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In the paper [1], V.M.Matrosov proposes a method of Lyapunov vector functions which
generalizes the classical method of Lyapunov functions [2] for studying the stability of the
equilibrium state of a dynamic system. He also applies this method [1] for studying conditions
which ensure the boundedness of all solutions to an arbitrary system of differential equations.
Independently of the method of Lyapunov functions, M.A. Krasnosel’skii [3] (see also the paper [4]
by V.G. Zvyagin and S.V.Kornev) applies the technique of operators of translation along trajectories
and rotations of vector fields for developing the method of guiding and preguiding functional families.
This method allows one to study conditions for the existence of at least one bounded solution to
any nonlinear system.

On the other hand, in the papers [5]–[7], we commence to develop a new branch in the theory
of the boundedness of solutions to systems of differential equations, namely, we develop the theory
of the Poisson boundedness of solutions. The Poisson boundedness of a solution means that this
solution does not entirely belong to a certain ball in the phase space, but it returns to this ball
countably many times. The mentioned papers are devoted only to studying conditions, which
ensure the Poisson boundedness of the totality of all solutions to a system; so it makes sense to
study conditions for the existence of at least one Poisson bounded solution to an arbitrary nonlinear
system. In this paper, we develop a technique for studying conditions for the existence of Poisson
bounded solutions; it represents a synthesis of the method of Lyapunov vector functions and the
method of guiding and preguiding functional families. With the help of this method, we establish
sufficient conditions for the existence of Poisson bounded solutions and partially Poisson bounded
solutions. Let us now give exact definitions and statements.

Consider an arbitrary system of differential equations of n variables
dx

dt
= f(t, x), f(t, x) = (f1(t, x), . . . , fn(t, x))

T , (1)

whose right-hand side is given and continuous in R
+ × R

n; here R
+ = {t ∈ R | t � 0}. We assume

that the function f(t, x) satisfies the Lipschitz condition with respect to the variable x and, in
addition, solutions to system (1) are extendable to the whole semiaxis R

+.
In what follows, the symbol ‖·‖ stands for the usual Euclidean norm in R

n, n � 1. We denote
the solution x = x(t) to system (1) that starts at the point (t0, x0) ∈ R

+ ×R
n as x = x(t, t0, x0).
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For any t0 ∈ R
+, we use the denotation R

+(t0) for the set {t ∈ R | t � t0}. We understand a
P-sequence as a nonnegative increasing numerical sequence τ = {τi}i�1 such that lim

i→∞
τi = +∞.

For each P-sequence τ = {τi}i�1, we use the symbol M(τ) for the set
∞⋃

i=1
[τ2i−1; τ2i].

Recall [8] that the solution x = x(t, t0, x0) to system (1) is said to be bounded, if one can find a
value β > 0 for this solution so as to fulfill the condition ‖x(t, t0, x0)‖ � β for all t ∈ R

+(t0).

Definition 1 ([5]). The solution x = x(t, t0, x0) to system (1) is said to be Poisson bounded, if one
can find a P-sequence τ = {τi}i�1, where t0 ∈M(τ), and a value β > 0 such that ‖x(t, t0, x0)‖ � β
for all t ∈ R+(t0)

⋂
M(τ).

In the geometric sense, Definition 1 means that the solution, which starts at a certain time
moment in a ball of radius β > 0 centered at the origin of coordinates, returns to this ball countably
many times. Clearly, if a solution to system (1) is bounded, then it is also Poisson bounded.

For introducing denotations, let us recall (see [9]) certain properties of Lyapunov vector functions.
The derivative of a given continuously differentiable vector function

v(t, x) = (v1(t, x), . . . , vk(t, x))
T , k � 1, (t, x) ∈ R

+ × R
n,

in view of system (1) obeys the equality v̇(t, x) = (v̇1(t, x), . . . , v̇k(t, x))
T , where v̇i(t, x) is the deriva-

tive (in view of system (1)) of the function vi(t, x), 1 � i � k. For vectors ξ = (ξ1, . . . , ξk)
T , η =

(η1, . . . , ηk)
T ∈ R

k we write ξ � η, if ξi � ηi for any 1 � i � k. Let now the following continuous
vector function be given:

g(t, ξ) = (g1(t, ξ), . . . , gk(t, ξ))
T , (t, ξ) ∈ R

+ × R
k.

We write g(t, ξ) ∈W , if g(t, ξ) satisfies the Wazewski condition, i. e., for each 1 � s � k the function
gs(t, ξ) is nondecreasing in variables ξ1, . . . , ξs−1, ξs+1, . . . , ξk; in other words, the condition ξi � ηi,
1 � i � k, i �= s, ξs = ηs implies that gs(t, ξ) � gs(t, η).

The continuously differentiable vector function v(t, x) � (0 ∈ R
k) and the system

dξ

dt
= g(t, ξ), g(t, ξ) ∈W, (2)

are called, respectively, the Lyapunov vector function and the comparison system for system (1), if

v̇(t, x) � g(t, v(t, x)).

In what follows, we always assume that the right-hand side of system (2) satisfies the Lipschitz
condition in the variable ξ. Since the Cauchy problem for system (2) has a unique solution, according
to the Wazewski theorem (see, e. g., [9]), for any point (t0, x0) ∈ R

+ ×R
n the solution x(t, t0, x0) to

system (1), the Lyapunov vector function v(t, x), and the solution ξ(t, t0, v(t0, x0)) to the comparison
system (2) for system (1) are interconnected with all t � t0 by the following inequality:

v(t, x(t, t0, x0)) � ξ(t, t0, v(t0, x0)). (3)

Let us now recall some necessary notions and constructions connected with rotations of vector
fields and operators of translation along trajectories [3] (see also [4]). Let the symbol Bn

r stand
for an n-dimensional ball of radius r in R

n centered at the origin of coordinates. Following [3],
we understand a continuous vector field or, for short, a vector field ψ on Bn

r as any continuous
map ψ : Bn

r → R
n. Clearly, for any vector field ψ on Bn

r we can always consider its narrowing on
the (n− 1)-dimensional sphere Sn−1

r = ∂Bn
r of radius r, i. e., the vector field ψ : Sn−1

r ⊂ Bn
r → R

n.
A vector field ψ on Bn

r is said to be nondegenerate on Sn−1
r , if ψ(x) �= 0 ∈ R

n for all x ∈ Sn−1
r .

One can easily see that any vector field ψ : Bn
r → R

n, which is nondegenerate on Sn−1
r , defines a

continuous map

ζ : Sn−1
r → Sn−1

r , ζ(x) = r
ψ(x)

‖ψ(x)‖ , x ∈ Sn−1
r .
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We understand the rotation γ(ψ, Sn−1
r ) of a nondegenerate on Sn−1

r vector field ψ : Bn
r → R

n as
the degree deg(ζ) ∈ Z of the map ζ : Sn−1

r → Sn−1
r . One can easily find the integer value deg(ζ),

for example, with the help of the functor Hn−1(−;Z) of singular (n− 1)-dimensional homologies of
topological spaces with integer coefficients [10]. Really, a continuous map ζ : Sn−1

r → Sn−1
r induces

a homomorphism of groups of singular homologies

Hn−1(ζ;Z) : Hn−1(S
n−1
r ;Z) → Hn−1(S

n−1
r ;Z).

As is well known (see, for example, [10]), the group Hn−1(S
n−1
r ;Z) is isomorphic to the group Z, and

the generator of this group is the fundamental class [Sn−1
r ] of the closed oriented smooth manifold

Sn−1
r . In terms of the group homomorphism Hn−1(ζ;Z) and the fundamental class [Sn−1

r ], the map
degree deg(ζ) ∈ Z obeys the formula

Hn−1(ζ;Z)([S
n−1
r ]) = deg(ζ)[Sn−1

r ].

We treat the subset Tr(x0) = {x ∈ R
n | x = x(t, 0, x0), t � 0} ⊂ R

n, where x(t, 0, x0) is the solution
to system (1), while x0 is an arbitrary point in R

n, as the trajectory of system (1) that starts at
the point x0. For arbitrarily fixed τ > 0, let us consider a continuous map

u(τ) : Bn
r → R

n, u(τ)(x0) = x(τ, 0, x0),

where x(t, 0, x0) is the solution to system (1) and x0 is an arbitrary point in Bn
r . The map u(τ) is

said to be [3] the operator of translation along trajectories of system (1) within time 0 � t � τ . We
understand a τ -irrevocability point of a trajectory of system (1) [3] as a point x0 ∈ R

n such that
the solution x(t, 0, x0) to system (1) satisfies the condition x(t, 0, x0) �= x0 with all 0 < t � τ . Let
us now consider the vector field

ψ0 : B
n
r → R

n, ψ0(x) = −f(0, x),
where f(t, x) is the right-hand side of system (1). The rotation γ(ψ0, S

n−1
r ) of this vector field is

closely connected with the problem of the existence of fixed points of the operator u(τ) of translation
along trajectories of system (1). Really, in [3], M.A.Krasnosel’skii proves that if a nondegenerate
on Sn−1

r vector field ψ0 : B
n
r → R

n has the rotation γ(ψ0, S
n−1
r ) �= 0 and all points in Sn−1

r are
τ -irrevocability points of trajectories of system (1), then inside Bn

r there exists at least one fixed
point x ∈ Bn

r �S
n−1
r of the operator u(τ) of translation along trajectories of system (1) (i. e., such

a point that u(τ)(x) = x). Below we use the following notions. We treat subsets

Tr+(x0, t0) = {x ∈ R
n | x = x(t, t0, x0), t > t0} ⊂ R

n,

Tr−(x0, t0) = {x ∈ R
n | x = x(t, t0, x0), 0 � t � t0} ⊂ R

n,

where x(t, t0, x0) is the solution to system (1), while (t0, x0) is an arbitrary point in R
+ × R

n,
correspondingly, as the right- and left-hand part of the trajectory Tr(x(0, t0, x0)) of system (1).

Let us now formulate and prove the following sufficient condition for the existence of Poisson
bounded solutions to system (1).

Proposition 1. Assume that for system (1) one can find a P-sequence τ = {τi}i�1, a nonincreasing
function b : R+ → R

+ such that b(r) → +∞ as r → +∞, and a Lyapunov vector function v(t, x)
with comparison system (2) such that the inequality

b(‖x‖) �
k∑

i=1

vi(t, x) (4)

is valid with any (t, x) ∈M(τ)× R
n. Assume also that there exists a value r > 0 such that the

following conditions are fulfilled:
1) for any 
0 ∈ Sk−1

r the right-hand part Tr+(
0, t0) of the trajectory Tr(
(0, t0, 
0)) of the system

d


dt
= p(t, 
), (t, 
) ∈ R

+ × R
k, p(t, 
) = g(t, 
 + r), r = (r, . . . , r) ∈ R

k, (5)
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where g(t, ξ) is the right-hand side of system (2), in Bk
r has no common point with the left-hand

part Tr−(
0, t0) of this trajectory;

2) vector field ψ0 : B
k
r → R

k, ψ0(
) = −p(0, 
), is nondegenerate on Sk−1
r and γ(ψ0, S

k−1
r ) �= 0;

3) Bk
r (r) = {ξ ∈ R

k | ‖ ξ − r‖ � r} ⊂ Im (v : {0} × R
n → R

k).

Then system (1) has at least one Poisson bounded solution.

Proof. For each integer m � 1 let us consider the operator of translation u(m) : Bk
r → R

k along
trajectories of system (5) within time 0 � t � m. Condition 1) of the theorem implies that for
any m � 1 all points in Sk−1

r are m-irrevocability points of trajectories of system (5). In addition,
according to condition 2) of the theorem, γ(ψ0, S

k−1
r ) �= 0. As was mentioned above, this means

that for each m � 1 the translation operator u(m) has a fixed point ϑm ∈ Bk
r�S

k−1
r . Consider the

family of solutions {
(t, 0, ϑm)}m�1 to system (5). Condition 2) of the mentioned theorem implies
that 
(t, 0, ϑm) ∈ Bk

r �S
k−1
r with any 0 � t � m. Really, assuming the contrary, we conclude that

for some point 
0 = 
(t0, 0, ϑm) ∈ Tr(ϑm), where 0 < t0 < m and 
0 ∈ Sk−1
r ,

Tr+(t0, 
0) ∩ Tr−(t0, 
0) ∩Bk
r = {ϑm} �= ∅,

but this contradicts condition 2) of the theorem. Consider in Bk
r �S

k−1
r the sequence of points

(ϑm)m�1. Since the set Bk
r is compact, we can choose in the sequence (ϑm)m�1 a subsequence

(ϑmi)i�1 which converges to some point μ ∈ Bk
r . Let us prove that the solution 
(t, 0, μ) to system (5)

with all t � 0 satisfies the condition 
(t, 0, μ) ∈ Bk
r . Assume the contrary. Then there exists a

number η ∈ R
+ such that 
(η, 0, μ) �∈ Bk

r . Since the comparison system (2) satisfies assumptions of
the theorem about the continuous dependence on initial conditions (see, for example, [11]), so does
system (5). Therefore, 
(η, 0, ϑmi) �∈ Bk

r with sufficiently large i and η � mi. This contradicts the
fact that


(t, 0, ϑmi) ∈ Bk
r �S

k−1
r ⊂ Bk

r with all 0 � t � mi.

Thus, we have proved that 
(t, 0, μ) ∈ Bk
r , i. e., ‖
(t, 0, μ)‖ � r for any t � 0. Let us now prove that

system (1) has a Poisson bounded solution x(t, 0, x0) with certain x0 ∈ R
n. Since the change of

variables ξ = 
+ r in system (2) turns it into system (5), the solution ξ(t, 0, μ + r) = 
(t, 0, μ) + r

to system (2) satisfies the condition ξ(t, 0, μ + r) ∈ Bk
r (r) with all t � 0. Since μ+ r ∈ Bk

r (r),
condition 3) of the theorem implies that there exists a point (0, x0) ∈ {0} ×R

n such that v(0, x0) =
μ+ r. Let us choose R > r such that Bk

r (r) ⊂ Bk
R. Clearly, ‖ξ(t, 0, μ + r)‖ � R with all t � 0.

Making use of inequalities (4) and (3), we get the following inequalities for the solution x(t, 0, x0)
of system (1) and the solution ξ(t, 0, v(0, x0)) of the comparison system (2):

b(‖x(t, 0, x0)‖) �
k∑

i=1

vi(t, x(t, 0, x0)) �
k∑

i=1

ξi(t, 0, v(0, x0));

these inequalities are valid with all t ∈M(τ). Moreover, for any t � 0 we get evident inequalities
k∑

i=1

ξi(t, 0, v(0, x0)) �
k∑

i=1

| ξi(t, 0, v(0, x0))| � k‖ ξ(t, 0, v(0, x0))‖.

Since v(0, x0) = μ+ r, we conclude that ‖ξ(t, 0, v(0, x0))‖ � R with all t � 0. Hence and from above
inequalities we conclude that b(‖x(t, 0, x0)‖) � kR with all t ∈ R

+(0)
⋂
M(τ). Making use of the

fact that b(r) → +∞ as r → +∞, while the value kR is fixed, we can choose a number β > 0 such
that kR � b(β). Consequently, we conclude that b(‖x(t, 0, x0)‖) � b(β) for all t ∈ R

+(0)
⋂
M(τ).

Since the function b(r) is nonincreasing, the latter inequality implies that ‖x(t, 0, x0)‖ � β with all
t ∈ R

+(0)
⋂
M(τ). Therefore, we have proved the Poisson boundedness of the solution x(t, 0, x0)

to system (1).
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In what follows, for each x = (x1, . . . , xn)
T ∈ R

n, n � 2, and any fixed 1 � m < n we use the
notation x = (y, z), where y = (x1, . . . , xm)T ∈ R

m and z = (xm+1, . . . , xn)
T ∈ R

n−m.
Recall [9] that the solution x(t, t0, x0) to system (1) is said to be y-bounded, if for this solution

there exists a number β > 0 such that ‖y(t, t0, x0)‖ � β for all t ∈ R
+(t0).

Definition 2 ([5]). The solution x = x(t, t0, x0) to system (1) is said to be Poisson y-bounded, if
for this solution one can find a P-sequence τ = {τi}i�1, where t0 ∈M(τ), and a number β > 0 such
that ‖y(t, t0, x0)‖ � β for all t ∈ R+(t0)

⋂
M(τ).

One can easily see that if a solution to system (1) is y-bounded, then it also is Poisson y-bounded.
The next proposition represents a sufficient condition for the existence of Poisson y-bounded

solutions to system (1). Its proof is analogous to the proof of Proposition 1,

Proposition 2. Assume that all conditions of Theorem 1 with the inequality b(‖y‖) � ∑k
i=1 vi(t, x)

in place of formula (4) are fulfilled. Then system (1) has at least one Poisson y-bounded solution.

Let us now recall some necessary properties of guiding functions and their indices [3]. A
continuously differentiable function η : Rn → R is said to be r0-nondegenerate, if grad η(x) �= 0 ∈ R

n

for all x ∈ R
n, ‖x‖ � r0. This condition implies that the vector field grad η : Bn

r0 → R
n is

nondegenerate on Sn−1
r0 and, consequently, defined is the rotation γ(grad η, Sn−1

r0 ) of this vector field.
In [3], M.A.Krasnosel’skii proves that since for any r > r0 the corresponding vector field grad η :
Bn

r → R
n, evidently, is nondegenerate on Sn−1

r , the equality γ(grad η, Sn−1
r ) = γ(grad η, Sn−1

r0 ), is
valid. The index of an r0-nondegenerate function η is the integer number ind(η) that obeys the
formula

ind(η) = γ(grad η, Sn−1
r0 ) = γ(grad η, Sn−1

r ), r > r0.

A continuously differentiable function η : Rn → R is said to be r0-guiding for system (1), if the
following condition is fulfilled:

(grad η(x), F (t, x)) > 0, t � 0, ‖x‖ � r0. (6)

According to condition (6), any r0-guiding function is an r0-nondegenerate function and, conse-
quently, for any r0-guiding function η its index ind(η) is defined. In [3], M.A.Krasnosel’skii proves
that if for system (1) there exists an r0-guiding function η, then for any r � r0 the rotation of the
vector field ψ0 : B(r) → R

n, ψ0(x) = −f(0, x), where f(t, x) is the right-hand side of system (1),
and the index of the r0-guiding function η are interconnected by the following equality:

γ(ψ0, S
n−1
r ) = (−1)nind(η). (7)

In what follows, we understand an r0-guiding functional family as any set of r0-guiding functions
η0, η1, . . . , ηq for system (1), where q � 1. Note that as distinct from the notion of a complete set
of r0-guiding functions [4], here we do not impose the following condition:

lim
‖x‖→+∞

(|η0(x)|+ |η1(x)|+ · · ·+ |ηq(x)|) = +∞.

Equality (7) implies that for any r0-guiding functional family η0, η1, . . . , ηq and any r � r0 the
following equalities are valid:

ind(η0) = ind(η1) = · · · = ind(ηq) = (−1)nγ(ψ0, S
n−1
r ). (8)

Let us now formulate (in terms of Lyapunov vector functions and guiding functional families) and
prove the following sufficient condition for the existence of Poisson bounded solutions to system (1).

Theorem 1. Assume that for system (1) one can find a P-sequence τ = {τi}i�1, a nonincreasing
function b : R+ → R

+ such that b(r) → +∞ as r → +∞, and a Lyapunov vector function v(t, x)
with the comparison system (2) such that inequality (4) is valid with any (t, x) ∈M(τ)×R

n. Assume
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also that there exist numbers r1 > r0 and an r0-guiding functional family η0, η1, . . . , ηq for system (5)
with r = r1, which satisfy the following conditions:

1) ind(η0) �= 0;

2)
q∑

i=0
|ηi(
)| >

q∑

i=0
(|mi|+ |Mi|) with all 
 ∈ R

k, ‖
‖ = r1, where

mi = min
‖�‖�r0

ηi(
), Mi = max
‖�‖�r0

ηi(
), 0 � i � q;

3) Bk
r1(r1) = {ξ ∈ R

k | ‖ ξ − r1‖ � r1} ⊂ Im (v : {0} × R
n → R

k).
Then system (1) has at least one Poisson bounded solution.

Proof. Consider the vector field ψ0 : B
k
r1 → R

k that obeys the formula ψ0(
) = −p(0, 
), where
p(t, 
) is the right-hand side of system (5). Condition 1) of the theorem and equality (9) imply that
γ(ψ0, S

k−1
r1 ) �= 0. Let us now prove that for any point 
0 ∈ Sk−1

r1 the right-hand part Tr+(
0, t0) of
the trajectory Tr(
(0, t0, 
0)) of system (5) in Bk

r1 has no common point with the left-hand part
Tr−(
0, t0) of this trajectory. Condition 2) of the theorem implies that for each point 
0 ∈ Sk−1

r1 there
exists a number 0 � i0 � q such that ηi0(
0) < mi0 or ηi0(
0) > Mi0 . Let ηi0(
0) < mi0 . Consider
the function ϕ(t) = ηi0(
(t, t0, 
0)), t � 0, and its derivative

ϕ′(t) =
d(ηi0(
(t, t0, 
0))

dt
= (grad ηi0(
(t, t0, 
0)), g(t, 
(t, t0 , 
0))), t � 0.

Since the function ηi0 is an r0-guiding function for system (5), the inequality ϕ′(t) > 0 is valid with
all t � 0 such that ‖
(t, t0, 
0)‖ � r0. Evidently, ϕ(t0) < mi0 and ϕ(t) � mi0 for all t � 0 such that
‖
(t, t0, 
0)‖ � r0. This means that Tr−(
0, t0) ∩Bk

r0 = ∅, because the function ϕ(t) is increasing
for all t � 0 such that ‖
(t, t0, 
0)‖ � r0. Clearly, the condition Tr−(
0, t0) ∩Bk

r0 = ∅ implies that

Tr+(
0, t0) ∩ Tr−(
0, t0) ∩Bk
r0 = ∅.

Moreover, the fact that the function ϕ(t) is increasing with all t � 0 such that ‖
(t, t0, 
0)‖ � r0
implies that

Tr+(
0, t0) ∩ Tr−(
0, t0) ∩
(
Bk(r1)�Bk(r0)

)
= ∅.

Therefore, in the case, when ηi0(
0)<mi0 , the right-hand part Tr+(
0,t0) of the trajectory
Tr(
(0, t0, 
0)) of system (5) in Bk

r1 has no common point with the left-hand part Tr−(
0, t0) of
this trajectory. We can prove in the same way that in the case, when ηi0(
0) > Mi0 , the right-
hand part Tr+(
0, t0) of the trajectory Tr(
(0, t0, 
0)) of system (5) has in Bk

r1 no common point
with the left-hand part Tr−(
0, t0) of this trajectory. Therefore, we have proved that all conditions
in Proposition 1 with r = r1 are fulfilled and, consequently, system (1) has at least one Poisson
bounded solution.

The next theorem gives a sufficient condition for the existence of Poisson y-bounded solutions
to system (1).

Theorem 2. Assume that all conditions of Theorem 1 with the inequality b(‖y‖) � ∑k
i=1 vi(t, x) in

place of formula (4) are fulfilled. Then system (1) has at least one Poisson y-bounded solution.

Proof is analogous to the proof of Theorem 1.

Let us now consider (following [4]) a family of continuously differentiable functions νi : Rn → R,
0 � i � q, q � 1, for system (1), which satisfies the following conditions:

1) the function ν0 is r0-nondegenerate and ind(ν0) �= 0;
2) (grad νi(x), f(t, x)) � 0, 0 � i � q, t � 0, ‖x‖ � r0;
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3)
(

q∑

i=0
grad νi(x), f(t, x)

)

> 0, t � 0, ‖x‖ � r0.

In what follows, we treat any (mentioned above) family of functions νi : Rn → R, 0 � i � q, as an
r0-prequiding functional family for system (1). Analogously to the paper [4], we can make sure that
any r0-prequiding functional family ν0, ν1, . . . , νq for system (1) defines the r0-guiding functional
family η0, η1, . . . , ηq for system (1) that obeys formulas

η0 =

q∑

i=0

νi, ηi = η0 + νi, 1 � i � q. (9)

Theorem 1 implies the following sufficient condition for the existence of Poisson bounded solutions
to system (1) stated in terms of Lyapunov vector functions and preguiding functional families.

Corollary 1. Assume that for system (1) one can find a P-sequence τ = {τi}i�1, a nonincreasing
function b : R+ → R

+ such that b(r) → +∞ as r → +∞, and a Lyapunov vector function v(t, x)
with comparison system (2) such that inequality (4) is valid with any (t, x) ∈M(τ)× R

n.
In addition, assume that there exist numbers r1 > r0 and an r0-preguiding functional family
ν0, ν1, . . . , νq for system (5) with r = r1 such that these numbers and the r0-guiding functional
family η0, η1, . . . , ηq defined by formulas (9) satisfy conditions 1) – 3) of Theorem 1. Then system (1)
has at least one Poisson bounded solution.

Theorem 2 has the following corollary, which gives a sufficient condition for the existence of
Poisson y-bounded solutions to system (1).

Corollary 2. Assume that all conditions of Corollary 1 with the inequality b(‖y‖) � ∑k
i=1 vi(t, x)

in place of formula (4) are fulfilled. Then system (1) has at least one Poisson y-bounded solution.
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