t. (77)

It now follows from [6, Corollary 3.2] that the test

ψε,t = I{Tε,t > hε(t)/2}
satisfies

γε(rε, ψε,t) ≤ 2Φ(−hε(t)/2) + o(1), ε → 0.

Taking into account (76), we get

γε(rε, ψε,t) ≤ 2Φ
(
− uε(t)

2
(1 − C−2)

)
+ o(1), uε(t) =

r2
ε

ε2
√

2N(t)
. (78)

The comparison of the lower and upper bounds implies that the separation rate r∗ε(F) must satisfy
the relation r∗ε(F) 
 T−1, where T = Tε is determined by the balance equation

T = sup{t > 0: ε4t4N(t) ≤ B}, B = Bε 
 1. (79)

Asymptotically minimax tests. The above results will now be applied to construct a family of
asymptotically minimax tests. Recall that the family of tests {ψε} is called asymptotically minimax
if

γε(rε, ψε) ≤ γε(rε) + o(1), ε → 0,

where γε(rε) = infψ γε(rε, ψ). If the counting function N(t) is slowly varying then the χ2-type test

ψε,t = I{Tε,t > uε(t)/2}, uε(t) =
r2
ε

ε2
√

2N(t)
, (80)

is asymptotically minimax. Indeed, since N(t) is a slowly varying function, it follows that the asymptotics
for uε(Tε) do not depend on the family Bε that appears in the balance equation. Therefore it is sufficient to
consider the case rε 
 r∗ε(F), or equivalently, the case rεTε 
 1. Let the family tε satisfy tε ∼ (2rε)−1 
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Tε. Then rεtε ∼ 1/2, and hence the lower bound (73) holds with t = tε. For the upper bound, choose the
family Cε in such a way that limε→0 N(CεTε)/N(Tε) = 1. Then for t = tε = CεTε,

inf
θ∈Θε

hε(θ, t) ≥ uε(t)(1 + o(1)),

and hence
γε(rε, ψε,t) ≤ 2Φ (−uε(t)/2) + o(1).

Asymptotic equality of the lower and upper bounds implies minimaxity of test (80).

APPENDIX III: ASYMPTOTIC REPRESENTATIONS FOR F (h) AND F̃ (δ)
For δ = δ(h) = (μh)1/β > 0, consider the function

F̃ (δ) =
1
δ

∞∫

0

log(1 + G̃(δ)e−xβ
) dx,

where, cf. (19),

G̃(δ) = 2
∞∑

k=1

e−hλkα
=

2Γ(1/α)μ1/α

αλ1/αδβ/α
+ O(1), δ → 0.

Let J̃ be such that G̃(δ)e−J̃β
= 1, that is, J̃ = log1/β G̃(δ). Then

F̃ (δ) =
1
δ

J̃∫

0

(log G̃(δ) − xβ) dx +
1
δ

J̃∫

0

log
(

1 +
exβ

G̃(δ)

)
dx

+
1
δ

∞∫

J̃

log
(
1 + G̃(δ)e−xβ )

dx = K1 + K2 + K3.

The first integral is equal to

K1 =
J̃ log G̃(δ)

δ
− J̃1+β

(1 + β)δ
=

β2+1/β log1+1/β(δ−1)
(1 + β)α1+1/βδ

+ O

(
log1/β(δ−1)

δ

)
.

The second integral satisfies

K2 ≤ (log 2)J̃
δ


 log1/β(δ−1)
δ

= o(K1).

Next, using the inequality log(1 + x) ≤ x and the asymptotic relation
∞∫

t

e−xβ
dx ∼ β−1t1−βe−tβ , t → ∞, (81)

the third integral is estimated as follows:

K3 ≤ G̃(δ)
δ

∞∫

J̃

e−xβ
dx 
 J̃1−β

δ

 log1/β−1(δ−1)

δ
= o(K1).

Therefore as δ → 0,

F̃ (δ) =
β2+1/β log1+1/β(δ−1)

(1 + β)α1+1/βδ
+ O

(
log1/β(δ−1)

δ

)
. (82)

In particular, by taking α = β = 1 in formula (82) we get

F (h) =
log2(h−1)

2μh
+ O

(
log(h−1)

h

)
. (83)
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APPENDIX IV: PROOFS OF LEMMAS

Proof of Lemma 1. First, we show that the derivatives Z(k)(h), k = 1, 2, 3, 4, can be obtained by
differentiating the series Z(h) =

∑∞
j=1 f(jh, h) term-by-term k times, and that

Z(k)(h) = F (k)(h) + O

(
logk(h−1)

hk

)
,

where

F (k)(h) =
(−1)kk! log2(h−1)

2μhk+1
+ O

(
log(h−1)

hk+1

)
, h → 0.

The case k = 1 is considered in detail. The cases k = 2, 3, 4 are treated similarly.
Recall that

Z(h) =
∞∑

j=1

log
(
1 + G(h)e−μhj

)
=

∞∑
j=1

f(jh, h),

where f(x, h) = log (1 + G(h)e−μx) and G(h) = 2/(eλh − 1). For the sequel we need the following
result.

Proposition 1 (Prop. 1.3 of [2]). Let f(x) be continuously differentiable for all x ≥ 0. Then
∣∣∣∣∣∣

n∑
j=0

f(j) −
n∫

0

f(x) dx

∣∣∣∣∣∣
≤

n∫

0

|f ′(x)| dx + |f(0)|.

This proposition implies, for h > 0,

∣∣∣∣
n∑

j=0

f(jh) − 1
h

nh∫

0

f(x) dx

∣∣∣∣ ≤
nh∫

0

|f ′(x)| dx + |f(0)|.

If, in addition, we assume that f and f ′ are integrable on (0,∞), then as n → ∞
∣∣∣∣

∞∑
j=0

f(hj) − 1
h

∞∫

0

f(x) dx

∣∣∣∣ ≤
∞∫

0

|f ′(x)| dx + |f(0)|

≤ (2m)max
x≥0

|f(x)| + 2|f(0)|, (84)

where m is the number of local extrema of function f(x) on the interval [0,∞).
Applying (84) to the function f(x, h) = log (1 + G(h)e−μx), we get

Z(h) =
∞∑

j=1

f(jh, h) =
1
h

∞∫

0

f(x, h) dx + O

( ∞∫

0

∂

∂x
f(x, h) dx + f(0, h)

)

= F (h) + O
(
f(0, h)

)
, (85)

with F (h) satisfying (83).
Now, on the one hand, noting that

∂

∂h
f(x, h) =

G′(h)e−μx

1 + G(h)e−μx
, G(h) ∼ 2

λh
, G′(h) ∼ 2

λh2
,

and differentiating both sides of (85) gives

Z ′(h) = F ′(h) + O

(
max
x≥0

∣∣∣∣
∂

∂h
f(x, h)

∣∣∣∣
)
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= − 1
h2

∞∫

0

f(x, h) dx +
1
h

∞∫

0

∂

∂h
f(x, h) dx + O(h−1)

= I1 + I2 + O(h−1),

where according to (83)

I1 = − 1
h2

∞∫

0

f(x, h) dx = −F (h)
h

= − log2(h−1)
2μh2

+ O

(
log(h−1)

h2

)
.

For estimating I2, take J = μ−1log G(h) ∼ −μ−1log(h−1). Then

I2 =
1
h

∞∫

0

∂

∂h
f(x, h) dx =

G′(h)
h

∞∫

0

e−μx

1 + G(h)e−μx
dx

=
G′(h)

h

( J∫

0

e−μx

1 + G(h)e−μx
dx +

∞∫

J

e−μx

1 + G(h)e−μx
dx

)

≤ G′(h)
h

(
J

G(h)
+

1
G(h)

)
= O

(
log(h−1)

h2

)
.

Therefore

Z ′(h) = − log2(h−1)
2μh2

+ O

(
log(h−1)

h2

)
. (86)

On the other hand, differentiating the series Z(h) =
∑∞

j=1 f(jh, h) term-by-term and applying
formula (84) yields

Z ′(h) =
∞∑

j=1

∂

∂h
f(jh, h) =

1
h

∞∑
j=1

(jh)
∂

∂x
f(jh, h) +

∞∑
j=1

∂

∂h
f(jh, h)

=
1
h

[
1
h

∞∫

0

x
∂

∂x
f(x, h) + O

(
max
x≥0

∣∣∣x ∂

∂x
f(x, h)

∣∣∣
)]

+
1
h

∞∫

0

∂

∂h
f(x, h) dx + O

(
max
x≥0

∣∣∣ ∂

∂h
f(x, h)

∣∣∣
)

.

Integrating by parts in the first integral and using the fact that

lim
x→∞

xkf(x, h) = 0, k = 0, 1, . . . ,

we may continue

Z ′(h) = − 1
h2

∞∫

0

f(x, h) +
1
h

∞∫

0

∂

∂h
f(x, h) dx + Δ1 + Δ2

= F ′(h) + Δ1 + Δ2,

where

Δ1 = h−1O

(
max
x≥0

∣∣∣x ∂

∂x
f(x, h)

∣∣∣
)

= O
(
h−1log(h−1)

)
,

Δ2 = O

(
max
x≥0

∣∣∣ ∂

∂h
f(x, h)

∣∣∣
)

= O

(
∂

∂h
f(0, h)

)
= O

(
h−1log(h−1)

)
.
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Combining the above calculations, we again arrive at (86):

Z ′(h) = F ′(h) + O

(
log(h−1)

h

)
= − log2(h−1)

2μh2
+ O

(
log(h−1)

h2

)
.

Thus, we have shown that it is allowable to differentiate the series Z(h) =
∑∞

j=1 f(jh, h) term-by-
term and have found the asymptotic representation for Z ′(h). This approach easily extends to the case
of derivatives Z ′′(h), Z ′′′(h), and Z(4).

The validity of (37) follows immediately from (83) and (85). The proof of Lemma 1 is completed.

Proof of Lemma 2. Thanks to (84) we have
∞∑

j=1

(Z ′′
j (h))2 =

∞∑
j=1

(
j2 ∂2

∂x2
f(jh, h) + 2j

∂2

∂x∂h
f(jh, h) +

∂2

∂h2
f(jh, h)

)2


 1
h4

∞∑
j=1

(jh)4
(

∂2

∂x2
f(jh, h)

)2


 1
h5

∞∫

0

x4

(
∂2

∂x2
f(x, h)

)2

dx,

where
∂2

∂x2
f(x, h) =

μ2G(h)e−μx

(1 + G(h)e−μx)2
. Then it is easily seen that

∞∫

0

x4

(
∂2

∂x2
f(x, h)

)2

= O(log4(h−1)),

and hence
∞∑

j=1

(Z ′′
j (h))2 = O

(
h−5log4(h−1)

)
.

From this, taking into account (39) and (41) as h → 0

L
(4)
h =

Z(4)(h) + 3
∑∞

j=1(Z
′′
j (h))2

(Z ′′(h))2

=
O

(
h−5 log2(h−1)

)
+ O

(
h−5log4(h−1)

)

h−6log4(h−1)
= O(h) → 0. (87)

The proof is completed.

Proof of Lemma 3. The proof follows the method of [9, Sec. 7]. Let ξ be a normal N (0, ζ2) random
variable independent of τh = (S − H)/sh and such that

ζ = o(ρ/
√

log(ρ−1)), ρ = o((hsh)−1), hsh → ∞. (88)

Put

τh,1 = τh + ξ.

It follows from (88) that for any b > 0,

P(|ξ| > bρ) = o(ρ).

Therefore the proof will be complete if we show that (54) holds true with τh,1 in place of τh. Take
c ∈ (0, 1/2) and let g−(t) be a function in C1(R) with support on (−1/2, 1/2) taking its values in the
interval [0, 1] such that g−(t) = 1 for |t| < c. Set

g+(t) = g−(2ct), g±ρ (t) = g±
(
(t − a − ρ/2)/ρ

)
.
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It is sufficient to check (see the proof of Lemma 5.2 in [8] for details) that, for any c ∈ (0, 1/2),

Ehg±ρ (τh,1) = Eg±ρ (τ) + o(ρ), (89)

where τ ∼ N (0, 1). The proofs are similar for g−(t) and g+(t). Consider the case g = g−.
Let φ be the Fourier transform of g. Then the Fourier transform of gρ is equal to

φρ(u) = ρei(a+ρ/2)uφ(ρu).

Further, denote by fh(u), fh,1, and f(u) the characteristic functions of τh, τh,1, and τ , respectively.
Then f(u) = e−u2/2 and fh,1(u) = fh(u)e−u2ζ2/2. Since φρ ∈ L1(R), relation (89) is equivalent to∫

R
φρ(u)f̄h,1(u) du =

∫
R

φρ(u)f̄(u) du + o(ρ). The latter equality follows from the relation
∫

R

|φ(ρu)| |(fh(u)e−u2ζ2/2 − f(u))| du = o(1). (90)

Thus, the problem is reduced to proving (90).

Let L
(k)
h be the Lyapunov ratio defined by (31). Set

N = (4L(3)
h )−1 ≥ (16L(4)

h )−1/2 = N1,

where by Lemma 2 N1 → ∞. Due to Lemma 1 of [14, Ch. 5]

|fh(u) − f(u)| ≤ 4N−1|u|3e−u2/3, |u| ≤ N. (91)

Since φ(u) is bounded and ζ = o(1), it follows that

N1∫

−N1

|φ(ρu)| |(fh(u)e−u2ζ2/2 − f(u))| du = o(1).

Now observe that
∫

|u|>N1

f(u) du = o(1), and for any M > N1,

∫

|u|>N1

|fh(u)e−u2ζ2/2| du ≤
∫

M>|u|>N1

|fh(u)| du +
∫

|u|>M

e−u2ζ2/2 du,

where, as M ≥ 2ζ−1(log(ζ−1))1/2,
∞∫

M

e−u2ζ2/2 du =
√

2πζ−1Φ(−Mζ) = O
(
ζ log1/2(ζ−1)

)
→ 0, ζ → 0.

Taking into account (88) and (91) we see that in order to obtain (90) it suffices to show that there exists
M = Mh > N1, M � hsh log(hsh) such that∫

N1<|u|<M

|fh(u)| du = o(1), h → 0. (92)

Recall that

τh = (S − H)/sh, S = S(�) =
∞∑

j=1

Yj(lj),

where the random variables Yj(lj) are independent with respect to the product measure Ph(�) =∏∞
j=1 Ph,j(lj). Therefore the characteristic function of τh satisfies

|fh(u)| =
∞∏

j=1

|fh,j(u/sh)|,
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where fh,j(v) is the characteristic function of the random variable Yj(lj) with respect to the mea-
sure Ph,j , that is,

fh,j(v) =
∑
k∈Z

pjk exp(ivYj(k)), pjk = Ph,j(k).

Due to (16) and (17)

pjk =

{
ejμh/(G(h) + ejμh), k = 0,
e−|k|λh/(G(h) + ejμh), k = 0.

Using the inequality log(1 + x) ≤ x and setting v = u/sh, where N1 < |u| < M ,

log |fh(u)| =
1
2

∞∑
j=1

log |fh,j(v)|2 ≤ −1
2

∞∑
j=1

(1 − |fh,j(v)|2)

= −
∞∑

j=1

∑
(k,l)∈Z2

pjkpjl sin2
(
v(Yj(l) − Yj(k))/2

)
≤ −Rh(v)Sh, (93)

where, cf. (36),

Rh(v) =
∑

(k,l)∈N
e−hλ(k+l) sin2(vλ(l − k)/2), N = {(k, l) ∈ N2, k < l},

Sh =
∞∑

j=1

(G(h) + ejμh)−2.

Let us bound the terms Rh(v) and Sh from below. Recalling (43) and (87), we take

M = hsh log2(hsh) = O
(
h−1/2log3(h−1)

)
> N1 = O(h−1/2).

Then the constraint |u| ≤ M corresponds to the inequality

|v| = u/sh ≤ M/sh = h log2(hsh) = V 
 h log2(h−1) = o(1),

and the constraint |u| > N1 corresponds to |v| > (bh)/ log(h−1) for some b > 0.

Assume that |v| ∈ [bh/ log(h−1), V ] and for k ∈ N, set

Nk =
{
l ∈ N : 0 < λ|v||l − k|/2 ≤ 1

}
=

{
l : k + o(1) < l ≤ k + 2/(λ|v|) + o(1)

}
,

and Nk = ∅ for |v| < 1/λ. Recalling that |v| ≤ V = o(1) we have, with r = l − k,

Rh(v) ≥ bv2
∞∑

k=1

exp(−hλk)
∑
l∈Nk

(l − k + o(1))2 exp(−hλl)

= bv2
∞∑

k=1

exp(−2hλk)
∑

1≤r≤2/(λ|v|)+o(1)

(r2 + o(r)) exp(−hλr)


 v2D(v)
∞∑

k=1

exp(−2hλk) 
 v2D(v)h−1,

where, for K = (hλ)−1 → ∞,

V K 
 log2(h−1) = o(h−1), V K ≥ |v|K ≥ b/(λ log(h−1)),

and

D(v) =
∑

1≤r≤2/(λ|v|)+o(1)

r2 exp(−hλr) = K2
∑

1≤r≤2/(λ|v|)+o(1)

(r/K)2 exp(−r/K)
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 K3

c/|v|K+o(h)∫

hλ

e−xx2 dx 

{

K3 as v ∈ [bh/ log(h−1), h],
|v|−3 as v ∈ [h, V ],

c = 2/λ.

Thus, for some b > 0, b1 > 0, b2 > 0,

Rh(v) ≥ b1

{
K3h−1v2 ≥ b2(h log(h−1))−2 as |v| ∈ [bh/ log(h−1), h],
(hv)−1 ≥ b1(hV )−1 ≥ b2(h log(h−1))−2 as |v| ∈ [h, V ].

Let us now bound the term Sh. Denote J = (μh)−1 log G(h) and let J0 be the integer part of J . Since
G(h) ≥ ejμh for j ≤ J and G(h) 
 h−1, it follows that

Sh =
∞∑

j=1

1
(G(h) + ejμh)2

≥
J0∑

j=1

1
(G(h) + ejμh)2

≥ J0

4G2(h)

 h log(h−1).

Therefore, due to (93) for some b3 > 0,

|fh(u)| ≤ exp(−b3/(h log(h−1)))

and by the choice of M∫

N1<|u|<M

|fh(u)| du ≤ M exp(−b3/(h log(h−1))) → 0, h → 0.

Thus (92) is proved, and Lemma 3 follows.

APPENDIX V: VERIFICATION OF RELATIONS (48)–(51)

The proof of (48)–(51) is largely based on the arguments that lead to Lemma 1. These arguments are
presented in Appendix IV. We start with the equality, cf. (85),

Z̃(δ) = F̃ (δ) + O(f̃(0, δ)), δ → 0,

where f̃(x, δ) = log(1 + G̃(δ)e−xβ
), so that f̃(0, δ) 
 log(δ−1), and in accordance with (82)

F̃ (δ) =
1
δ

∞∫

0

f̃(x, δ) dx =
β2+1/β log1+1/β(δ−1)

(1 + β)α1+1/βδ
+ O

(
log1/β(δ−1)

δ

)
.

Next, as in the case of function Z(h) =
∑∞

j=1 f(jh, h), the function Z̃(δ) =
∑∞

j=1 f̃(jδ, δ) may be
differentiated term-by-term, and

Z̃ ′(δ) = F̃ ′(δ) + O

(
max
x≥0

∣∣∣ ∂

∂δ
f̃(x, δ)

∣∣∣
)

= − F̃ (δ)
δ

+
1
δ

∞∫

0

∂

∂δ
f̃(x, δ) dx + O

(
max
x≥0

∣∣∣ ∂

∂δ
f̃(x, δ)

∣∣∣
)

= T1 + T2 + T3.

Thanks to (82)

T1 = −β2+1/β log1+1/β(δ−1)
(1 + β)α1+1/βδ2

+ O

(
log1/β(δ−1)

δ2

)
.

Let J̃ be such that G̃(δ)e−J̃β
= 1, that is, J̃ = log1/β G̃(δ) 
 log1/β(δ−1). Noting that

∂

∂δ
f̃(x, δ) =

G̃′(δ)e−xβ

1 + G̃(δ)e−xβ
, G̃(δ) 
 1

δβ/α
, G̃′(δ) 
 1

δ1+β/α
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and using relation (81), the second integral is estimated as follows:

T2 =
G̃′(δ)

δ

J̃∫

0

e−xβ

1 + G̃(δ)e−xβ
dx +

G̃′(δ)
δ

∞∫

J̃

e−xβ

1 + G̃(δ)e−xβ
dx

≤ J̃G̃′(δ)
δG̃(δ)

+
G̃′(δ)

δ

∞∫

J̃

e−xβ
dx ∼ J̃G̃′(δ)

δG̃(δ)

(
1 +

1
βJ̃β

)

 log1/β(δ−1)

δ2
= o(T1).

Consider the term T3. We have

max
x≥0

∣∣∣∣
∂

∂δ
f̃(x, δ)

∣∣∣∣ =
∂

∂δ
f̃(0, δ) 
 G̃′(δ)e−J̃β

=
G̃′(δ)
G̃(δ)


 1
δ

= o(T1).

Therefore for k = 1, relation (48) holds true:

Z̃ ′(δ) = −β2+1/β log1+1/β(δ−1)
(1 + β)α1+1/βδ2

+ O

(
log1/β(δ−1)

δ2

)
.

Now recalling that δ = (μh)1/β and substituting δ′(h) = β−1μ1/βh1/β−1, we get

Z ′(h) = Z̃ ′(δ(h))δ′(h) = − β2+1/β log1+1/β(h−1)
(1 + β)α1+1/β(μh)2/β

μ1/βh1/β−1

β
+ O

(
log1/β(h−1)
h2/βh1−1/β

)

= − β1+1/β log1+1/β(h−1)
(1 + β)α1+1/βμ1/βh1+1/β

+ O

(
log1/β(h−1)

h1+1/β

)
.

Thus (49) is also verified.

Let us turn to the second derivative Z̃ ′′(δ). It is allowed to differentiate the series Z̃(δ) =∑∞
j=1 f̃(jδ, δ) term-by-term twice, and by (84)

Z̃ ′′(δ) =
1
δ2

∞∑
j=1

(jδ)2
∂2

∂x2
f̃(jδ, δ) +

2
δ

∞∑
j=1

(jδ)
∂2

∂x∂δ
f̃(jδ, δ) +

∞∑
j=1

∂2

∂h2
f̃(jδ, δ)

=
1
δ3

∞∫

0

x2 ∂2

∂x2
f̃(x, δ) dx +

2
δ2

∞∫

0

x
∂2

∂x∂δ
f̃(x, δ) dx

+
1
δ

∞∫

0

∂2

∂δ2
f̃(x, δ) dx + O(δ−2).

Integrating by parts yields

Z̃ ′′(δ) =
2
δ3

∞∫

0

f̃(x, δ) dx − 2
δ2

∞∫

0

∂

∂δ
f̃(x, δ) dx +

1
δ

∞∫

0

∂2

∂δ2
f̃(x, δ) dx + O(δ−2)

=
2F̃ (δ)

δ2
+ O

(
log1/β(δ−1)

δ3

)
.

Recalling (82) we arrive at (48) with k = 2:

Z̃ ′′(δ) =
2β2+1/β log1+1/β(δ−1)

(1 + β)α1+1/βδ3
+ O

(
log1/β(δ−1)

δ3

)
.

Returning to the parameter h,

Z ′′(h) = Z̃ ′′(δ(h))(δ′(h))2 + Z̃ ′(δ(h))δ′′(h),

MATHEMATICAL METHODS OF STATISTICS Vol. 18 No. 4 2009



340 INGSTER, STEPANOVA

where δ′(h) = β−1μ1/βh1/β−1 and δ′′(h) = β−1(β−1 − 1)μ1/βh1/β−2. Therefore (50) also holds true:

Z ′′(h) =
β1/β log1+1/β(h−1)
α1+1/βμ1/βh2+1/β

+ O

(
log1/β(h−1)

h2+1/β

)
.

The proof of relations in (51) requires elementary calculations similar to those for Z ′(h) and Z ′′(h).
The proof is purely technical, and we omit it.
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