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Abstract—In the convolution model Zi = Xi + εi, we give a model selection procedure to estimate
the density of the unobserved variables (Xi)1≤i≤n, when the sequence (Xi)i≥1 is strictly stationary
but not necessarily independent. This procedure depends on whether the density of the εi is
supersmooth or ordinary smooth. The rates of convergence of the penalized contrast estimators are
the same as in the independent framework, and are minimax over most regularity classes on R. Our
results apply to mixing sequences, but also to many other dependent sequences. When the errors
are supersmooth, the condition on the dependence coefficients is the minimal condition of that type
ensuring that the sequence (Xi)i≥1 is not a long-memory process.
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1. INTRODUCTION

The problem of estimating the density of identically distributed but not independent random variables
X1, . . . ,Xn when they are observed with an additive and independent noise is encountered in numerous
contexts. This problem is described by the model

Zi = Xi + εi for i = 1, . . . , n, (1.1)

where one observes Z1, . . . , Zn and where (εi)1≤i≤n are independent and identically distributed (i.i.d.),
and independent of (Xi)1≤i≤n. When (Xi)i≤1≤n is a Markov chain, the model (1.1) is a particular case
of hidden Markov models, with an additive structure.

Our aim is the adaptive estimation of g, the common distribution of the unobserved variables
(Xi)1≤i≤n, when the density fε of εi is known. More precisely we shall construct an estimator of g
without any prior knowledge about its smoothness using the observations (Zi)i≤1≤n and the knowledge
of the convolution kernel fε.

We shall assume that the known density fε belongs to various collections of densities and that the
dependence properties of the sequence (Xi)i≥1 are described by appropriate dependence coefficients.
More precisely, we consider two types of dependent sequences. We assume either that the sequence
(Xi)i≥1 is absolutely regular in the sense of Rozanov and Volkonskii [29], or that it is τ-dependent in
the sense of Dedecker and Prieur [11]. These dependence conditions are presented in Section 2 and
motivated through various examples.

In density deconvolution, two factors determine the estimation accuracy. First, the smoothness of
the density g to be estimated, and secondly the smoothness of the error density, the worst rates of
convergence being obtained for the smoothest error densities.
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We shall consider two classes of densities for fε: first the so-called supersmooth densities with
exponential decay of their Fourier transform, and next the class of ordinary smooth densities with Fourier
transform having a polynomial decay.

Let us briefly recall the previous results in the independent framework. To our knowledge, the
first adaptive estimator has been proposed by Pensky and Vidakovic [22]. It is a wavelet estimator
constructed via a thresholding procedure. This estimator achieves the minimax rates when g belongs
to a Sobolev class, but it fails to reach the minimax rates when both the error density and g are
supersmooth.

More recently, Comte et al. [9] have proposed an adaptive estimator of g constructed by minimizing
an appropriate penalized contrast function only depending on the observations and on fε. This estimator
is minimax (sometimes within a negligible logarithmic factor) in all cases, where lower bounds have
been previously known (i.e., in most cases). More precisely, the authors obtain non-asymptotic upper
bounds for the Mean Integrated Square Error (MISE), which ensure an automatic trade-off between the
bias term and the penalty term. Hence, the estimator automatically achieves the best rate obtained by
the collection of non-penalized estimators when the (unknown) optimal space is selected (sometimes
up to a negligible logarithmic factor). When both the density and the errors are supersmooth, this
adaptive estimator significantly improves on the rates given by the adaptive estimator constructed in
Pensky and Vidakovic [22], whereas both adaptive estimators have the same rate in the other cases.
This improvement partly comes from the choice of the Shannon basis (see Section 3.2) instead of the
wavelet basis considered in Pensky and Vidakovic [22].

In the dependent context, we follow the approach proposed in Comte et al. [9] to construct adaptive
estimators of g. They are obtained by minimizing an appropriate penalized contrast function, with a
penalty function depending on the known density fε. The adaptive estimators have the same rates as in
the independent case under mild conditions on the dependence coefficients of (Xi)i≥1. The important
point here is that the penalty function is the same (or almost the same) as in the independent framework.
More precisely, it has the same order as in the independent framework and even more important, it
does not depend on the dependence coefficients of the sequence (Xi)i≥1. Indeed, as compared with
the independent case, the dependence induces additional terms in the risk bounds, but these terms are
negligible with respect to the terms of the independent case. This explains why one can choose a penalty
function which does not depend on the dependence coefficient. This fact is noteworthy when compared
with density estimation in dependent context. Indeed, when the (Xi)1≤i≤n are observed (i.e., εi = 0),
the threshold level proposed in Tribouley and Viennet [25] as well as the penalty function given in Comte
and Merlevède [8] (see also our Proposition 5.1) both depend on the mixing coefficients of the sequence
(Xi)i≥1.

In Section 4 we deal with non-adaptive estimators. As usual, we show that the MISE of the minimum
contrast estimator is bounded by a squared bias plus a variance term. The variance term can be split into
two terms. The first and dominating term of the variance is exactly the variance of a density deconvolution
estimator in the independent context. It is as usual related to

∫
|x|≤Cn

|f∗
ε (x)|−2 dx, Cn → ∞. The second

and negligible term in the variance is the term involving the dependence structure of the sequence
(Xi)i≥1. The main consequence of this first result is that this non-adaptive estimator reaches the
(minimax) rates of the i.i.d. case (as given in Fan [15], Butucea [4], and Butucea and Tsybakov [5]), as
long as the dependence coefficients are summable. Moreover, even if the coefficients are not summable,
there is no loss in the rate provided that the partial sums of the coefficients do not grow too fast with
respect to

∫
|x|≤Cn

|f∗
ε (x)|−2 dx. These results have to be compared with previously known results for

non-adaptive density deconvolution in dependent contexts. For strongly mixing sequences in the sense
of Rosenblatt [24], Masry [18] proposed a kernel-type estimator for the joint density gp of (X1, . . . ,Xp)
when it exists. For the (pointwise) Mean Square Error, he obtains the same rates as in the i.i.d. case
provided that the sequence of strong mixing coefficients decreases faster than n−2 for ordinary smooth fε

and provided that it decreases faster than n−1 for supersmooth fε. When p = 1, our assumption on the
mixing coefficients is weaker, since we only need

∑
n>0 α(n) < ∞ in both cases (see our Remark 4.1).

In the main part (Section 5), we study the adaptive estimators. We show that the squared bias
term and the variance term obtained in the upper bound of the MISE of the adaptive estimator are the
same as in the independent case. The model selection procedure depends on whether the density fε is
supersmooth or ordinary smooth.
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When fε is supersmooth, an adaptive estimator is constructed with the same penalty as in the
independent case. Its rate of convergence is exactly the same as in the independent case, provided
that the dependence coefficients of (Xi)i≥1 are summable. The main tools in this case are covariance
inequalities for dependent variables and concentration inequalities. The case of supersmooth errors is
particularly important, since it contains the case of Gaussian errors. It also contains the stochastic
volatility model in which εi ∼ log(N (0, 1)2) (see van Es et al. [26, 27], Comte [6], Comte and Genon-
Catalot [7]).

When fε is ordinary smooth, an adaptive estimator is constructed with a penalty of the same order as
in the independent context. Its rate of convergence is exactly the same as in the independent case. For
ordinary smooth errors, the main tools are the coupling properties of the dependence coefficients (see
Section 2.1). To use these properties, we need to consider a more restrictive type of dependence than for
supersmooth errors, and we need to assume a polynomial decrease of the coefficients.

In both cases, super and ordinary smooth fε, the results hold for β-mixing and τ-dependent random
variables (Xi)i≥1. To our knowledge, this is the first time that adaptive density deconvolution in a
dependent context is considered. The robustness of this estimation procedure to dependence strongly
uses the independence between (Xi)1≤i≤n and (εi)i≤1≤n and the fact that the errors are i.i.d. random
variables.

We refer to Comte et al. [9, 10] for practical implementation of the estimators and for the calibration
of the constants in the penalty functions. In Comte et al. [10], the robustness of the procedure to various
forms of dependence has been experimented in practice (see Tables 4 and 5 therein).

2. SOME MEASURES OF DEPENDENCE

Let (Ω,A, P) be a probability space. Let Y be a random variable with values in a Banach space
(B, ‖ · ‖B). Denote by Λκ(B) the set of κ-Lipschitz functions, i.e., the functions f from (B, ‖ · ‖B) to R

such that |f(x)− f(y)| ≤ κ‖x− y‖B. Let M be a σ-algebra of A. Let PY |M be a conditional distribution
of Y given M, let PY be the distribution of Y , and let B(B) be the Borel σ-algebra on (B, ‖ · ‖B).

Define now

β(M, σ(Y )) = E

(
sup

A∈B(B)
|PY |M(A) − PY (A)|

)
,

and if E(‖Y ‖) < ∞, τ(M, Y ) = E

(
sup

f∈Λ1(B)
|PY |M(f) − PY (f)|

)
.

The coefficient β(M, σ(Y )) is the usual mixing coefficient introduced by Rozanov and Volkonskii [29].
The coefficient τ(M, Y ) has been introduced by Dedecker and Prieur [11].

Let X = (Xi)i≥1 be a strictly stationary sequence of real-valued random variables. For any k ≥ 0,
the coefficients βX,1(k) and τX,1(k) are defined by

βX,1(k) = β(σ(X1), σ(X1+k)), (2.1)

and if E(|X1|) < ∞, τX,1(k) = τ(σ(X1),X1+k). (2.2)

On R
l, we introduce the norm ‖x− y‖Rl = l−1(|x1 − y1|+ · · ·+ |xl − yl|). Let Mi = σ(Xk, 1 ≤ k ≤ i).

The coefficients βX,∞(k) and τX,∞(k) are defined by

βX,∞(k) = sup
i≥1,l≥1

sup
{
β(Mi, σ(Xi1 , . . . ,Xil)), i + k ≤ i1 < · · · < il

}
,

and if E(|X1|) < ∞, τX,∞(k) = sup
i≥1,l≥1

sup
{
τ(Mi, (Xi1 , . . . ,Xil)), i + k ≤ i1 < · · · < il

}
.

Let QX be the generalized inverse of the tail function x → P(|X1| > x). We have the inequalities

τX,1(k) ≤ 2

βX,1(k)∫

0

QX(u) du and τX,∞(k) ≤ 2

βX,∞(k)∫

0

QX(u) du. (2.3)
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2.1. Coupling
We recall the coupling properties of these coefficients. Assume that Ω is rich enough, which means

that there exists U uniformly distributed over [0, 1] and independent of M∨ σ(X). There exist two
M∨ σ(U) ∨ σ(X)-measurable random variables X∗

1 and X∗
2 distributed as X and independent of M

such that

β(M, σ(X)) = P(X 	= X∗
1 ) and τ(M,X) = E(‖X − X∗

2‖B). (2.4)

The first equality in (2.4) is due to Berbee [1], and the second one has been established in Dedecker and
Prieur [11], Section 7.1.

2.2. Covariance Inequalities
Denote by ‖ · ‖∞,P the L

∞(Ω, P)-norm. Let X, Y be two real-valued random variables, and let f , h
be two measurable functions from R to C. Then

|Cov(f(Y ), h(X))| ≤ 2‖f(Y )‖∞,P ‖h(X)‖∞,P β(σ(X), σ(Y )), (2.5)

and if Lip(h) is the Lipschitz coefficient of h,

|Cov(f(Y ), h(X))| ≤ ‖f(Y )‖∞,P Lip(h) τ(σ(Y ),X). (2.6)

Inequalities (2.5) and (2.6) follow from the coupling properties (2.4) by noting that if X∗ is distributed
as X and independent of Y ,

Cov(f(Y ), h(X)) = E
(
f(Y )(h(X) − h(X∗))

)
.

2.3. Examples
Examples of β-mixing sequences are well known (we refer to the books by Doukhan [13] and

Bradley [3]). One of the most important examples is the following: a stationary, irreducible, aperiodic
and positively recurrent Markov chain (Xi)i≥1 is β-mixing, which means that βX,∞(k) tends to zero
as k tends to infinity.

Unfortunately, many simple Markov chains are not β-mixing (and not even strongly mixing in the
sense of Rosenblatt [24]). For instance, if (εi)i≥1 are i.i.d. with marginal such that

P(ε1 = 1) = P(ε1 = 0) = 1/2,

then the stationary solution (Xi)i≥0 of the equation

Xn =
1
2
(Xn−1 + εn), X0 independent of (εi)i≥1, (2.7)

is not β-mixing (and not even strongly mixing), since βX,1(k) = 1 for any k ≥ 0. By contrast, for this
particular example, one has τX,∞(k) ≤ 2−k. More generally, the coefficient τX,∞(k) is easy to compute
in many situations (see Dedecker and Prieur [11]). Let us recall some important examples:

Linear processes. Assume that Xn =
∑

j≥0 ajξn−j , where (ξi)i∈Z are i.i.d. One has the bounds

τX,∞(k) ≤ 2E(|ξ0|)
∑

j≥k

|aj | and τX,∞(k) ≤
√

2Var(ξ0)
∑

j≥k

a2
j .

Markov chains. Let (Xn)n≥0 be a stationary Markov chain such that Xn = F (Xn−1, ξn) for some
measurable function F and some i.i.d. sequence (ξi)i≥1 independent of X0. Assume that there exists
κ < 1 such that

E
(
|F (x, ξ0) − F (y, ξ0)|

)
≤ κ|x − y|.

Then one has the inequality

τX,∞(k) ≤ 2E(|X0|)κk.

An important example is Xn = f(Xn−1) + ξn for some κ-Lipschitz function f .
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Expanding maps. Let T be a Borel-measurable map from [0, 1] to [0, 1]. If ν is a T -invariant probability,
the sequence (Yi = T i)i≥0 of random variables from ([0, 1], ν) to [0, 1] is strictly stationary. Define the
operator K from L

1([0, 1], ν) to L
1([0, 1], ν) via the equality

1∫

0

(Kh)(x)k(x) ν(dx) =

1∫

0

h(x)(k ◦ T )(x) ν(dx),

where h ∈ L
1([0, 1], ν) and k ∈ L

∞([0, 1], ν). It is easy to check that (Y1, Y2, . . . , Yn) has the same distri-
bution as (Xn,Xn−1, . . . ,X1), where (Xi)i∈Z is a stationary Markov chain with invariant distribution ν
and transition kernel K. If T is uniformly expanding (see, for instance, the assumptions on p. 218 in
Dedecker and Prieur [11]), then there exist C > 0 and ρ in ]0, 1[ such that

τX,∞(k) ≤ Cρk

(see Dedecker and Prieur, p. 230). Note that the Markov chain (Xi)i≥1 is not β-mixing (and not even
strongly mixing). Indeed, β(σ(X1), σ(Xn)) = β(σ(T n), σ(T )). Since σ(T n) ⊂ σ(T ), it follows that

β(σ(X1), σ(Xn)) ≥ β(σ(T n), σ(T n)) = β(σ(T ), σ(T ))
and the latter is positive as soon as ν is nontrivial.

3. ASSUMPTIONS AND ESTIMATORS
For two complex-valued functions u and v in L2(R) ∩ L1(R), let

u∗(x) =
∫

eitxu(t) dt, u ∗ v(x) =
∫

u(y)v(x − y) dy, and 〈u, v〉 =
∫

u(x)v(x) dx

with z the conjugate of a complex number z. We also use the notation

‖u‖1 =
∫

|u(x)| dx, ‖u‖2 =
∫

|u(x)|2 dx, and ‖u‖∞ = sup
x∈R

|u(x)|.

3.1. Assumptions for Density Deconvolution
The smoothness of fε is described by assumption (Aε

1) below.

(Aε
1) There exist κ′

0 ≥ κ0 > 0 and γ ≥ 0, μ ≥ 0, δ ≥ 0 (with γ > 0 if δ = 0) such that f∗
ε satisfies

κ0(x2 + 1)−γ/2 exp{−μ|x|δ} ≤ |f∗
ε (x)| ≤ κ′

0(x
2 + 1)−γ/2 exp{−μ|x|δ}.

(Aε
2) For all x ∈ R, f∗

ε (x) 	= 0.
Note that (Aε

1) implies (Aε
2). Since fε is known, the constants μ, δ, κ0, and γ defined in (Aε

1) are also
known. By convention, we set δ = 0 if μ = 0.

When δ = 0 in (Aε
1), fε is usually called “ordinary smooth”. When μ > 0 and δ > 0, fε is called

“supersmooth”. Densities satisfying (Aε
1) with δ > 0 and μ > 0 are infinitely differentiable. The standard

examples for supersmooth densities are the following: Gaussian or Cauchy distributions are super-
smooth of order γ = 0, δ = 2 and γ = 0, δ = 1 respectively. When ε = log(η2) with η ∼ N (0, 1) as in van
Es et al. [26, 27], then ε is supersmooth with δ = 1, γ = 0, and μ = π/2. For ordinary smooth densities,
one can cite, for instance, the double exponential (also called Laplace) distribution with δ = 0 = μ and
γ = 2. Although densities with δ > 2 exist, they are difficult to express in a closed form. Nevertheless,
our results hold for such densities.

Classically, the slowest rates of convergence for estimating g are obtained for supersmooth error
densities. In particular, when ε is Gaussian and g belongs to Sobolev classes, the minimax rates are
negative powers of log n (see Fan [15]). Nevertheless, the rates are improved if g has stronger smoothness
properties described by the set

Ss,r,b(C1) =
{

ψ such that

+∞∫

−∞

|ψ∗(x)|2(x2 + 1)s exp{2b|x|r} dx ≤ C1

}

(3.1)

for s, r, b non-negative numbers. By convention, we set r = 0 if b = 0.
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Such smoothness classes are classically considered both in deconvolution and in density estimation
without errors. When r = 0, (3.1) corresponds to a Sobolev ball. The functions in (3.1) with r > 0 and
b > 0 are infinitely many times differentiable. They admit analytic continuation on a finite width strip
when r = 1 and on the whole complex plane if r = 2.

Subsequently, the density g is supposed to satisfy the following assumption.

(AX
3 ) The density g ∈ L2(R) and there exists M2 > 0 such that

∫
x2g2(x) dx < M2 < ∞.

Assumption (AX
3 ), which is due to the construction of the estimator, is quite unusual in density

estimation. It already appears in density deconvolution in the independent framework in Comte et
al. [9, 10]. It also appears in a slightly different way in Pensky and Vidakovic [22] who assume, instead
of (AX

3 ), that supx∈R |x|g(x) < ∞. It is important to note that Assumption (AX
3 ) is very unrestrictive.

All densities having tails of order |x|−(s+1) as x tends to infinity satisfy (AX
3 ) only if s > 1/2. One

can cite, for instance, the Cauchy distribution or all stable distributions with exponent r > 1/2 (see
Devroye [12]). The Lévy distribution, with exponent r = 1/2 does not satisfy (AX

3 ).

3.2. The Projection Spaces

Let ϕ(x) = sin(πx)/(πx). For m ∈ N and j ∈ Z, set ϕm,j(x) =
√

mϕ(mx − j). The collection of
functions {ϕm,j}j∈Z,m∈N∗ is a basis of L

2(R) (see, e.g., Meyer [20], p. 22). For m = 2k, k ∈ N, it is
known as the Shannon basis. Though we choose here integer values for m, a thinner grid would also be
possible. Let us define

Sm = span {ϕm,j , j ∈ Z}, m ∈ N.

The space Sm is exactly the subspace of L2(R) of functions having a Fourier transform with compact
support contained in [−πm, πm].

The orthogonal projection of g on Sm is gm =
∑

j∈Z
am,j(g)ϕm,j , where am,j(g) = 〈ϕm,j , g〉. To

obtain representations having a finite number of “coordinates”, we introduce

S(n)
m = span

{
ϕm,j , |j| ≤ kn

}

with integers kn to be specified later. The family {ϕm,j}|j|≤kn
is an orthonormal basis of S

(n)
m and the

orthogonal projection of g on S
(n)
m is given by g

(n)
m =

∑
|j|≤kn

am,j(g)ϕm,j .

3.3. Construction of the Minimum Contrast Estimators

For an arbitrary fixed integer m, an estimator of g belonging to S
(n)
m is defined by

ĝ(n)
m = arg min

t∈S
(n)
m

γn(t), (3.2)

where, for t in S
(n)
m ,

γn(t) =
1
n

n∑

i=1

[
‖t‖2 − 2u∗

t (Zi)
]

with ut(x) =
1
2π

(
t∗(−x)
f∗

ε (x)

)

.

By using Parseval’s and inverse Fourier formulae we obtain that E
[
u∗

t (Zi)
]

= 〈t, g〉, so that E(γn(t)) =
‖t− g‖2 −‖g‖2 is minimal when t = g. This shows that γn(t) suits well for the estimation of g. Classical
calculations show that

ĝ(n)
m =

∑

|j|≤kn

âm,jϕm,j with âm,j =
1
n

n∑

i=1

u∗
ϕm,j

(Zi) and E(âm,j) = 〈g, ϕm,j〉 = am,j .
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3.4. Minimum Penalized Contrast Estimator

As in the independent framework, the minimum penalized estimator of g is defined as g̃ = ĝm̂g , where
m̂g is chosen in a purely data-driven way. The main point of the estimation procedure lies in the choice
of m = m̂g for the estimators ĝm from Section 3.3 in order to mimic the oracle parameter

m̆g = arg min
m

E‖ĝm − g‖2
2. (3.3)

For m = 1, . . . ,mn with mn ≤ n, the model selection is performed in an automatic way, using the
following penalized criteria

g̃ = ĝ
(n)
m̂ with m̂ = arg min

m∈{1,...,mn}

[
γn(ĝ(n)

m ) + pen(m)
]
, (3.4)

where pen(m) is a penalty function given in the theorems that depends on f∗
ε through Δ(m) defined by

Δ(m) =
1
2π

πm∫

−πm

1
|f∗

ε (x)|2 dx. (3.5)

The key point in the dependent context is to find a penalty function not depending on the mixing
coefficients such that

E‖g̃ − g‖2 ≤ C inf
m∈{1,...,mn}

E‖ĝm − g‖2.

4. RISK BOUNDS FOR THE MINIMUM CONTRAST ESTIMATORS ĝ
(n)
m

We focus here on non-adaptive estimation, starting with the presentation of general upper bounds for

MISEs of the minimum contrast estimators ĝ
(n)
m .

Proposition 4.1. If (Aε
2) and (AX

3 ) hold, then

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m2(M2 + 1)
kn

+
2Δ(m)

n
+

2Rn,m

n
,

where

Rn,m =
1
π

n∑

k=2

πm∫

−πm

∣
∣Cov(eixX1 , eixXk)

∣
∣ dx. (4.1)

Moreover, Rn,m ≤ min(Rn,m,β, Rn,m,τ ), where

Rn,m,β = 4m
n−1∑

k=1

βX,1(k) and Rn,m,τ = πm2
n−1∑

k=1

τX,1(k).

Remark 4.1. The term Rn,m can be easily bounded for many other dependent sequences. For instance,
if αX,1 = α(σ(X1), σ(X1+k)) is the usual strong mixing coefficient of Rosenblatt [24], one has the
upper bound Rn,m ≤ 16m

∑n−1
k=1 αX,1(k). If X is a stationary sequence of associated random variables

(see Esary et al. [14] for the definition), then |Cov(eixX1 , eixXk)| ≤ 4x2 Cov(X1,Xk), so that Rn,m ≤
(8π2/3)m3

∑n
k=2 Cov(X1,Xk). For more about density deconvolution with associated inputs, we refer

to the paper by Masry [19].

We now comment on the rates resulting from Proposition 4.1. As usual, the variance term Δ(m)/n
depends on the rate of decay of the Fourier transform of fε. According to Butucea and Tsybakov [5],
under (Aε

1), we have

λ1(fε, κ
′
0)Γ(m)(1 + o(1)) ≤ Δ(m) ≤ λ1(fε, κ0)Γ(m)(1 + o(1)) as m → ∞, (4.2)
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where Γ(m) = (1 + (πm)2)γ(πm)1−δ exp{2μ(πm)δ},

λ1(fε, κ0) =
1

κ2
0πR(μ, δ)

, and R(μ, δ) = 1{δ=0} + 2μδ1{δ>0}. (4.3)

If (Aε
1) and (AX

3 ) hold and if kn ≥ n2, we have the upper bound

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m(M2 + 1)
n

+
2λ1(fε, κ0)Γ(m)

n
+

2Rn,m

n
. (4.4)

Finally, since gm is the orthogonal projection of g on Sm, we get that g∗m = g∗1[−mπ,mπ] and therefore

‖g − gm‖2 =
1
2π

‖g∗ − g∗m‖2 =
1
2π

∫

|x|≥πm

|g∗|2(x) dx.

If g belongs to the class Ss,r,b(C1) defined in (3.1), then

‖g − gm‖2 ≤ C1

2π
(m2π2 + 1)−s exp{−2bπrmr}.

Hence, according to (4.4), if (Aε
1) and (AX

3 ) hold and kn ≥ n2, the risk of ĝ
(n)
m is bounded by

C1

2π
(m2π2 + 1)−s exp{−2bπrmr} +

2λ1(fε, κ0)(1 + (πm)2))γ(πm)1−δ exp{2μπδmδ}
n

+
m(M2 + 1)

n
+

2Rn,m

n
.

If
∑

k>0 βX,1(k) < ∞, the remainder term n−1Rn,m + n−1m(M2 + 1) is of order m/n, which is
negligible with respect to the main term Δ(m)/n.

If
∑

k>0 τX,1(k) < ∞, the remainder terms n−1Rn,m + n−1m(M2 + 1) are of order n−1m2. Hence,
provided that γ > 1/2 when δ = 0 in (Aε

1), the remainder terms n−1Rn,m + n−1m2(M2 + 1) of order
m2/n are negligible with respect to the main term Δ(m)/n.

As in the independent case, we choose m̆ as the minimizer of

(m2π2 + 1)−s exp{−2bπrmr} +
(πm)2γ+1−δ exp{2μπδmδ}

n
.

The behavior of m̆ is recalled in Table 1. Hence the rate of convergence of ĝ
(n)
m̆ is the same as in the

i.i.d. case (see Table 1 below).

Table 1. Choice of m̆ and corresponding rates for g in Ss,r,b(C1) under (Aε
1) and (AX

3 ).

fε

δ = 0 δ > 0

ordinary smooth supersmooth

g

r = 0

Sobolev(s)

πm̆ = O(n1/(2s+2γ+1))

rate = O(n−2s/(2s+2γ+1))

minimax rate

πm̆ = [log n/(2μ + 1)]1/δ

rate = O((log n)−2s/δ)

minimax rate

r > 0

C∞

πm̆ = [log n/2b]1/r

rate = O
( log(n)(2γ+1)/r

n

)

minimax rate

m̆ solution of

m̆2s+2γ+1−r exp{2μ(πm̆)δ + 2bπrm̆r}
= O(n)

minimax rate if r < δ and s = 0
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When r > 0, δ > 0, the value of m̆ is not explicitly given. It is obtained as the solution of the equation

m̆2s+2γ+1−r exp{2μ(πm̆)δ + 2bπrm̆r} = O(n).

Consequently, the rate of ĝ
(n)
m̆ is not explicit and depends on the ratio r/δ. If r/δ or δ/r belongs to

]k/(k + 1); (k + 1)/(k + 2)] with k integer, the rate of convergence can be expressed as a function of k.
We refer to Comte et al. [9] for further discussions about those rates. We refer to Lacour [17] for explicit
formulae for the rates in the special case r > 0, δ > 0.

5. RISK BOUNDS FOR ADAPTIVE ESTIMATORS

In the previous section, the construction of the estimators required the knowledge of the smoothness
of g. We now come to adaptive estimation, without such prior knowledge.

For � > 1 and a > 1, let pen(m) be defined by

pen(m) =

⎧
⎪⎨

⎪⎩

4a�
Δ(m)

n
if 0 ≤ δ < 1/3,

4a
(

1 +
98μλ2(fε, κ0)

λ1(fε, κ
′
0)

(πm)min((3δ/2−1/2)+ ,δ)

)
Δ(m)

n
if δ ≥ 1/3.

(5.1)

The constant λ1(fε, κ0) is defined in (4.3) and λ2(fε, κ0) is given by

λ2(fε, κ0) = ‖fε‖κ−1
0

√
2λ1(fε, κ0)10<δ≤1 + 2λ1(fε, κ0)1δ>1. (5.2)

In order to bound up pen(m), we suppose that

πmn ≤

⎧
⎪⎨

⎪⎩

n1/(2γ+1) if δ = 0,
[
log n

2μ
+

2γ + 1 − δ

2δμ
log
(

log n

2μ

)]1/δ

if δ > 0.
(5.3)

Subsequently we set

κa = (a + 1)/(a − 1) and Ca = max(κ2
a, 2κa). (5.4)

5.1. A First Bound in Adaptive Density Deconvolution

Theorem 5.1 gives a general bound, which holds under mild dependence conditions, for fε being either
ordinary smooth or supersmooth.

Theorem 5.1. Assume that fε satisfies (Aε
1), that g satisfies (AX

3 ), and that mn satisfies (5.3).

Consider the collection of estimators ĝ
(n)
m defined by (3.2) with kn ≥ n2 and 1 ≤ m ≤ mn. Let

pen(m) be defined by (5.1). The estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,...,mn}

[

‖g − gm‖2 + pen(m) +
m(M2 + 1)

n

]

+
C(Rn,mn + mn)

n
,

where Rn,m is defined in (4.1), Ca is defined in (5.4), and C is a constant depending on fε, �, and a.

Let us compare the rate of g̃ with the rate obtained in the independent framework. The term
infm∈{1,...,mn}[‖g − gm‖2 + pen(m) + m(M2 + 1)/n] corresponds to the rate of g̃ when all variables are
i.i.d.

The dependent context induces the additional term n−1(Rn,mn + mn). It is noteworthy that Rn,mn

only involves the mild dependence coefficients βX,1(k) and τX,1(k) given in (2.1)–(2.2).
If these dependence coefficients are summable and the errors are supersmooth, n−1(Rn,mn + mn) is

negligible and g̃ achieves the rate of the independent framework.
If ε is ordinary smooth, the term mn/n may not be negligible (see the upper bound for mn given

in (5.3) for δ = 0) and Theorem 5.1 does not allow to recover the rate of the independent case. To recover
it, we will consider stronger dependence conditions.
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5.2. Adaptive Density Deconvolution for Supersmooth fε

If (Aε
1) holds for some δ > 0, the following corollary is a straightforward consequence of Theorem 5.1.

Corollary 5.1. Assume that fε satisfies (Aε
1) with δ > 0, that g satisfies (AX

3 ), and that mn

satisfies (5.3). Let pen(m) be defined by (5.1). Consider the collection of estimators ĝ
(n)
m defined

by (3.2) with kn ≥ n2 and 1 ≤ m ≤ mn.

(1) If
∑

k>0 βX,1(k) < ∞, the estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,...,mn}

[

‖g − gm‖2 + pen(m) +
m(M2 + 1)

n

]

+
C(log n)1/δ

n
,

where Ca is defined in (5.4) and C is a constant depending on fε, �, a, and
∑

k>0 βX,1(k).

(2) If
∑

k>0 τX,1(k) < ∞, the estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,...,mn}

[

‖g − gm‖2 + pen(m) +
m(M2 + 1)

n

]

+
C(log n)2/δ

n
,

where Ca is defined in (5.4) and C is a constant depending on fε, a, and
∑

k>0 τX,1(k).

Corollary 5.1 requires important comments. The terms involving a power of log n are negligi-
ble with respect to infm∈{1,...,mn}[‖g − gm‖2 + pen(m) + m(M2 + 1)/n]. The risk of g̃ is of order
infm∈{1,...,mn}[‖g − gm‖2 + pen(m)], that is of the best order as in the independent framework. The
penalty does not depend on the dependence coefficients and is the same as in the independent framework.

As a conclusion, we see that the adaptive estimator g̃ constructed with the same penalty as in the
independent framework still achieves the best rate under mild conditions on the dependence coefficients.

5.3. Adaptive Density Deconvolution for Ordinary Smooth fε

For a > 1 and � > 1, define pen(m) by

pen(m) = 4a�
Δ(m)

n
. (5.5)

When δ = 0, we have the following result, which cannot be deduced from Theorem 5.1.

Theorem 5.2. Assume that fε satisfies (Aε
1) with δ = 0, that g satisfies (AX

3 ), and that mn

satisfies (5.3). Let pen(m) be defined by (5.5). Consider the collection of estimators ĝ
(n)
m defined

by (3.2) with kn ≥ n2 and 1 ≤ m ≤ mn.

(1) If βX,∞(k) = O(k−(1+θ)) for some θ > (2γ + 3)/(2γ + 1), then the estimator g̃ = ĝ
(n)
m̂ defined

by (3.4) satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,...,mn}

[

‖g − gm‖2 + pen(m) +
m(M2 + 1)

n

]

+
C

n
, (5.6)

where Ca is defined in (5.4) and C is a constant depending on fε, a, �, and
∑

k>0 βX,∞(k).

(2) If γ > 1/2 in (Aε
1) and τX,∞(k) = O(k−(1+θ)) for some θ > (2γ + 5)/(2γ + 1), then the

estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies (5.6), where C is a constant depending on fε, a, �,

and
∑

k>0 τX,∞(k).

Remark 5.1. Note that the condition for βX,∞(k) is realized for any γ > 0 provided θ > 3. In the same
way, the condition for τX,∞(k) is realized for any γ > 1/2 provided θ > 3. In both cases, the condition
on θ is weaker as γ increases. In other words, the smoother is fε, the weaker is the condition on the
dependence coefficients.
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Remark 5.2. This result shows that the adaptive estimator g̃ constructed with the same penalty
as in the independent framework still achieves the rate of the independent case but under stronger
dependence conditions than those considered in Theorem 5.1. Indeed, it involves the dependence
coefficients βX,∞(k) and τX,∞(k) and it requires stronger constraints on their rate of decay.

Remark 5.3. For m large enough, the penalty function given in (5.5) is an upper bound of more precise
penalty functions which depend on the dependence coefficients. More precisely, let a > 1 and � > 1 be
the two arbitrary constants in (5.5). Under the assumptions of (1) in Theorem 5.2, for �1 ∈]1,�[ and
�2 > 1, let pen(m) be defined by

pen(m) =
4a�1Δ(m)

n
+

32a�2

(
1 + 4

∑n
k=1 βX,1(k)

)
m

n
. (5.7)

Under the assumptions of (2) in Theorem 5.2, for �1 ∈]1,�[, let pen(m) be defined by

pen(m) =
4a�1Δ(m)

n
+

32a[1 + 38 log m]
(
m + π

∑n
k=1 τX,1(k)m2

)

n
. (5.8)

In both cases, the estimator g̃ = ĝ
(n)
m̂ defined by (3.4) satisfies (5.6). Remark 5.3 follows from the proof

of Theorem 5.2.

5.4. Case without Noise

The case without noise corresponds to the usual density estimation problem, where the Xi’s are
observed. One can deduce from the proofs of Proposition 4.1, Theorem 5.2, and Remark 5.3 a result for
density estimation without errors on the whole real line, that is when Xi is observed. Indeed the proofs
can be adapted to this case by considering that ε = 0, Z = X, and by taking f∗

ε ≡ 1 in all steps. It follows
that u∗

t (Zi) = t(Xi) and the contrast γn simply becomes

γn,X(t) = ‖t‖2 − 2
n

n∑

i=1

t(Xi). (5.9)

Let kn ≥ n2, a > 1, and � > 1, and consider as before

ĝ(n)
m = arg min

t∈S
(n)
m

γn,X(t), pen(m) = 32a�

(

1 + 4
n∑

k=1

βX,1(k)
)

m

n
, (5.10)

and

m̂ = arg min
m∈{1,...,n}

[γn,X(g(n)
m ) + pen(m)]. (5.11)

Proposition 5.1. Assume that ε = 0. Let kn ≥ n2. Then

(1)

E‖g − ĝ(n)
m ‖2 ≤ ‖g − gm‖2 +

m(M2 + 3)
n

+
2Rn,m

n
.

(2) If βX,∞ = O(k−(1+θ)) for some θ > 3, then the estimator g̃ = ĝm̂ defined by (5.10) and (5.11)
satisfies

E(‖g − g̃‖2) ≤ Ca inf
m∈{1,...,n}

[

‖g − gm‖2 + pen(m) +
m(M2 + 1)

n

]

+
C

n
,

where Ca is defined in (5.4) and C is a constant depending on a, �, and
∑

k>0 βX,∞(k).
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The result (1) shows that if
∑

k>0 βX,1(k) < ∞, one obtains the same bounds (and the same rates)
as in the i.i.d. case. However, if

∑
k>0 τX,1(k) < ∞, the result (1) still holds but the term n−1Rn,m is of

order m2/n and the rate for ĝ
(n)
m is worse than in the i.i.d. case.

The result (2) shows that this estimation procedure also works in density estimation without errors.
It allows us to estimate a density on the whole real line and to reach the usual rates of convergence by
using a penalty of the classical order m/n. This remark is valid in the β-mixing framework and in the
case of independent Xi’s. We refer to Pensky [21] and Rigollet [23] for recent results in adaptive density
estimation on the whole real line in the i.i.d. case.

6. PROOFS

6.1. Proof of Proposition 4.1

This proof follows the same lines as in the independent framework (see Comte et al. [9]). The main
difference lies in the control of the variance term. We keep the same notation as in Section 3.3. According

to (3.2), for any given m belonging to {1, . . . ,mn}, ĝ
(n)
m satisfies γn(ĝ(n)

m ) − γn(g(n)
m ) ≤ 0. For a random

variable Y with density fY and any function ψ such that ψ(Y ) is integrable, let

νn,Y (ψ) =
1
n

n∑

i=1

[ψ(Yi) − 〈ψ, fY 〉], so that νn,Z(u∗
t ) =

1
n

n∑

i=1

[
u∗

t (Zi) − 〈t, g〉
]
. (6.1)

Since

γn(t) − γn(s) = ‖t − g‖2 − ‖s − g‖2 − 2νn,Z(u∗
t−s), (6.2)

we infer that

‖g − ĝ(n)
m ‖2 ≤ ‖g − g(n)

m ‖2 + 2νn,Z

(
u∗

ĝ
(n)
m −g

(n)
m

)
. (6.3)

Writing that âm,j − am,j = νn,Z(u∗
ϕm,j

), we obtain

νn,Z

(
u∗

ĝ
(n)
m −g

(n)
m

)
=
∑

|j|≤kn

(âm,j − am,j)νn,Z(u∗
ϕm,j

) =
∑

|j|≤kn

[
νn,Z(u∗

ϕm,j
)
]2

.

Consequently, E‖g − ĝ
(n)
m ‖2 ≤ ‖g − g

(n)
m ‖2 + 2

∑
j∈Z

E[(νn,Z(u∗
ϕm,j

))2]. According to Comte et al. [9],

‖g − g(n)
m ‖2 = ‖g − gm‖2 + ‖gm − g(n)

m ‖2 ≤ ‖g − gm‖2 +
(πm)2(M2 + 1)

kn
. (6.4)

The variance term is studied by using that for f ∈ L1(R),

νn,Z(f∗) =
∫

νn,Z(eix·)f(x) dx. (6.5)

Now, we use (6.5) and apply Parseval’s formula to obtain

E

(∑

j∈Z

(νn,Z(u∗
ϕm,j

))2
)

=
1

4π2

∑

j∈Z

E

(∫
ϕ∗

m,j(−x)
f∗

ε (x)
νn,Z(eix·) dx

)2

=
1
2π

πm∫

−πm

E|νn,Z(eix·)|2
|f∗

ε (x)|2 dx.

(6.6)
Since νn,Z involves centered and stationary variables,

E|νn,Z(eix·)|2 = Var |νn,Z(eix·)| =
1
n2

( n∑

k=1

Var(eixZk) +
∑

1≤k �=l≤n

Cov(eixZk , eixZl)
)

=
1
n

Var(eixZ1) +
1
n2

∑

1≤k �=l≤n

Cov(eixZk , eixZl). (6.7)
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Since (Xi)i≥1 and (εi)i≥1 are independent, we have E(eixZk) = f∗
ε (x)g∗(x), so that

Cov(eixZk , eixZl) = E(eix(Zl−Zk)) − |E(eixZk)|2 = E(eix(Zl−Zk)) − |f∗
ε (x)g∗(x)|2.

Next, by independence of X and ε, we write, for k 	= l,

E(eix(Zl−Zk)) = E(eix(Xl−Xk))E(eix(εl−εk)) = E(eix(Xl−Xk))|f∗
ε (x)|2,

and consequently

Cov(eixZk , eixZl) = Cov(eixXk , eixXl)|f∗
ε (x)|2. (6.8)

From (6.7), (6.8) and the stationarity of (Xi)i≥1, we obtain that

E|νn,Z(eix·)|2 ≤ 1
n

+
2
n

n∑

k=2

∣
∣Cov(eixX1 , eixXk)

∣
∣|f∗

ε (x)|2. (6.9)

The first part of Proposition 4.1 follows from the stationarity of the Xi’s, and from (6.3), (6.4), (6.6), and
(6.9).

Let us prove that Rn,m ≤ min(Rn,m,β, Rn,m,τ ), where Rn,m,β and Rn,m,τ are defined in Proposi-
tion 4.1. Using the inequalities (2.5) and (2.6), we obtain the bounds

∣
∣Cov(eixX1 , eixXk)

∣
∣ ≤ 2βX,1(k − 1) and

∣
∣Cov(eixX1 , eixXk)

∣
∣ ≤ |x|τX,1(k − 1)

(for the last inequality, note that t → eixt is |x|-Lipschitz). The result easily follows.

6.2. Proof of Theorem 5.1
By definition, g̃ satisfies

γn(g̃) + pen(m̂) ≤ γn(gm) + pen(m) for all m ∈ {1, . . . ,mn}.
Therefore, by using (6.2) we obtain that

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + 2νn,Z(u∗

g̃−g
(n)
m

) + pen(m) − pen(m̂).

If t = t1 + t2 with t1 in S
(n)
m and t2 in S

(n)
m′ , t∗ has its support in [−πmax(m,m′), πmax(m,m′)] and t

belongs to S
(n)
max(m,m′). Set Bm,m′(0, 1) = {t ∈ S

(n)
max(m,m′) | ‖t‖ = 1}. For νn,Z defined in (6.1) we get

|νn,Z(u∗
g̃−g

(n)
m

)| ≤ ‖g̃ − g(n)
m ‖ sup

t∈Bm,m̂(0,1)
|νn,Z(u∗

t )|.

Using that 2uv ≤ a−1u2 + av2 for any a > 1, leads to

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + a sup
t∈Bm,m̂(0,1)

(νn,Z(u∗
t ))

2 + pen(m) − pen(m̂).

Now, according to Lemma 7.1, write that νn,Z(u∗
t ) = ν

(1)
n (t) + νn,X(t), where

ν(1)
n (t) = n−1

n∑

i=1

[
u∗

t (Zi) − E(u∗
t (Zi) | σ(Xi, i ≥ 1))

]
= n−1

n∑

i=1

[u∗
t (Zi) − t(Xi)]. (6.10)

Consequently,

‖g̃ − g‖2 ≤ ‖g(n)
m − g‖2 + a−1‖g̃ − g(n)

m ‖2 + 2a sup
t∈Bm,m̂(0,1)

(
ν(1)

n (t)
)2 + 2a sup

t∈Bm,m̂(0,1)

(
νn,X(t)

)2

+ pen(m) − pen(m̂).

Hence by writing that ‖g̃ − g
(n)
m ‖2 ≤ (1 + κ−1

a )‖g̃ − g‖2 + (1 + κa)‖g − g
(n)
m ‖2 with κa defined in (5.4),

we have
‖g̃ − g‖2 ≤ κ2

a‖g(n)
m − g‖2 + 2aκa sup

t∈Bm,m̂(0,1)
(ν(1)

n (t))2 + 2aκa sup
t∈Bm,m̂(0,1)

(νn,X(t))2

+ κa(pen(m) − pen(m̂)).
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Choose some positive function p(m,m′) such that

2ap(m,m′) ≤ pen(m) + pen(m′). (6.11)

For this function p(m,m′) we have

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2κa pen(m) + 2aκa sup
t∈Bm,m̂(0,1)

(νn,X(t))2 + 2aκaWn(m, m̂)

≤ κ2
a‖g − g(n)

m ‖2 + 2κa pen(m) + 2aκa sup
t∈Bm,m̂(0,1)

(νn,X(t))2

+2aκa

mn∑

m′=1

Wn(m,m′), (6.12)

where

Wn(m,m′) :=
[

sup
t∈Bm,m′ (0,1)

|ν(1)
n (t)|2 − p(m,m′)

]

+
. (6.13)

The main parts of the proof are the two following points:
1) Study of Wn(m,m′). We look for p(m,m′) such that for a constant A1,

mn∑

m′=1

E(Wn(m,m′)) ≤ A1

n
. (6.14)

2) Study of supt∈Bm,m̂(0,1)(νn,X(t))2. We prove that

E

[
sup

t∈Bm,m̂(0,1)
(νn,X(t))2

]
≤ mn + Rn,mn

n
, (6.15)

where Rn,m is defined in (4.1). Combining (6.12), (6.14), and (6.15), we infer that, for all 1 ≤ m ≤ mn,

E‖g − g̃‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2κa pen(m) +
2aκa(mn + Rn,mn)

n
+

2aκaA1

n
.

If we denote Ca = max(κ2
a, 2κa), this can also be written

E‖g − g̃‖2 ≤ Ca inf
m∈{1,...,mn}

[
‖g − g(n)

m ‖2 + ‖g(n)
m − gm‖ + pen(m)

]
+

2aκa(mn + Rn,mn)
n

+
2aκaA1

n

≤ Ca inf
m∈{1,...,mn}

[

‖g − gm‖2 +
(M2 + 1)m2

kn
+ pen(m)

]

+
2aκa(mn + Rn,mn)

n
+

2aκaA1

n
.

Proof of (6.14). We start by writing E(Wn(m,m′)) = E[supt∈Bm,m′ (0,1) |ν
(1)
n (t)|2 − p(m,m′)]+ as

E

{
EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)

n (t)|2 − p(m,m′)
]

+

}
,

where EX(Y ) denotes the conditional expectation E(Y | σ(Xi, i ≥ 0)). The point is that, conditionally
on σ(Xi, i ≥ 0), the random variables u∗

t (Zi) − E(u∗
t (Zi) | σ(Xi, i ≥ 0)) are centered, independent but

non-identically distributed. We proceed as in the independent case (see Comte et al. [9]), by applying

the following lemma to the expectation EX[supt∈Bm,m′ (0,1) |ν
(1)
n (t)|2 − p(m,m′)]+.

Lemma 6.1. Let Y1, . . . , Yn be independent random variables and let F be a countable class of
uniformly bounded measurable functions. Then for ξ2 > 0

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ξ2)H2
]

+
≤ 2

K1

(
v

n
e−K1ξ2 nH2

v +
49M2

1

4K1n2C2(ξ2)
e
− 2

√
2K1C(ξ2)ξ

7
√

2
nH
M1

)
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with C(ξ2) = (
√

1 + ξ2 − 1) ∧ 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤ M1, E

[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1
n

n∑

k=1

Var(f(Yk)) ≤ v.

The proof of this inequality can be found in Section 7. It follows from a concentration Inequality in
Klein and Rio [16] and arguments that can be found in Birgé and Massart [2]. Usual density arguments
show that this result can be applied to the class of functions F = Bm,m′(0, 1). Applying Lemma 6.1, one
has the bound

EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)

n (t)|2 − 2(1 + 2ξ2)H2
]

+
≤ 2

K1

(
v

n
e−K1ξ2 nH2

v +
49M2

1

4K1n2C2(ξ2)
e
− 2

√
2K1C(ξ2)ξ

7
nH
M1

)

,

where

sup
t∈Bm,m′ (0,1)

‖u∗
t (Z1)‖∞ ≤ M1, EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)

n (t)|
]
≤ H, sup

t∈Bm,m′

1
n

n∑

k=1

VarX(u∗
t (Zk)) ≤ v.

Let m∗ = max(m,m′). Applying Lemma 7.3 of Section 7, we propose to take

H2 = H2(m∗) =
Δ(m∗)

n
, M1 = M1(m∗) =

√
nH2, and v = v(m∗) =

√
Δ2(m∗, fZ)

2π
with, for fZ denoting the density of Z1,

Δ2(m, fZ) =

πm∫

−πm

πm∫

−πm

|f∗
Z(x − y)|2

|f∗
ε (x)f∗

ε (y)|2 dx dy. (6.16)

From the definition (6.13) of Wn(m,m′), by taking p(m,m′) = 2(1 + 2ξ2)H2(m∗), we get that

E(Wn(m,m′)) ≤ E

{
EX

[
sup

t∈Bm,m′ (0,1)
|ν(1)

n (t)|2 − 2(1 + 2ξ2)H2(m∗)
]

+

}
. (6.17)

According to the condition (6.11), we thus take pen(m) = 2ap(m,m) = 4n−1a(1 + 2ξ2)Δ(m), where
ξ2 is suitably chosen in the control of the sum of the right-hand side of (6.17). Set m0 such that for
m∗ ≥ m0

(1/2)λ1(fε, κ
′
0)Γ(m∗) ≤ Δ(m∗) ≤ 2λ1(fε, κ0)Γ(m∗), (6.18)

where Γ(m) is defined in (4.2) and λ1(fε, κ0) and λ1(fε, κ
′
0) are defined in (4.3). We split the sum over m′

in two parts and write
mn∑

m′=1

E(Wn(m,m′)) =
∑

m′|m∗<m0

E(Wn(m,m′)) +
∑

m′|m∗≥m0

E(Wn(m,m′)). (6.19)

By applying Lemma 6.1 and (6.18), we get the global bound EX(Wn(m,m′)) ≤ K[I(m∗) + II(m∗)],
where I(m∗) and II(m∗) are defined by

I(m∗) =
v(m∗)

n
exp
{

− K1ξ
2 Δ(m∗)

v(m∗)

}

and II(m∗) =
Δ(m∗)

n2
exp
{

− 2
√

2K1ξC(ξ2)
7

√
n

}

.

Since I and II do not depend on the Xi’s, we infer that E(Wn(m,m′)) ≤ K[I(m∗) + II(m∗)].
When m∗ ≤ m0, with m0 finite, we see that for all m ∈ {1, . . . ,mn},

∑

m′|m∗≤m0

E(Wn(m,m′)) ≤ C(m0)
n

.

We now come to the sum over m′ such that m∗ > m0.
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When δ > 1 we use a rough bound for Δ2(m, fZ) given by
√

Δ2(m, fZ) ≤ 2πnH2(m).
When 0 ≤ δ ≤ 1, write that

Δ2(m, fZ) ≤
∥
∥|f∗

ε |−21[−πm,πm]

∥
∥
∞Δ(m)‖f∗

Z‖2(2π).

Under (Aε
1) with 0 < δ < 1, we use that ‖f∗

Z‖2 ≤ ‖f∗
ε ‖2 < ∞, that

√
2π‖f∗

ε ‖ = ‖fε‖ and apply (6.18)
to infer that for m∗ ≥ m0,

v(m∗) =

√
Δ2(m∗, fZ)

2π
≤ λ2(fε, κ0)Γ2(m∗), (6.20)

where λ2(fε, κ0) is defined in (5.2) and

Γ2(m) = (1 + (πm)2)γ(πm)min((1/2−δ/2),(1−δ)) exp(2μ(πm)δ) = (πm)−(1/2−δ/2)+Γ(m). (6.21)

Under (Aε
1) with δ = 0, we use that ‖f∗

Z‖2 ≤ ‖g∗‖2 < ∞, that
√

2π‖g∗‖ = ‖g‖ and apply (6.18) to
infer that for m∗ ≥ m0,

v(m∗) =

√
Δ2(m∗, fZ)

2π
≤ ‖g‖κ−1

0

√
2λ1(fε, κ0)Γ2(m∗). (6.22)

Combining (6.18), (6.20), and (6.22), we obtain that for m∗ ≥ m0,

I(m∗) ≤ λ2(κ0)Γ2(m∗)
n

exp
{

− K1ξ
2λ1(fε, κ

′
0)

2λ2(κ0)
(πm∗)(1/2−δ/2)+

}

and II(m∗) ≤ Δ(m∗)
n2

exp
{

− 2
√

2K1ξC(ξ2)
√

n

7

}

with

λ2(κ0) = ‖g‖κ−1
0

√
2λ1(fε, κ0)1δ=0 + λ2(fε, κ0).

• Study of
∑

m′|m∗≥m0
II(m∗). According to the choice of v(m∗), H2(m∗), and M1(m∗), we have

∑

m′|m∗≥m0

II(m∗) ≤
mn∑

m′=1

Δ(m∗)
n2

exp
{
−2

√
2K1ξC(ξ2)

√
n

7

}

≤ Δ(mn)mn

n2
exp
{
−2

√
2K1ξC(ξ2)

√
n

7

}

.

Since under (5.3), Δ(mn)/n is bounded, we deduce that
∑

m′|m∗≥m0
II(m∗) ≤ C/n.

• Study of
∑

m′|m∗≥m0
I(m∗). Denote ψ = 2γ + min(1/2 − δ/2, 1 − δ), ω = (1/2 − δ/2)+, and K ′ =

K1λ1(fε, κ
′
0)/(2λ2(κ0)). For a, b ≥ 1, we have that

max(a, b)ψe2μπδ max(a,b)δ
e−K ′ξ2 max(a,b)ω ≤

(
aψe2μπδaδ

+ bψe2μπδbδ)
e−(K ′ξ2/2)(aω+bω)

≤ aψe2μπδaδ
e−(K ′ξ2/2)aω

e−(K ′ξ2/2)bω
+ bψe2μπδbδ

e−(K ′ξ2/2)bω
. (6.23)

Consequently,

∑

m′|m∗≥m0

I(m∗) ≤
mn∑

m′=1

λ2(κ0)Γ2(m∗)
n

exp
{

− K1ξ
2(λ1(fε, κ

′
0)

2λ2(κ0)
(πm∗)(1/2−δ/2)+

}

≤ 2λ2(κ0)Γ2(m)
n

exp
{

− K ′ξ2

2
(πm)(1/2−δ/2)+

} mn∑

m′=1

exp
{

− K ′ξ2

2
(πm′)(1/2−δ/2)+

}

+
mn∑

m′=1

2λ2(κ0)Γ2(m′)
n

exp
{

− K ′ξ2

2
(πm′)(1/2−δ/2)+

}

. (6.24)
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Case 0 ≤ δ < 1/3. In that case, since δ < (1/2 − δ/2)+, any choice of ξ2 > 0 ensures that the
quantity Γ2(m) exp{−(K ′ξ2/2)m1/2−δ/2} is bounded, and thus the first term in (6.24) is bounded
by C/n. Clearly n−1

∑mn
m′=1 Γ2(m′) exp{−(K ′/2)(m′)1/2−δ/2} is bounded by C̃/n, and consequently∑

m′|m∗≥m0
I(m∗) ≤ D/n. According to (6.11), the result follows by choosing pen(m) = 2ap(m,m) =

4a(1 + 2ξ2)n−1Δ(m) = 4a�Δ(m)/n.

Case δ = 1/3. In that case δ = (1/2 − δ/2)+ and λ2(κ0) = λ2(fε, κ0). According to (6.24), we choose
ξ2 such that (K ′ξ2/2)(πm)δ = (2 + ε)μ(πm)δ for some ε > 0, for instance,

ξ2 = 49μλ2(fε, κ0)/λ1(fε, κ
′
0).

Arguing as for the case 0 ≤ δ < 1/3, this choice ensures that
∑

m′|m∗≥m0
I(m∗) ≤ D/n, and con-

sequently (6.14) holds. The result follows by taking p(m,m′) = 2(1 + 2ξ2)Δ(m∗)/n, and pen(m) =
2ap(m,m) = 4a(1 + 2ξ2)Δ(m)/n.

Case δ > 1/3. In that case δ > (1/2 − δ/2)+ and λ2(κ0) = λ2(fε, κ0). Choose ξ2(m) such that
(K ′ξ2/2)(πm)(1/2−δ/2)+ = (2 + ε)μπδmδ for some ε > 0. For instance, the choice

ξ2(m) = 49μλ2(fε, κ0)(πm)δ−(1/2−δ/2)+/λ1(fε, κ
′
0)

ensures that
∑

m′|m∗≥m0
I(m∗) ≤ D/n, so that (6.14) holds. The result follows by choosing p(m,m′) =

2(1 + 2ξ2(m∗))Δ(m∗)/n, associated to pen(m) = 2ap(m,m) = 4a(1 + 2ξ2(m))Δ(m)/n.

Proof of (6.15). Since max(m, m̂) ≤ mn, according to (6.5),

sup
t∈Bm,m̂(0,1)

E(νn,X(t))2 ≤ sup
t∈Smn ,‖t‖=1

E

(
1
2π

∫
νn,X(eix·)t∗(−x) dx

)2

≤ 1
2π

πmn∫

−πmn

Var
(

1
n

n∑

k=1

eixXk

)

dx

≤ mn

n
+

1
πn

πmn∫

−πmn

n∑

k=2

∣
∣Cov(eixX1 , eixXk)

∣
∣ dx

and Theorem 5.1 is proved.

6.3. Proof of Theorem 5.2 (1)

We use the coupling argument recalled in Section 2.1 to construct approximating variables for
the Xi’s. For n = 2pnqn + rn, 0 ≤ rn < qn, and � = 0, . . . , pn − 1, denote by

E = (X2qn+1, . . . ,X(2+1)qn
), F = (X(2+1)qn+1, . . . ,X(2+2)qn

),

E�
 = (X�

2qn+1, . . . ,X
�
(2+1)qn

), F �
 = (X�

(2+1)qn+1, . . . ,X
�
(2+2)qn

).

The variables E�
 and F �

 are such that

— E�
 , E, F �

 , and F are identically distributed,

— P(E 	= E�
 ) ≤ βX,∞(qn) and P(F 	= F �

 ) ≤ βX,∞(qn),

— The variables (E�
 )0≤≤pn−1 are i.i.d., and so are the variables (F �

 )0≤≤pn−1.
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Without loss of generality and for the sake of simplicity we assume that rn = 0. For κa defined in (5.4),
we start with

‖g̃ − g‖2 ≤ κ2
a‖g(n)

m − g‖2 + 2aκa sup
t∈Bm,m̂(0,1)

(ν(1)
n (t))2 + 2aκa sup

t∈Bm,m̂(0,1)
(νn,X(t))2

+ κa(pen(m) − pen(m̂))

≤ κ2
a‖g(n)

m − g‖2 + 2aκa sup
t∈Bm,m̂(0,1)

(ν(1)
n (t))2 + 4aκa sup

t∈Bm,m̂(0,1)
(ν�

n,X(t))2

+ 4aκa sup
t∈Bm,m̂(0,1)

(νn,X(t) − ν�
n,X(t))2 + κa(pen(m) − pen(m̂)),

where ν�
n,X(t) is defined as νn,X(t) with X�

i instead of Xi. Choose p1(m,m′) and p2(m,m′) such that

2ap1(m,m′) ≤ [pen1(m) + pen1(m
′)] and 4ap2(m,m′) ≤ [pen2(m) + pen2(m

′)]

for pen(m) = pen1(m) + pen2(m). It follows that

‖g̃ − g‖2 ≤ κ2
a‖g − g(n)

m ‖2 + 2κa pen(m) + 4aκaW
�
n,X(m, m̂)

+ 4aκa sup
t∈Bm,m̂(0,1)

(νn,X(t) − ν�
n,X(t))2 + 2aκaWn(m, m̂)

≤ κ2
a‖g − g(n)

m ‖2 + 2κa pen(m) + 4aκa

mn∑

m′=1

W �
n,X(m,m′)

+ 2aκa

mn∑

m′=1

Wn(m,m′) + 4aκa sup
t∈Bm,m̂(0,1)

(νn,X(t) − ν�
n,X(t))2, (6.25)

where

Wn(m,m′) :=
[

sup
t∈Bm,m′ (0,1)

|ν(1)
n (t)|2 − p1(m,m′)

]

+
, (6.26)

W �
n,X(m,m′) :=

[
sup

t∈Bm,m′ (0,1)
|ν�

n,X(t)|2 − p2(m,m′)
]

+
. (6.27)

The main parts of the proof consist in the three following points :
1) Study of Wn(m,m′). We look for p1(m,m′) such that for a constant A2,

mn∑

m′=1

E(Wn(m,m′)) ≤ A2

n
. (6.28)

2) Study of W �
n,X(m,m′). We look for p2(m,m′) such that for a constant A3,

mn∑

m′=1

E(W �
n,X(m,m′)) ≤ A3

n
. (6.29)

3) Study of supt∈Bm,m̂(0,1)(νn,X(t) − ν�
n,X(t))2. We prove that

E

[
sup

t∈Bm,m̂(0,1)
(ν�

n,X(t) − νn,X(t))2
]
≤ 4βX,∞(qn)mn ≤ A4

n
. (6.30)

Proof of (6.28). The proof of (6.28) for ordinary smooth errors (δ = 0 in (Aε
1)) is the same as the proof

of (6.14) by taking p1(m,m′) = p(m,m′) with p(m,m′) as in the proof of (6.14) and ξ2
1 > 0. Hence we

choose pen1(m) = 2ap1(m,m) = 4a(1 + 2ξ2
1)Δ(m)/n.

Proof of (6.29). We proceed as in the independent case by applying Lemma 6.1. Let m∗ = max(m,m′).
The process W �

n,X(m,m′) must be split into two terms (W �
n,1,X(m,m′) + W �

n,2,X(m,m′))/2 involving
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respectively the odd and even blocks, which are of the same type. More precisely, W �
n,k,X(m,m′) is

defined, for k = 1, 2, by

W �
n,k,X(m,m′) =

[

sup
t∈Bm,m′ (0,1)

∣
∣
∣
∣

1
pnqn

pn∑

=1

qn∑

i=1

(
t(X�

(2+k−1)qn+i) − 〈t, g〉
)
∣
∣
∣
∣

2

− p2,k(m,m′)
]

+

,

and p2(m,m′) = 2p2,1(m,m′) + 2p2,2(m,m′).
We only study W �

n,1,X(m,m′) and conclude for W �
n,2,X(m,m′) by using analogous arguments and

by choosing p2,1(m,m′) = p2,2(m,m′). The study of W �
n,1,X(m,m′) consists in applying Lemma 6.1

to ν�
n,1,X(t) defined by

ν�
n,1,X(t) =

1
pn

pn∑

=1

ν�
qn,,X(t) with ν�

qn,,X(t) =
1
qn

qn∑

j=1

t(X�
2qn+j) − 〈t, g〉,

considered as the sum of pn independent random variables ν�
qn,,X(t). Denote by M�

1 (m∗), H�(m∗),
and v�(m∗) quantities such that

sup
t∈Bm,m′ (0,1)

‖ν�
qn,,X(t)‖∞ ≤ M�

1 (m∗),

E
(

sup
t∈Bm,m′ (0,1)

|ν�
n,1,X(t)|

)
≤ H�(m∗),

and sup
t∈Bm,m′ (0,1)

Var(ν�
qn,,X(t)) ≤ v�(m∗).

Lemma 7.5 leads to the choices M�
1 (m∗) =

√
m∗,

(H�(m∗))2 =

(
1 + 4

∑n
k=1 βX,1(k)

)
m∗

n
, and v�(m∗) =

8
(∑qn

k=0(k + 1)βX,1(k)‖g‖∞m∗)1/2

qn
.

Take ξ2
2 > 0. There exists m0 = m0(ξ2

1 , ξ2
2) such that for m∗ ≥ m0,

2(1 + 2ξ2
2)(H�(m∗))2 ≤ ξ2

1Δ(m∗)/(4n).

Then we take p2,1(m,m′) = ξ2
1Δ(m∗)/(4n), and get

mn∑

m′=1

E(W �
n,1,X(m,m′)) =

∑

m′|m∗≤m0

E(W �
n,1,X(m,m′)) +

∑

m′|m∗>m0

E(W �
n,1,X(m,m′))

≤
∑

m′|m∗≤m0

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]

+

+
∑

m′|m∗≤m0

|p21(m,m′) − 2(1 + 2ξ2
2)(H�(m∗))2|

+
∑

m′|m∗>m0

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]

+
.

It follows that
mn∑

m′=1

E(W �
n,1,X(m,m′)) ≤ 2

mn∑

m′=1

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]

+

+
∑

m′|m∗≤m0

|p2,1(m,m′) − 2(1 + 2ξ2
2)(H�(m∗))2|

≤ 2
mn∑

m′=1

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]

+
+

C(m0)
n

.
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We apply Lemma 6.1 to E
[
supt∈Bm,m′ (0,1) |ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]
+

and obtain

mn∑

m′=1

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]

+
≤ K

∑

m′≥1

[I�(m∗) + II�(m∗)]

with I�(m∗) and II�(m∗) defined by

I�(m∗) =
m∗

n
exp
{
− K2

√
m∗
}

and II�(m∗) =
q2
nm∗

n2
exp
{

−
√

2K1ξC(ξ)
7

√
n

qn

}

,

where K2 = (K1/32)(1 + 4
∑n

k=1 βX,1(k))/
√

‖g‖∞
∑qn

k=0(k + 1)βX,1(k). If we take qn = [nc], for c in

]0, 1/2[, then
∑

m′≥1

I � (m∗) ≤ C

n
and

∑

m′≥1

II�(m∗) ≤ C

n
.

Finally,
mn∑

m′=1

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2)(H�(m∗))2

]

+
≤ C1

n

and
mn∑

m′=1

E[W �
n,X(m,m′)] ≤ 2

mn∑

m′=1

E[W �
n,1,X(m,m′) + W �

n,2,X(m,m′)] ≤ C2

n
.

The result follows by choosing

p2(m,m′) = 2p2,1(m,m′) + 2p2,2(m,m′) = ξ2
1Δ(m∗)/n, pen2(m) = 4ap2(m,m),

and

pen(m) = pen1(m) + pen2(m) = 4a(1 + 2ξ2
1)Δ(m)/n + 4aξ2

1Δ(m)/n = 4a�Δ(m)/n,

where � = 1 + 3ξ2
1 . The penalty function appearing in Remark 5.3, formula (5.7), follows from the choice

p21(m,m′) = p22(m,m′) =
2(1 + 2ξ2

2)
(
1 + 4

∑∞
k=1 βX,1(k)

)
m∗

n

=
2(1 + 2ξ2

2)
(
1 + 4

∑∞
k=1 βX,1(k)

)
m∗

n
,

pen2(m) = 4ap2(m,m) = 4a(2p2,1(m,m) + 2p2,2(m,m)) = 16ap2,1(m,m)

=
32a(1 + 2ξ2

2)
(
1 + 4

∑∞
k=1 βX,1(k)

)
m

n
,

and

pen(m) =
4a(1 + 2ξ2

1)Δ(m)
n

+
32a(1 + 2ξ2

2)
(
1 + 4

∑∞
k=1 βX,1(k)

)
m

n
.

Proof of (6.30). A rough bound is obtained by writing that

sup
t∈Bm,m̂(0,1)

|ν�
n,X(t) − νn,X(t)|2 = sup

t∈S
(n)
max(m,m̂)

,‖t‖≤1

|ν�
n,X(t) − νn,X(t)|2

≤ sup
t∈Smn ,‖t‖≤1

|ν�
n,X(t) − νn,X(t)|2.
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According to (6.5),

ν�
n,X(t) − νn,X(t) =

1
2π

∫
[ν�

n,X(eix·) − νn,X(eix·)]t∗(−x) dx.

Since |νn,X(eix·) − ν�
n,X(eix·)| ≤ 2, we have

sup
t∈Bm,m̂(0,1)

|ν�
n,X(t) − νn,X(t)|2 ≤ sup

t∈Smn ,‖t‖≤1

1
4π2

∣
∣
∣
∣

∫
[ν�

n,X(eix·) − νn,X(eix·)]t∗(−x) dx

∣
∣
∣
∣

2

≤ 1
2π

πmn∫

−πmn

|ν�
n,X(eix·) − νn,X(eix·)|2 dx ≤ 1

π

πmn∫

−πmn

|ν�
n,X(eix·) − νn,X(eix·)| dx.

According to the properties of the coupling,

E

[
sup

t∈Bm,m̂(0,1)
|ν�

n,X(t) − νn,X(t)|2
]
≤ 1

π

πmn∫

−πmn

E|ν�
n,X(eix·) − νn,X(eix·)| dx ≤ 4βX,∞(qn)mn.

For ordinary smooth errors, according to (5.3), mn ≤ n1/(2γ+1). It follows that if we choose qn such that
βX,∞(qn) = O(n−(2γ+2)/(2γ+1)), then βX,∞(qn)mn = O(n−1). For qn = [nc] and βX,∞(n) = O(n−1−θ)
we obtain the condition n−c(1+θ) = O(n−(2γ+2)/(2γ+1)). If θ > (2γ + 3)/(2γ + 1), one can find c < 1/2
such that this condition is satisfied.

6.4. Proof of Theorem 5.2 (2)

We proceed as in the β-mixing case, by using the coupling argument given in Section 2.1. The
variables E, E�

 , F, F �
 are constructed as in Section 6.3 and are such that

— E�
 , E, F �

 and F are identically distributed,

—
qn∑

i=1

E(|X2qn+i−X�
2qn+i|) ≤ qnτX,∞(qn) and

qn∑

i=1

E(|X(2+1)qn+i−X�
(2+1)qn+i|) ≤ qnτX,∞(qn),

— The variables (E�
 )0≤≤pn−1 are i.i.d., and so are the variables (F �

 )0≤≤pn−1.

Without loss of generality and for the sake of simplicity we assume that rn = 0. As for the proof of
Theorem 5.2 under 2), we start with (6.25). Hence the proof consists of the following steps:

1) Study of Wn(m,m′). We look for p1(m,m′) such that for a constant K2,
mn∑

m′=1

E(Wn(m,m′)) ≤ K2

n
. (6.31)

2) Study of W �
n,X(m,m′). We look for p2(m,m′) such that for a constant K3,

mn∑

m′=1

E(W �
n,X(m,m′)) ≤ K3

n
. (6.32)

3) Study of supt∈Bm,m̂(0,1)(νn,X(t) − ν�
n,X(t))2. We prove that

E
[

sup
t∈Bm,m̂(0,1)

(
ν�

n,X(t) − νn,X(t)
)2] ≤ πτX,∞(qn)mn

2 ≤ K4

n
. (6.33)
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Proof of (6.31). The proof of (6.31) for ordinary smooth errors is the same as the proof of (6.14) and leads
to the choice pen1(m) = 4a(1 + 2ξ2

1)Δ(m)/n.

Proof of (6.32). As in the proof of (6.29), we apply Lemma 6.1 with

(H�(m∗))2 =

(
m∗ + π

∑n−1
k=1 τX,1(k)(m∗)2

)

n
, M�

1 (m∗) = m∗,

and v�(m∗) =
(m∗ + π

∑n−1
k=1 τX,1(k)(m∗)2)

qn
.

We take ξ2
2 = ξ2

2(m) = (3/K1 + 1) log m. In the same way as for the proof of Theorem 5.2 (1), we use
that there exists m0 = m0(ξ2

1 , ξ2
2) such that for m∗ ≥ m0,

2(1 + 2ξ2
2(m∗))(H�(m∗))2 ≤ ξ2

1Δ(m∗)/(4n),

where ξ2
1 is in pen1(m). Then we take p21(m,m′) = ξ2

1Δ(m∗)/(4n) and get
mn∑

m′=1

E(W �
n,1,X(m,m′)) ≤ 2

mn∑

m′=1

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2(m∗))(H�(m∗))2

]

+
+

C(m0)
n

.

We now apply Lemma 6.1 to E

[
supt∈Bm,m′ (0,1) |ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2(m∗))(H�(m∗))2

]

+
and obtain

mn∑

m′=1

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|2 − 2(1 + 2ξ2
2(m∗))(H�(m∗))2

]

+
≤ K

mn∑

m′≥1

[I�(m∗) + II�(m∗)]

with I�(m∗) and II�(m∗) now defined by

I�(m∗) =
m∗2

n
exp{−K1ξ

2(m∗)}

and II�(m∗) =
q2
nm∗2

n2
exp
{

−
√

2K1ξC(ξ)
(
1 + π

∑n
k=1 τX,1(k)

)

7

√
n

qn

}

.

If we take qn = [nc], with c in ]0, 1/2[, then
∑

m′

I�(m∗) ≤ C

n
and

∑

m′≥1

II�(m∗) ≤ C

n
.

Finally,
∑mn

m′=1 E[W �
n(m,m′)] ≤ 2

∑mn
m′=1 E[W �

n,1,X(m,m′) + W �
n,2,X(m,m′)] ≤ C/n. The result fol-

lows by choosing

p2(m,m′) = 2p2,1(m,m′) + 2p2,2(m,m′) = ξ2
1Δ(m∗)/n,

pen2(m) = 4ap2(m,m) = 4aξ2
1Δ(m∗)/n,

and pen(m) = pen1(m) + pen2(m) = 4a(1 + 2ξ2
1)Δ(m)/n + 4aξ2

1Δ(m)/n = 4a�Δ(m)/n,

where � = 1 + 3ξ2
1 . The penalty in Remark 5.3, formula (5.8), follows from the choices

p21(m,m′) = p22(m,m′) =
2
[
1 + 2( 3

K1
+ 1) log(m∗)

](
m∗ + 2π

∑n−1
k=1 τX,1(k)(m∗)2

)

n
,

pen2(m) = 4a(2p2,1(m,m) + 2p2,2(m,m)) = 16ap2,1(m,m)

=
32a
[
1 + 2( 3

K1
+ 1) log m

](
m + 2π

∑n−1
k=1 τX,1(k)(m)2

)

n
,

and

pen(m) =
4a(1 + 2ξ2

1)Δ(m)
n

+
32a
[
1 + 2( 3

K1
+ 1) log m

](
m + 2π

∑n−1
k=1 τX,1(k)m2

)

n
.
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Proof of (6.33). The proof of (6.33) is similar to the proof of (6.15). Since |e−ixt − e−ixs| ≤ |x||t − s|,
one has

qn∑

i=1

E(|e−iX2�qn+i − e−iX�
2�qn+i |) ≤ qn|x|τX,∞(qn).

It follows that

E

[
sup

t∈Bm,m̂(0,1)
|ν�

n,X(t) − νn,X(t)|2
]
≤ 1

π

πmn∫

−πmn

E|ν�
n,X(eix·) − νn,X(eix·)| dx ≤ πτX,∞(qn)mn

2.

For ordinary smooth errors, according to (5.3), m2
n ≤ n2/(2γ+1). It follows that if we choose qn such that

τX,∞(qn) = O(n−(2γ+3)/(2γ+1)), then τX,∞(qn)m2
n = O(n−1).

For qn = [nc] and τX,∞(n) = O(n−1−θ) we obtain the condition n−c(1+θ) = O(n−(2γ+3)/(2γ+1)). If
θ > (2γ + 5)/(2γ + 1), one can find c < 1/2 such that this condition is satisfied.

7. TECHNICAL LEMMAS

Lemma 7.1. If we denote by νn,X(t) the quantity defined by (6.1), then

n−1
n∑

k=1

E
(
u∗

t (Zk) | σ(Xi, i ≥ 0)
)
− 〈t, g〉 = νn,X(t).

The proof of Lemma 7.1, rather straightforward, is omitted.

Lemma 7.2. Let Δ(m) be defined by (3.5). We have the equalities

∑

j∈Z

∣
∣u∗

ϕm,j
(z)
∣
∣2 = (2π)−1m

∫ ∣∣
∣
∣

ϕ∗(x)
f∗

ε (xm)

∣
∣
∣
∣

2

dx = Δ(m).

Lemma 7.3. Let νn,Z(u∗
t ), Δ(m), and Δ2(m, fZ) be defined in (6.1), (3.5), and (6.16). Then

sup
t∈Bm,m′ (0,1)

‖u∗
t ‖∞ ≤

√
Δ(m∗), E[ sup

t∈Bm,m′ (0,1)
|νn,Z(u∗

t )|] ≤
√

Δ(m∗)/n,

and sup
t∈Bm,m′ (0,1)

Var(u∗
t (Z1)) ≤

√
Δ2(m∗, fZ)/(2π).

We refer to Comte et al. [9] for the proofs of Lemmas 7.2 and 7.3.

Lemma 7.4. ‖
∑

j∈Z
|ϕm,j |2‖∞ ≤ m.

Proof. Write

∑

j∈Z

|ϕm,j(x)|2 =
1

(2π)2
∑

j∈Z

∣
∣
∣
∣

∫
e−iuxϕ∗

m,j(u) du

∣
∣
∣
∣

2

=
m

(2π)2
∑

j∈Z

∣
∣
∣
∣

∫
e−ixumeijuϕ∗(u) du

∣
∣
∣
∣

2

.

We conclude by applying Parseval’s Formula, which implies that
∑

j∈Z

|ϕm,j(x)|2 = (2π)−1m

∫
|ϕ∗(u)|2 du = m.
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Lemma 7.5. For Bm,m′(0, 1) = {t ∈ Sm∨m′ | ‖t‖2 = 1}, we have, for m∗ = m ∨ m′,

sup
t∈Bm,m′ (0,1)

‖t‖∞ ≤
√

m∗, E
[

sup
t∈Bm,m′ (0,1)

|ν�
n,1,X(t)|

]
≤
√

(1 + 4
∑n

k=1 βX,1(k))m∗

n
,

and sup
t∈Bm,m′ (0,1)

Var(ν�
qn,,X(t)) ≤

[
2‖g‖∞(1 + 32

∑n
k=1(1 + k)βX,1(k))

]1/2√
m∗

qn
.

Proof. For t in Bm,m′(0, 1), with m∗ = m ∨ m′, one has t =
∑

j∈Z
bm∗,jϕm∗,j . Applying the Cauchy–

Schwarz Inequality and Lemma 7.4 we obtain

sup
t∈Bm,m′ (0,1)

‖t‖∞ ≤
∥
∥
∥
∑

j∈Z

|ϕm∗,j|2
∥
∥
∥

1/2

∞
≤

√
m∗.

Now, using again the Cauchy–Schwarz Inequality,

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|
]
≤ E

[√∑

j∈Z

(ν�
n,1X(ϕm∗ ,j))2

]

≤
√∑

j∈Z

Var(ν�
n,1,X(ϕm∗ ,j)).

By analogy with (6.6), we write

E

(∑

j∈Z

(
ν�

n,1,X(ϕm,j)
)2
)

=
1

4π2

∑

j∈Z

E

(∫
ϕ∗

m,j(−x)ν�
n,1,X(eix·) dx

)2

=
1
2π

πm∫

−πm

E|ν�
n,1,X(eix·)|2 dx.

This yields

E

[
sup

t∈Bm,m′ (0,1)
|ν�

n,1,X(t)|
]
≤
(
1 + 4

∑n
k=1 βX,1(k)

)
m∗

n
.

Finally, we apply Viennet’s [28] variance inequality (see Theorem 2.1, p. 472, and Lemma 4.2, p. 481).
Hence there exist some measurable functions bk such that 0 ≤ bk ≤ 1 and E

[
(
∑n

k=1 bk(X1))2
]
≤∑

k≥1(1 + k)βX,1(k), for which

sup
t∈Bm,m′ (0,1)

Var(νqn,,X(t)) ≤ sup
t∈Bm,m′ (0,1)

1
qn

∫ (

1 + 4
qn∑

k=1

bk

)

t2(x)g(x) dx.

Consequently

sup
t∈Bm,m′ (0,1)

Var(νqn,,X(t)) ≤ sup
t∈Bm,m′ (0,1)

1
qn

‖t‖∞‖g‖1/2
∞

[ ∫ (

1 + 4
qn∑

k=1

bk

)2

g(x) dx

]1/2

≤

√√
√
√2‖g‖∞

(

1 + 32
qn∑

k=1

(1 + k)βX,1(k)
)√

m∗

qn
.

Proof of Lemma 6.1. Starting with the concentration inequality given in Klein and Rio [16] and arguing
as in Birgé and Massart [2] (see the proof of their Corollary 2, p. 354) we obtain the upper bound

P

(
sup
f∈F

|νn,Y (f)| ≥ (1 + η)H + λ
)
≤ 2 exp

[

− K1n

(
λ2

v
∧ 4λ(η ∧ 1)

7M1

)]

, (7.1)

where K1 = 1/6. It remains to integrate this inequality as follows: define the nonnegative random
variable X = [supf∈F |νn,Y (f)|2 − 2(1 + 2ε)H2]+. We have

E(X) =

+∞∫

0

P

(
sup
f∈F

|νn,Y (f)|2 ≥ 2(1 + 2ε)H2 + τ
)

dτ
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=

+∞∫

0

P

(
sup
f∈F

|νn,Y (f)| ≥
√

2(1 + ε)H2 + 2(εH2 + τ/2)
)

dτ

≤
+∞∫

0

P

(
sup
f∈F

|νn,Y (f)| ≥
√

(1 + ε)H +
√

εH2 + τ/2
)

dτ.

Taking η = (
√

1 + ε − 1) and C(ε) = (1 ∧ η) we obtain

E(X) ≤
+∞∫

0

e−
K1n

v
(εH2+τ/2) dτ +

+∞∫

0

e
− 4K1nC(ε)

7M1
√

2
(
√

εH+
√

τ/2)
dτ

≤ e−K1ε nH2

v

+∞∫

0

e−
K1n
2v

τ dτ + e
− 2

√
2K1C(ε)

√
ε

7
nH
M1

+∞∫

0

e
− 2K1C(ε)n

√
τ

7M1 dτ.

Using that for any positive constant C,
∫ +∞
0 e−Cx dx = 1/C, and

∫ +∞
0 e−C

√
x dx = 2/C2, we obtain

E

[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ε)H2
]

+
≤ 2

K1

(
v

n
e−K1ε nH2

v +
49M2

1

4K1n2C2(ε)
e
− 2

√
2K1C(ε)

√
ε

7
nH
M1

)

.
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