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Abstract—We consider the problem of determining the stress-strain state of an orthotropic multicom-
ponent cylinder affected by unsteady surface elastic diffusive perturbations. The coupled system of
elastic diffusion equations in the polar coordinate system is used as a mathematical model. Diffusion
relaxation effects, implying finite rates of diffusion flux propagation, are taken into account. The solu-
tion to this problem is sought in the integral form and is represented as convolutions of Green’s func-
tions with functions defining surface elastodiffusive perturbations. We use the Laplace transform by
time and Fourier series expansion in Bessel functions of the first kind to find Green’s functions. The
Laplace transform inversion is done analytically due to residues and operational calculus tables. An
analytical solution to the problem is obtained. A numerical study of the interaction of mechanical and
diffusion fields in a continuous orthotropic cylinder is performed. We used three-component material
as an example. The cylinder is under pressure, which is uniformly distributed over it surface. We use
three-component material as an example.
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INTRODUCTION

In connection with the rapid development of technologies for the production of modern structural
materials operating under conditions of multifactorial external influences, scientists are increasingly inter-
ested in the question of the interaction of fields of different physical natures in continuous media. To date,
based on the known equations of continuum mechanics, equations of heat and mass transfer, equations of
electrodynamics, and the laws of thermodynamics, models have been built that take into account the
mutual influence of mechanical, temperature, diffusion, electromagnetic, chemical, and other fields. The
most recent publications on this topic are works [1–6], where coupled thermomechanical diffusion pro-
cesses are considered. Electromagnetic fields in continuous media are also studied in [7–10], in addition
to the phenomena of heat and mass transfer.

In the publications listed above, when describing thermal diffusion processes, the generalized Fourier
and Fick laws are used, which take into account the relaxation of thermal and diffusion flows. This is
essential for describing high-frequency processes, examples of which are the propagation of ultrasound,
shock waves, etc. Maxwell was the first to introduce inertia into the heat transfer equations, and in 1958
Cattaneo [11] proposed a variant of the Fourier law with a relaxation term. Vernott [12] and Lykov [13]
independently arrived at the same result. Currently, there are various generalizations of the above laws,
which can be found in [14–18].
19
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The above list of studies does nowhere near fully cover the entire range of issues related to the analysis
of the interaction of various fields of this nature. Proceeding from the closeness to the problem considered
in this paper, the review includes papers devoted mainly to the formulation and solution of linear initial-
boundary value problems in the mechanics of coupled fields. An analysis of these publications, as well as
the publications of other authors, shows that these problems are considered both in the stationary (static)
[4, 8, 9] and nonstationary formulations [2, 3, 5–7, 10], but mainly in a rectangular Cartesian coordinate
system.

When solving problems in various curvilinear coordinate systems, the main problem is finding a system
of eigenfunctions that is a solution to the corresponding Sturm–Liouville problem. Relatively few scien-
tific papers are devoted to this issue, among which we can single out [19–27]. They consider models of
thermomechanical diffusion, which include the analysis of nonstationary processes in single-component
solid and hollow cylinders [19–21, 24, 25], the study of cylindrical Rayleigh waves [22], and polar–sym-
metric perturbations in a half-space [23] and layer [26, 27].

Elastic diffusion processes occurring in a continuous multicomponent orthotropic cylinder of infinite
length, which is under the action of nonstationary elastic-diffusion surface perturbations, are discussed in
this paper. It is assumed that all external influences have a uniform distribution over the surface of the cyl-
inder, which allows us to consider this problem in a one-dimensional formulation.

1. STATEMENT OF THE PROBLEM

An orthotropic solid multicomponent cylinder is considered; on its surface, nonstationary elastic-dif-
fusion perturbations are specified in the form of mechanical pressure and diffusion fields. Differential
equations describing coupled elastic-diffusion processes without taking into account body forces in a
polar-symmetric formulation have the form [28–30]

(1)

The initial conditions are assumed to be zero. The boundary conditions corresponding to the problem
statement are written as follows:

(2)

In formulas (1) and (2), all quantities are dimensionless. Their relationship with their dimensional
counterparts is determined by the following relationships:

(3)

where t is time; ur is the radial component of the mechanical displacement vector; r* is the radial coordi-
nate; ηq is the increment in the concentration of the qth substance in the composition of a multicompo-

nent continuous medium;  and m(q) are the initial concentration and molar mass of the qth component,
respectively; ρ is the density of the continuous medium; τ(q) is the relaxation time of diffusion processes;

 is the coefficient characterizing the deformations arising due to diffusion;  is the self-diffusion
coefficient; R is the universal gas constant; and T0 is the temperature of the continuum. The characteristic
linear size L is chosen so that the dimensionless radius of the cylinder is equal to c12.
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2. SOLUTION ALGORITHM
The solution to the problem is sought in the integral form [29, 30]:

(4)

where Gnm(r, τ), n, m =  are the surface Green’s functions of the problem under consideration, i.e.,
solutions to the following initial boundary value problems:

(5)

(6)

Here, δij is the Kronecker symbol and δ(τ) is the Dirac delta function.
To find Green’s functions, we apply the Laplace transform to (5) and (6). Then we multiply the first

Eq. (5) by rJ1(λnr/c12) and the second by rJ0(λnr/c12) and integrate over r in the interval [0, c12]. We get (the
superscript L denotes the Laplace transform; s is the parameter of the Laplace transform)

(7)

(8)

Here, Jν(z) are the Bessel functions of the first kind of order ν and λn are the roots of the equation
J0(λn) = 0. It was shown in [31] that λn also satisfy the equation J1(λn) + λn (λn) = 0.

To calculate the integrals in (7), we use the formulas obtained in [30, 31]:
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where

(9)

As can be seen, the formulas for transforming differential operators in Eq. (7) can only be applied under
the condition that the parameter c12 in boundary conditions (8) is equal to one. Therefore, we will consider
the problem in a simplified formulation, setting c12 = 1 everywhere below.

Taking into account equalities (9), problem (7), (8) is transformed to the following system of linear
algebraic equations:

Its solution has the form [14]

(10)

Formulas (10) use the following notation:
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Since all functions in (10) and (11) are rational functions of the parameter s, the originals of the
inf luence functions are found analytically using the theory of residues and tables of operational calculus
[30, 32]:

(12)

where sl(λn) are the zeros of the polynomial P(λn, s) and ξj(λn) are the additional zeros of the polynomial
Qq(λn, s) determined by the formulas

3. LIMIT CASES

If we set τq = 0, then we obtain the classical model of elastic diffusion with an infinite propagation
velocity of diffusion flows. For τq → 0, the degree of the polynomial P(λn, s) changes from 2N + 2 to N + 2,
and the following passages to the limit take place for additional zeros:

Then  → ,  → 0 (τq → 0). As a result, we arrive at the solution obtained in [30].

Assuming further  = 0, we pass to the classical models of elasticity and mass transfer for a solid cyl-
inder. We will denote the Green’s functions corresponding to them (r, τ), (r, τ) and represent
them as series similar to (9):
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0. We have (here we take into account that  → 0 for  → 0)

Then, in the space of the Laplace transform, the Green’s functions for uncoupled problems of elasticity
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Finally, assuming in the boundary conditions (2)

and passing to the limit at τ → ∞, we obtain the solution of the static elastic diffusion problem for a solid
cylinder under the action of radially applied loads.

Green’s functions of the corresponding static problem (x) are expressed in terms of the Green’s
functions Gmk(r, τ) of the dynamic problem using the equality [32]

(15)

Transforming convolutions (4) with the help of the indicated passage to the limit, we obtain the solu-
tion of the static problem

where Green’s functions (r) in accordance with Eqs. (10) and (11) have the form

(16)

Based on the passages to the limit considered above, the following conclusions can be drawn:

(1) Since (r) = 0 (based on formulas (16)), we find that the static radial loads on the cylinder sur-
face within the linear model (1), (2) do not affect to the diffusion field inside the cylinder. This agrees with
experimental studies, according to which the diffusion rate in the first approximation is proportional to
the strain rate [33]. Since the strain rate is zero in statics, we also obtain a zero diffusion rate.

(2) For unrelated problems, the static analogues of the Green’s functions (r, τ) in (13) based on the
passage to the limit (15) will be determined as follows:

Using formulas (14), we obtain
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Fig. 1. Displacement field u(r, τ).
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Therefore, taking into account Eq. (16), we have

(17)

i.e., in statics, the solutions of the problem of elastic diffusion and the problem of elasticity coincide. This
means that diffusion processes under static radial loads do not affect the displacement field inside the cyl-
inder.

4. CALCULATION EXAMPLE

As an example, we consider a three-component cylinder (N = 2, independent components zinc  =
0.01, and copper  = 0.045, which diffuse in aluminum). The physical characteristics of this material
[34], after applying the procedure of transition to dimensionless quantities (3), are as follows:

We assume for the calculation in the boundary conditions (2)

Then, calculating convolutions in time (4), we have

(18)

Nλ = 100 partition points were used to calculate the series (18). A further increase in the number of points
does not lead to a visible change in the results.

Figure 1 shows the spacetime distribution of the displacement field inside the cylinder. Next, we com-
pare the solution obtained in the work with the solution of the classical problem of elasticity theory for a
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Fig. 2. Displacements u(0, τ). The solid line is the solution of the elastic-diffusion problem and the dotted line is the solu-
tion of the elastic problem.
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Fig. 3. Displacements u(0, τ). The solid line is the solution of the elastic-diffusion problem and the dotted line is the solu-
tion of the elastic problem.
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solid cylinder (Figs. 2 and 3). It is shown that, starting from a certain moment of time (in this case τ ~ 109),
elastic-diffusion oscillations begin to lag behind elastic ones. A similar effect was established in the simu-
lation of elastic-diffusion vibrations of Bernoulli–Euler and Timoshenko beams in [35, 36].

Figures 4 and 5 demonstrate the influence of relaxation effects on diffusion fields. It is shown that
relaxation effects appear on a certain finite time interval and then disappear.
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Fig. 4. Increment of zinc concentration η1(0, τ). The solid line corresponds to the relaxation time τ(1) = 200 s, the dotted
line corresponds to τ(1) = 100 s, and the dashed line corresponds to τ(1) = 0.

1010 + 1.0 1010 + 1.51010 + 0.50 �

2.0

�1, 10�8

1.0

0

�1.0

�2.0

�3.0

�4.0

Fig. 5. Copper concentration increment η2(0, τ). The solid line corresponds to the relaxation time τ(2) = 200 s, the dotted
line corresponds to τ(2) = 100 s, and the dashed line corresponds to τ(2) = 0.
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Figure 6 shows the solutions of static problems obtained by formulas (16) and (17) (for calculation, we
set  = 1,  = 0). The solid line corresponds to the solution of the elastic-diffusion problem and the
dotted line corresponds to the solution of the elastic one. The coincidence of the solutions of these prob-
lems illustrates equality (17).
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Fig. 6. Displacement field u(r) for a static problem. The solid line is the solution of the elastic-diffusion problem and the
dotted line is the solution of the elastic one.
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CONCLUSIONS

In this paper, we present an algorithm for solving a one-dimensional polar-symmetric nonstationary
problem of elastic diffusion for an orthotropic solid multicomponent cylinder, taking into account the
relaxation of diffusion processes. Influence functions are found that make it possible to determine the dis-
placement fields and increments in the concentrations of the medium components from given surface per-
turbations. To demonstrate the operation of the algorithm, an example is considered that illustrates the
effect of the coupling of mechanical and diffusion fields, as well as the influence of relaxation processes
on diffusion fields in a three-component solid cylinder.

Limiting transitions to uncoupled problems of elasticity and diffusion, as well as to static elastic-diffu-
sion problems, are studied. It is shown that, within the framework of linear models, the interaction of
mechanical and diffusion fields does not manifest itself under static radial loads.

The calculation results are presented in the form of plots of the required fields versus time at various
points of the cylinder.
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