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Let us consider a self-adjoint fourth-order operator  acting in the Hilbert space  and given by

(1)

where the coefficients  and  are real -periodic functions from the space , . The domain
of this operator is

The purpose of this article is to provide an asymptotic description of the eigenvalues of the differential
operator  both in the general case and under additional assumptions about the smoothness of coeffi-
cients  and .

Operator  appears in the analysis of the behavior of nanometer thin liquid polymer films. This behav-
ior is described by the following thin film equation [1]:

where  is the potential function. This equation is considered on a unit interval  with boundary con-
ditions

The linearization of this equation [1, 2] leads to a spectral problem for operator  given by (1). It should
be noted that, from a mechanical point of view, operator  describes the deflections of a beam with a
hinged-sliding anchorage.

Many works have been devoted to the study of spectral properties of fourth-order differential operators
with different boundary conditions. Isospectral potentials for such operators were described in [3]. The
inverse spectral problem for a fourth-order differential operator with Neumann boundary conditions was
studied in [4]. The asymptotics of eigenvalues and the trace formula for a self-adjoint fourth-order oper-
ator with Dirichlet boundary conditions were derived in [5, 6]. Spectral asymptotics, estimates of spectral
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projector deviations, and estimates of equiconvergence of spectral decompositions in the non-self-adjoint
case were obtained in [7].

A study of the spectrum of a periodic self-adjoint operator  on the axis was carried out in [8]. The
non-self-adjoint operator  with periodic boundary conditions was considered in [9]. In it, it was proved
that a system of eigenfunctions and associated functions forms a basis in the space , . In
addition, the asymptotics of eigenvalues, estimates of spectral projector deviations, and estimates of equi-
convergence of spectral decompositions for the non-self-adjoint operator  with periodic conditions
were obtained in [10].

Let us now proceed to the description of the spectral properties of operator . The spectrum  of
operator  is purely discrete (see [11], Chapter I, Sections 2 and 4). In order to describe it, we introduce
the fundamental solutions , , of the equation

(2)

These fundamental solutions satisfy the conditions , ,  = ,
where  is the Kronecker symbol. Each , ,  are entire functions.

Spectrum  consists of real eigenvalues, and there is the following relation

(3)

where  is the entire function given by the following formula:

The spectrum of the operator  is real, semibounded from below, and consists of eigenvalues , ,
which will be numbered (taking into account multiplicity) as follows:

In the unperturbed case , all eigenvalues  are simple, real, and have the form:

Our main result will be devoted to the proof of the asymptotics of the eigenvalues of the considered
operator at high energies. The spectral asymptotics will be given in terms of the Fourier coefficients of the
function  in the case , . In addition, we will derive the asymptotics of the eigenvalues with
greater precision (assuming smoother coefficients). This is necessary in order to further derive the regu-
larized trace formula for operator .

Let us introduce the Fourier coefficients for some function  and any  have the form:

We are now ready to formulate our main result.

Theorem 1. Let ,  and the number  be chosen sufficiently large. Then eigenvalues of 
are simple and satisfy the following asymptotics:

(4)

If we additionally assume that , ,
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78 POLYAKOV
We will now briefly describe a scheme for proving Theorem 1. It will be based on a matrix version of
the Birkhoff method developed in [6, 8, 12]. Let , , and , where

Introduce the parameters , . Then the following estimates hold:

(6)

In addition, we define the fundamental matrix , , , of Eq. (2) as follows:

(7)

where , , are the fundamental solutions of Eq. (2), which satisfy the following asymptotics:

(8)

for . The proof of the existence of such solutions can be found in ([11], Chapter II). The matrix-
valued function  satisfies the following equation:

(9)

Therefore, function  is the solution of Eq. (9) satisfying the following asymptotics

(10)

for , , where

(11)

(12)

Here and everywhere below,  denotes the  identity matrix.
The main idea of the study is an asymptotic analysis of the fundamental matrix  for sufficiently large

. Such an analysis is standard in the study of the spectral properties of the Schrödinger operator. How-
ever, in the case of the fourth-order operator, there appear additional difficulties related to the fact that
the fundamental matrix contains both exponentially increasing elements and exponentially decreasing
elements for  in any direction.

Thus, let us investigate the asymptotic behavior of the fundamental matrix. Let  and  be a
matrix-valued solution of Eq. (9) given by (7). Let us introduce a matrix-valued function  such that

(13)
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Substituting this expression into (9) and using the identity

we obtain the fact that  satisfies the following equation:

(14)

It is not difficult to find an inverse operator to the operator on the left-hand side of the last equation (see
[12] for details). Consider a matrix-valued function  such that

(15)

Then  is the solution of the following differential equation:

This equation (as well as the equivalent equations (9) and (14)) has many solutions. We will choose a solu-
tion that satisfies the conditions , , , . This choice  will lead us to
the sought solution  of Eq. (9) given by (7).

Let  be a sufficiently large number. It was shown in [12] that  is the only solution of the following
integral equation

(16)

where

It follows from estimates (6) that the kernel of the integral operator  satisfies the inequality
 for all , , and . Applying the method of simple itera-

tions to integral equation (16), we obtain the asymptotics

(17)

for , , uniformly with respect to . The above reasoning shows that  admits repre-
sentation (15), where  is the solution of integral equation (16) that satisfies asymptotics (17). Substituting
(15) into (13), we obtain (10).

As a result, we established a factorization theorem for the matrix-valued solution of Eq. (9), which
plays a key role in proving the asymptotics of the eigenvalues of the operator H.

Theorem 2. Let , . Then there exists matrix-valued solution  of Eq. (9) such that every function
, , is analytic in  for sufficiently large  and satisfies the following equality:

(18)

where  is the solution of integral equation (16);  and  are given by (11) and (12), respectively.
According to formula (18), fundamental matrix  can be represented as a product of the simple

matrix , the bounded matrix, and the diagonal matrix. Moreover, the diagonal matrix contains all expo-
nentially increasing terms. Therefore, it becomes convenient to analyze the properties of fundamental
matrix .
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80 POLYAKOV
Formula (18) for factorization of the fundamental matrix  yields the asymptotics of the characteristic
function . As noted above (see formula (3)), the zeros of the function  are the spectrum of operator H.

Let  and  be sufficiently large. It is not difficult to show that

(19)

where

(20)

It follows directly from representation (10) and formula (12) that

(21)

for , . This asymptotics and equality (19) show that the large positive zeros of the function
 coincide with those of . Therefore, it is necessary to transform the determinant of the matrix 

given by (20). Expanding the determinant, we obtain the following asymptotics:

(22)

in sector , where

Substituting asymptotics (21) and (22) into (19), we obtain

(23)

for . The last asymptotics shows that the asymptotic analysis of zeros of the  determinant
 is reduced to the analysis for zeros of the sum of products of  determinants.

Note that asymptotics (8) is sufficiently rough and will not give the sharp asymptotics of zeros of func-
tion . However, by applying the Rouché’s theorem, we calculate the number of zeros in a circle of large
radius as well as their localization. By taking the following iteration terms as an approximation of the solu-
tion of integral equation (16), we improve the asymptotics of fundamental matrix  and, hence, asymp-
totics , . Substituting this sharp asymptotic  into (23), we obtain the spectral asymptotics
(4) and (5) of the zeros of function .
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