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Abstract—In this paper we intend to describe generalized Lie-type derivations using, among
other things, a generalization for alternative algebras of the result: “If F : A → A is a generalized
Lie n-derivation associated with a Lie n-derivation D, then a linear map H = F −D satisfies
H(pn(x1, x2, . . . , xn)) = pn(H(x1), x2, . . . , xn) for all x1, x2, . . . , xn ∈ A”. Thus, if A is a unital
alternative algebra with a nontrivial idempotent e1 satisfying certain conditions, then a
generalized Lie-type derivation F : A → A is of the form F (x) = λx+Ξ(x) for all x ∈ A, where
λ ∈ Z(A) and Ξ : A → A is a Lie-type derivation.
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1. INTRODUCTION

In this paper, we will deal with the structure named generalized Lie-type derivations of alternative
algebras. For this, we will initially consider some definitions and conventions:

Let A be an algebra not necessarily associative or commutative and consider the following
convention for its multiplication operation: xy · z = (xy)z and x · yz = x(yz) for x, y, z ∈ A, in order
to reduce the number of parentheses. We will denote the associator of A by (x, y, z) = xy · z − x · yz
for x, y, z ∈ A. An algebra A is said to be flexible if (x, y, x) = 0 for all x, y ∈ A. It is known that
alternative algebras are flexible. By [x1, x2] = x1x2 − x2x1 we will denote the usual Lie product of
x1 and x2.

According to [1], “It is a fascinating topic to study the connection between the associative, Lie
and Jordan structures on A. In this field, two classes of mappings are of crucial importance. One of
them consists of mappings, preserving a type of product, for example, Jordan homomorphisms and
Lie homomorphisms. The other one is formed by differential operators, satisfying a type of Leibniz
formulas, such as Jordan derivations and Lie derivations. In the AMS Hour Talk of 1961, Herstein
proposed many problems concerning the structure of Jordan and Lie mappings in associative simple
and prime rings [2]. Roughly speaking, he conjectured that these mappings are all of the proper
or standard forms. The renowned Herstein’s Lie-type mapping research program was formulated
since then. Martindale gave a major force in this program under the assumption that the rings
contain some nontrivial idempotents [3]. The first idempotent-free result on Lie-type mappings was
obtained by Brešar in [4]. Recently, several new articles have also studied the additivity of maps that
maintain new products and derivable maps about new products among them we can mention [5–9].
Also the structures of derivations, Jordan derivations and Lie derivations on (non-)associative rings
were studied systematically by many people (cf. [1–4, 10–19]). It is obvious that every derivation is
a Lie derivation. But the converse is in general not true. A basic question towards Lie derivations
of the associative algebras is that whether they can be decomposed into the sum of a derivation and
a central-valued mapping, see [3, 4, 10–14, 17] and references therein.”
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In [1] the authors proved that, under certain conditions on an alternative ring R, a multiplicative
Lie-type derivation D from R into R can be written as a sum of a derivation and a center valued
map vanishing for each (n− 1)th commutator.

Throughout this paper, we will consider F a field of characteristic different from 2, 3 and A
an unital alternative algebra over F . We also will assume that A has an idempotent element
e1 �= 0, 1 and will denote the idempotent 1− e1 by e2. In this case, A can be represented in the
Pierce decomposition form by A = A11 ⊕A12 ⊕A21 ⊕A22 where A11 = e1Ae1, A12 = e1A(1 − e1),
A21 = (1− e1)Ae1 e A22 = (1− e1)A(1− e1), satisfying the following multiplicative relations, as we
can see in [20, Proposition 3.4]:

(i) AijAjl ⊆ Ail (i, j, l = 1, 2);

(ii) AijAij ⊆ Aji (i, j = 1, 2);

(iii) AijAkl = 0, if j �= k and (i, j) �= (k, l), (i, j, k, l = 1, 2);

(iv) x2ij = 0, for all xij ∈ Aij (i, j = 1, 2; i �= j).

We will denote by aij an element of Aij, and will assume that A satisfies

aA · ei = 0 implies a = 0 (i = 1, 2). (1)

Now consider
a11A12 = {0} = A21a11 implies a11 = 0,

A12a22 = {0} = a22A21 implies a22 = 0.
(2)

In fact we have (1) implies (2). Assuming (1), if a11A12 = {0} = A21a11 so

a11A · e2 = a11(A11 +A12 +A21 +A22) · e2 = (a11A11 + a11A12) · e2 = a11A12.

Therefore, a11A · e2 = {0} and using (1) it will implies a11 = 0. The case where aA · e1 = {0} is
analogous.

Note that any unital prime alternative algebra over a field of characteristic �= 3 with a nontrivial
idempotent satisfies the condition (1), as we can see in Therorem 1 at [21]: ”Let R be a 3-torsion
free alternative ring. So R is a prime ring if and only if aR · b = 0 (or a ·Rb = 0) implies a = 0 or
b = 0 for a, b ∈ R”.

As at [1], let us define the following sequence of polynomials:

p1(x) = x and pn(x1, x2, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn]

for all integers n ≥ 2, then p2(x1, x2) = [x1, x2], p3(x1, x2, x3) = [[x1, x2], x3], etc. Let n ≥ 2 be an
integer. A linear map D : A −→ A is called a Lie n-derivation if

D(pn(x1, x2, . . . , xn)) =

n∑

i=1

pn(x1, x2, . . . , xi−1,D(xi), xi+1, . . . , xn)

for all x1, x2, . . . , xn ∈ A. In particular, a Lie 2-derivation is a Lie derivation and a Lie 3-derivation
is a Lie triple derivation. Lie 2-derivations, Lie 3-derivations and Lie n-derivations are collectively
referred to as Lie-type derivations. A linear map F : A → A is said to be a generalized Lie
n-derivation if there exists a Lie n-derivation D : A → A such that

F (pn(x1, x2, . . . , xn)) = pn(F (x1), x2, . . . , xn)

+

n∑

i=2

pn(x1, x2, . . . , xi−1,D(xi), xi+1, . . . , xn)

for all x1, x2, . . . , xn ∈ A. In particular, a generalized Lie 2-derivation is a linear map F that satisfies

F ([x1, x2]) = [F (x1), x2] + [x1,D(x2)] for all x1, x2 ∈ A,
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where D is a Lie derivation of A. A generalized Lie 2-derivation is a generalized derivation for
the Lie product. Note, that any Lie n-derivation is an example of a generalized Lie n-derivation.
Just like for Lie n-derivations we will also refer to generalized Lie 2-derivations, generalized Lie
3-derivations and generalized Lie n-derivations collectively as generalized Lie-type derivations.

The main purpose of the paper is to describe generalized Lie n-derivation of unital alternative
algebras with idempotents, which satisfy (1).

In a recent work [22], Benkovič proved a result about generalized Lie derivations of unital algebras
with idempotents.

The hypotheses in Benkovič’s theorem [22] allowed the author to make its proof based on calculus
using the Pierce decomposition notion for associative algebras.

The notion of the Pierce decomposition for alternative algebras is similar to that one for
associative algebras. However, this similarity is restricted to its written form, not including its
theoretical structure since the Pierce decomposition for alternative algebras is a generalization of
that classical one for associative algebras.

Taking this fact into account, in the present paper many results can be seen as generalizations
of Benkovič’s results [22] to the class of alternative algebras.

2. PRELIMINARIES AND THE MAIN THEOREM

Let us start with a result that appears in [21] that will be very useful for us what characterize
the commutative center of an alternative ring A:

Lemma 1.
Z(A) ={z11 + z22 : z11 ∈ A11, z22 ∈ A22,

[z11 + z22, A12] = [z11 + z22, A21] = {0}}.

Proof. On the one hand assume that z = z11 + z12 + z21 + z22 ∈ Z(A).
Then ze1 = e1z implies z12 = z21 = 0. Furthermore, for any x12 ∈ A12 and x21 ∈ A21, it follows

that zx12 = x12z and zx21 = x21z that

[z11 + z22, A12] = [z11 + z22, A21] = {0}.
On the other hand, assume that z11 ∈ A11, z22 ∈ A22, and

[z11 + z22, A12] = [z11 + z22, A21] = {0}.
To prove z11 + z22 ∈ Z(A), one only needs to check zii ∈ Z(Aii), i = 1, 2. In fact, for any

r11 ∈ A11 and any r12 ∈ A12, we have

(z11r11 − r11z11)r12 = (z11r11)r12 − (r11z11)r12 = z11(r11r12)− r11(z11r12)

= (r11r12)z22 − r11(r12z22) = r11(r12z22)− r11(r12z22) = 0.

Hence (z11r11 − r11z11)A · e2 = 0. Therefore z11 ∈ Z(A11) by condition of [21, Theorem 4].
Similarly, we can check z22 ∈ Z(A22).

We will follow with a result that is a generalization of Proposition 2.1 in [23].

Proposition 1. The commutative center of A is
Z(A) ={a11 + a22 ∈ A11 +A22 | [a11 + a22, x12] = 0, [a11 + a22, x21] = 0

for all x12 ∈ A12, x21 ∈ A21}. (3)

Furthermore, there exists a unique algebra isomorphism τ : Z(A)e1 → Z(A)e2, such that ax12 =
x12τ(a) and x21a = τ(a)x21 for all x12 ∈ A12, x21 ∈ A21 and for any a ∈ Z(A)e1.
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Proof. In Lemma 1 we saw that Z(A) is of the desired form.
It is easy to see that Z(A) ⊂ {a11 + a22 ∈ A11 +A22 | [a11 + a22, x12] = 0, [a11 + a22, x21] = 0

for all x12 ∈ A12, x21 ∈ A21}. Let a11 + a22 ∈ A11 +A22 be such that [a11 + a22, x12] = 0,
[a11 + a22, x21] = 0 for all x12 ∈ A12, x21 ∈ A21. To show that a11 + a22 ∈ Z(A), we just prove that
[a11 + a22, x11] = 0 and [a11 + a22, x22] = 0 for all x11 ∈ A11, x22 ∈ A22 respectively. Indeed, by
flexible identity linearization we have

[a11 + a22, x11]x12 = (a11x11)x12 − (x11a11)x12

= a11(x11x12)− x11(a11x12)

= (x11x12)a22 − x11(x12a22)

([a11 + a22, x12] = 0 for all x12 ∈ A12)

= x11(x12a22)− x11(x12a22)

= 0

and
x21[a11 + a22, x11] = x21(a11x11)− x21(x11a11)

= (x21a11)x11 − (x21x11)a11

= (a22x21)x11 − a22(x21x11)

([a11 + a22, x21] = 0 for all x21 ∈ A21)

= a22(x21x11)− a22(x21x11)

= 0.

Since [a11 + a22, x11]A12 = 0 = A21[a11 + a22, x11], assumption (1) implies [a11 + a22, x11] = 0 for
all x11 ∈ A11. Similarly, we can prove that [a11 + a22, x22] = 0 for all x22 ∈ A22, whence it follows
that Z(A) ⊃ {a11 + a22 ∈ A11 +A22 | [a11 + a22, x12] = 0, [a11 + a22, x21] = 0 for all x12 ∈ A12, x21 ∈
A21}. Therefore commutative center is of the desired form.

Now by direct calculation using (3) we get Z(A)e1 is a subalgebra of Z(A11) and Z(A)e2
is a subalgebra of Z(A22). Clearly, for each a ∈ Z(A)e1, there exists b ∈ Z(A)e2 such that
a+ b ∈ Z(A). We can write τ(a) = b, because if ax12 = x12b = x12b

′ and x21a = bx21 = b′x21 for
all x12 ∈ A12, x21 ∈ A21 then b = b′ by assumption of (1). That means that there exists a unique
b = τ(a) ∈ Z(A)e2 such that a+ b ∈ Z(A). For any a, a′ ∈ Z(A)e1 and λ ∈ F , we have

(λa)x12 = λ(ax12) = λ(x12τ(b)) = x12(λτ(b)),

x21(λa) = λ(x21a) = λ(τ(b)x21) = (λτ(b))x21,

(a+ a′)x12 = x12(τ(a) + τ(a′)),

x21(a+ a′) = (τ(a) + τ(a′))x21,

and by linearization of flexible identity

(aa′)x12 = a(a′x12) = (a′x12)τ(a) = a′(x12τ(a)) = (x12τ(a))τ(a
′)

= x12(τ(a)τ(a
′)),

x21(aa
′) = (x21a)a

′ = τ(a′)(x21a) = (τ(a′)x21)a = τ(a)(τ(a′)x21)
= (τ(a)τ(a′))x21,

for all x12 ∈ A12 and x21 ∈ A21. Therefore τ(λa) = λτ(a), τ(a+ a′) = τ(a) + τ(a′) and τ(aa′) =
τ(a)τ(a′), by assumption of (1) and the proof of the proposition is now complete.

The following result, taken from [21, Lemma 8] plays a crucial role in this paper.

Proposition 2. For zii ∈ Z(Aii), i = 1, 2, there exists an element z ∈ Z(A) such that zii = zei.
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Proof. Since Aii is 3-torsion free alternative ring we get Z(Aii) ⊆ N (Aii). Let be zii ∈ Z(Aii), it
is clear that eixzii = ziixei holds for all x ∈ A then, [24, Lemma 4], there is an element z ∈ Z(A)
such that zii = zei.

By a simple calculation we can easily see:

Remark 1. Let A be a unital alternative algebra with a nontrivial idempotent e1 and e2 = 1− e1.
For any x ∈ A with x = x11 + x12 + x21 + x22 and for any integer n ≥ 2 we have

pn(x, e1, . . . , e1) = (−1)n−1x12 + x21

and
pn(x, e2, . . . , e2) = x12 + (−1)n−1x21.

In particular, [x, e1] = −x12 + x21 and [x, e2] = x12 − x21.

The main result of the paper is as follows:

Theorem 1. Let A be a unital alternative algebra with a nontrivial idempotent e1 satisfying (1).
Let us assume that

(i) Z(A11) = Z(A)e1,

(ii) Z(A22) = Z(A)e2.

Then any generalized Lie-type derivation F : A → A is of the form F (x) = λx+ Ξ(x) for all
x ∈ A, where λ ∈ Z(A) and Ξ : A → A is a Lie-type derivation.

With the purpose of proving our main theorem, we will initially generalize the result that follows
for alternative algebras.

According to Benkovič [22], “If F : A → A is a generalized Lie n-derivation associated with a Lie
n-derivation D, then a linear map H = F −D satisfies

H(pn(x1, x2, . . . , xn)) = pn(H(x1), x2, . . . , xn) (4)

for all x1, x2, . . . , xn ∈ A. So, it suffices to consider linear maps with property (4). Note that H is
actually a generalized Lie n-derivation whose associated Lie n-derivation is the zero map.”

Proposition 3. Let A be a unital alternative algebra with a nontrivial idempotent e1 satisfying (1).
Let us assume that Z(A11) = Z(A)e1 and Z(A22) = Z(A)e2.
If a linear map H : A → A satisfies

H(pn(x1, x2, . . . , xn)) = pn(H(x1), x2, . . . , xn) (5)

for all x1, x2, . . . , xn ∈ A, then H(x) = λx+ γ(x) for all x ∈ A, where λ ∈ Z(A) and γ : A → Z(A)
is a linear map such that γ(pn(A, . . . , A)) = 0.

Remark 2. The next results are generalizations of the results obtained by Benkovič [22] for
the case of alternative algebras. It is important to observe these results are held because the
following properties the Pierce decomposition for alternative algebras are valid as we can see in [20,
Proposition 3.4]:

(i) (xij , yjk, zki) = 0 if (i, j, k) �= (i, i, i), for all xij ∈ Aij , yjk ∈ Ajk and zki ∈ Aki;

(ii) (xijyij)zij = (yijzij)xij = (zijxij)yij if i �= j for all xij , yij, zij ∈ Aij ;

(iii) xij(yijzjj) = (xijzjj)yij = zjj(xijyij) if i �= j for all xij , yij ∈ Aij , zjj ∈ Ajj;

(iv) xij(ziiyij) = (ziixij)yij = (xijyij)zii if i �= j for all xij , yij ∈ Aij , zii ∈ Aii.
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To make it clearer, we divide the proof of Proposition 3 into some Lemmas. We will start with
this one

Lemma 2. We have H(e1),H(e2) ∈ A11 +A22.

Proof. Using Remark 1 and (5) we have

H(pn(e1, e2, . . . , e2)) = pn(H(e1), e2, . . . , e2) = H(e1)12 + (−1)n−1H(e1)21

and
H(pn(e2, e1, . . . , e1)) = pn(H(e2), e1, . . . , e1) = (−1)n−1H(e2)12 +H(e2)21.

Since H(pn(e1, e2, . . . , e2)) = H(pn(e2, e1, . . . , e1)) = 0, it follows that H(e1)12 = H(e1)21 =
H(e2)12 = H(e2)21 = 0. Therefore, H(e1),H(e2) ∈ A11 +A22.

Lemma 3. Let Z(A) be the commutative center of A, hence we get H(ei)jj ∈ Z(A)ej where
i, j ∈ {1, 2} and i �= j.

Proof. Let us start with n = 2, using Lemma 2 we have

0 = H([ei, xjj]) = [H(ei), xjj ] = [H(ei)jj, xjj ]

for all xjj ∈ Ajj implying H(ei)jj ∈ Z(Ajj). By assumption Z(Ajj) = Z(A)ej , therefore the Lemma
holds to n = 2. Now consider n ≥ 3, xjj ∈ Ajj , xij ∈ Aij and xji ∈ Aji with i �= j arbitrary elements.
We can write

H(pn(ei, xjj, xij , ej , . . . , ej)) = 0,

H(pn(ei, xjj , xji, ei, . . . , ei)) = 0,

pn(H(ei), xjj, xij , ej , . . . , ej) = −xij[H(ei)jj, xjj ],

and
pn(H(ei), xjj , xji, ei, . . . , ei) = [H(ei)jj, xjj]xji.

By assumption of (1) we get [H(ei)jj , xjj] = 0. Hence, H(ei)jj ∈ Z(Ajj) = Z(A)ej and the
Lemma holds to n ≥ 3.

Lemma 4. Let be τ : Z(A)e1 → Z(A)e2 the isomorphism of Proposition 1, α = H(e1)11 −
τ−1(H(e1)22) ∈ A11 and β = H(e2)22 − τ(H(e2)11) ∈ A22, so we get α+ β ∈ Z(A).

Proof. Using the property of τ we have

[H(e1), x12] = H(e1)11x12 − x12H(e1)22 = (H(e1)11 − τ−1(H(e1)22))x12 = αx12,

[H(e2), x12] = H(e2)11x12 − x12H(e2)22 = x12(τ(H(e2)11 −H(e2)22) = −x12β,

for all x12 ∈ A12. Now on the one hand we get,

H(x12) = H([e1, x12]) = H(pn(e1, x12, e2, . . . , e2))

= pn(H(e1), x12, e2, . . . , e2) = pn−1([H(e1), x12], e2, . . . , e2)

= pn−1(αx12, e2, . . . , e2) = αx12.

And on the other hand,

H(x12) = −H([e2, x12]) = −H(pn(e2, x12, e2, . . . , e2))

= −pn(H(e2), x12, e2, . . . , e2) = −pn−1([H(e2), x12], e2, . . . , e2)

= −pn−1(−x12β, e2, . . . , e2) = x12β,

for all x12 ∈ A12. Hence [α+ β, x12] = 0 for all x12 ∈ A12. By a strictly analogous proof, we have
[α+ β, x21] = 0 for all x21 ∈ A21. Therefore α+ β ∈ Z(A).
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Lemma 5. Let the linear map γ : A → A be defined by γ(x) = H(x)− λx for all x ∈ A where
λ = α11 + α22 ∈ Z(A). Then γ satifies the properties of Proposition 3.

Proof. Firstly observe

γ(pn(x1, x2, . . . , xn)) = pn(γ(x1), x2, . . . , xn).

For all xij ∈ Aij with i �= j we have γ(xij) = 0. Indeed,

γ(xij) = H(xij)− λxij = αiixij − (α11 + α22)xij = 0.

Let xii ∈ Aii be as γ(pn(xii, ej , . . . , ej)) = pn(γ(xii), ej , . . . , ej), so γ(xii)ij = 0 for i �= j. Now,

0 = γ(xiixij) = γ(pn(xii, xij , ej , . . . , ej))

= pn(γ(xii), xij , ej , . . . , ej)

= [γ(xii)ii + γ(xii)jj, xij ]

and
0 = γ(xjixii) = γ(pn(xii, xji, ei, . . . , ei))

= pn(γ(xii), xji, ei, . . . , ei)

= [γ(xii)ii + γ(xii)jj, xji].

Therefore, γ(xii) = γ(xii)11 + γ(xii)22 ∈ Z(A) and γ maps into the center of A. By property
γ(pn(x1, x2, . . . , xn)) = pn(γ(x1), x2, . . . , xn) clearly we have γ(pn(A,A, . . . , A)) = 0.

From the Lemmas proved above we have that Proposition 3 holds. Now we are ready to prove
Theorem 1.

Proof of Theorem 1: Let F : A → A be a generalized Lie-type derivation with an asso-
ciated Lie-type derivation D. According to Benkovič [22] we consider H = F −D and clearly
H(pn(x1, x2, . . . , xn)) = pn(H(x1), x2, . . . , xn) for all x1, x2, . . . , xn ∈ A. Now using Proposition 3
we have F (x) = λx+D(x) + γ(x) with λ ∈ Z(A). We observe that Ξ = D + γ is a Lie-type
derivation and Theorem 1 has been proved.

Due to the proof of Theorem 1, we have the following

Theorem 2. Let A be a unital alternative algebra with a nontrivial idempotent e1 satisfying (2).
Let us assume that

(i) Z(A11) = Z(A)e1,

(ii) Z(A22) = Z(A)e2.

Then any generalized Lie-type derivation F : A → A is of the form F (x) = λx+Ξ(x) for all x ∈ A,
where λ ∈ Z(A) and Ξ : A → A is a Lie-type derivation.

As a consequence we have the following result

Corollary 1 ([22], Theorem 2.3). Let A be a unital associative algebra with a nontrivial
idempotent e1 satisfying (2).

Let us assume that

(i) Z(A11) = Z(A)e1,

(ii) Z(A22) = Z(A)e2.

Then any generalized Lie-type derivation F : A → A is of the form F (x) = λx+Ξ(x) for all x ∈ A,
where λ ∈ Z(A) and Ξ : A → A is a Lie-type derivation.
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