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Abstract—We prove a combinatorial identity containing k-order differences of sequences, as
well as binomial coefficients. The Euler summation operation implies the calculation of all
order differences of terms of the initial series. The regularity of the summing function means
the coincidence with the “ordinary” sum of the series, provided that this sum exists. The
proved combinatorial identity allows one to easily prove the regularity of the Euler summation
operation.
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1. INTRODUCTION
For calculating the sum of a series γ =

∑∞
n=0 un, it is necessary to define the summation rule.

According to the standard and most widely used definition of the sum, s0(γ) = limn→∞
∑k=n

k=0 uk.
But this is not the only way to map a series γ to its sum s(γ). Such techniques are called summing
functions. A summing function s has a sense if, at least, it obeys the regularity and linearity rules.

Definition 1 ([1], Ch. 15, §2). A summing function is a transform s that maps some numerical
series γ =

∑
n un to the value s(γ) satisfying the following rules.

Regularity : if the series γ converges in the usual sense and its sum equals s0(γ), then the value
s(γ) exists and coincides with s0(γ). In particular, if γ is a finite sum, then s(γ) coincides with the
usual arithmetic sum of nonzero terms of the series γ.

Linearity : if series γ, β are s-summable, then for any numbers a, b the series aγ + bβ is also
s-summable, and s(aγ + bβ) = as(γ) + bs(β).

The standard summation operation is regular by definition, and it is also linear. One of significant
summation procedures for numerical series was proposed by L. Euler (see, e.g., [1], Ch. 14, § 5). One
should first define the sequence of the first differences for the sequence u0, u1, u2, u3, . . .. This new
sequence is Δu0,Δu1,Δu2, . . . , where Δun = un − un+1 with n = 1, 2, 3, . . . . We understand the
sequence of the kth differences for u0, u1, u2, . . . as the sequence of the first differences of the sequence
of (k − 1)th differences, namely,

Δku0,Δ
ku1,Δ

ku2, . . . ,

where Δkun = Δ(Δk−1un) = Δk−1un −Δk−1un+1.
It is convenient to write terms of sequences of the kth differences for various k in the triangular

table

u0 u1 u2 u3 u4

Δu0 Δu1 Δu2 Δu3 . . .

Δ2u0 Δ2u1 Δ2u2 . . . . . .

Δ3u0 Δ3u1 . . . . . . .
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For example, for a sequence of powers of two, this triangle takes the form

1 2 4 8 16

−1 −2 −4 −8 . . .

1 2 4 . . . . . .

−1 −2 . . . . . . .

(1)

Applying the induction method with respect to k and using the main recurrent correlation
between binomial coefficients, we can prove the formula

Δkun = un − C1
kun+1 + C2

kun+2 − . . . + (−1)kun+k; (2)

here Cm
k = k!

m!(k−m)! are binomial coefficients. It suffices to verify this formula for n = 0. Let us
apply the mathematical induction method. For k = 1 this formula is valid, because its right-hand
side turns into u0 −C1

1u1 = u0 − u1, which coincides with Δ1u0. Let us now assume that formula (2)
is valid for n = 0 and for some k. Then

Δk+1u0 = Δku0 −Δku1 =

= (u0 −C1
ku1 + C2

ku2 − . . . + (−1)kuk)− (u1 − C1
ku2 + C2

ku3 − . . . + (−1)k+1u1+k) =

= u0 − (C1
k + 1)u1 + (C2

k + C1
k)u2 − . . . + ((−1)k + (−1)kCk

k )uk + (−1)k+1u1+k =

= u0 − C1
k+1u1 + C2

k+1u2 − . . .+ (−1)kCk
k+1uk + (−1)k+1uk+1.

Definition 2 ([1], Ch. 14, §5). The Euler transform of a series
∞∑

n=0
(−1)nun is the transition from

this series to that
∞∑

n=0

Δnu0
2n+1

=
1

2
u0 +

1

4
Δu0 +

1

8
Δ2u0 + · · · . (3)

For n = 0, by definition, Δnum = um. We sum the series γ =
∞∑

n=0
(−1)nun in the sense of Euler,

provided that there exists the limit

sE(γ) = lim
n→∞

k=n∑

k=0

Δku0
2k+1

; (4)

this limit value is said to be the Euler sum of the series γ.

The linearity of the Euler summation operation follows from the linearity of the limit transition
and the linearity of the operation of forming the sequence of the first and, more generally, any
difference. In the next theorem, we study the regularity of the Euler summation operation.

Theorem. If the series
∑∞

n=0(−1)nun converges, then so does its Euler transform, and sums of
these two series coincide.

Here one does not assume that un ≥ 0; the sign (−1)n is used only for technical reasons. The
proof of this theorem is described in ([1], Ch. 14, §5); it occupies three pages and essentially uses
the Markov theorem on double series. In Section 3, we briefly describe the proof of the regularity
of the Euler summation; it is based on the combinatorial identity (11) which is proved below and
constitutes the original part of this paper.
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Let us prove that in the case when the sum u0 − u1 + · · ·+ (−1)NuN is finite, the theorem is valid
(this consideration is not necessary for the short proof of the theorem and identity (11)). Denote
wn = (−1)nun. By formula (2),

Δnu0 = w0 + C1
nw1 + C2

n + · · · +Cn
nwn.

Since
∞∑

n=0

Δnu0
2n+1

=

∞∑

n=0

w0 + C1
nw1 + · · ·+ Cn

nwn

2n+1
=

N∑

k=0

wk

∑

n≥k

Ck
n

2n+1
,

it remains to prove the equality
∑

n≥k

Ck
n

2n+1
= 1

for any fixed k = 0, 1, 2, . . . . Let us prove it by induction with respect to k. The induction base,
i. e., the case k = 0, follows from the formula for the sum of a geometric progression, namely,

∑

n≥0

C0
n

2n+1
=

1

2
+

1

4
+

1

8
+ · · · = 1.

Denote Xk :=
∑

n≥k
Ck

n
2n+1 . Again using the main correlation for binomial coefficients (Ck

n =

Ck
n−1 + Ck−1

n−1), we conclude that

Xk =
1

2k+1
+

∑

n≥k+1

Ck
n−1 + Ck−1

n−1

2n+1
=

1

2k+1
+

1

2

∑

n−1≥k

Ck
n−1

2(n−1)+1
+

+
1

2

∑

n−1≥k

Ck−1
n−1

2(n−1)+1
=

1

2k+1
+

1

2
Xk +

1

2

(

Xk−1 − 1

2k

)

=
1

2
Xk +

1

2
Xk−1,

whence we get the equality Xk = Xk−1. Consequently, all Xk are equal to one.
The Euler summation is much stronger. Namely, let us calculate the Euler sum of the series

1− 2 + 4− 8 + · · · ; according to formula (1), it equals the standard sum

1

2
− 1

4
+

1

8
− 1

16
+ · · · = 1/2

1 + 1/2
=

1

3
.

However, we do not calculate the Euler sum of the series formed by powers of two, i. e., 1 + 2 + 4 +
8 + 16 + · · · , because for this series un = (−1)n2n, n ≥ 0, and

Δnu0 = 1 + C1
n · 2 + C2

n · 4 + · · · + Cn
n · 2n = (1 + 2)n = 3n.

We get the following divergent geometric progression:
∑

n≥0
3n

2n+1 . Note that in the 3-adic topology
of rational numbers, this geometric progression converges to the value −1, which remarkably
coincides with the sum

∑
n≥0 2

n = 1
1−2 = −1 in the 2-adic topology.

2. THE COMBINATORIAL IDENTITY
For the sequence a0, a1, a2, a3, . . ., we denote partial sums

s0 = a0, s1 = a0 + a1, s2 = a0 + a1 + a2, . . . , sn+1 = sn + an+1

and differences of the alternate sequence a1,−a2, a3,−a4, . . .

Δ0 = a0, Δk = a0 + C1
ka1 + C2

ka2 + · · ·+ Ck−1
k ak−1 + ak =

k∑

j=0

Cj
kaj . (5)
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Let us find coefficients xk0, x
k
1 , x

k
2 , . . . x

k
k such that the correlation

1

2
Δ0 +

1

4
Δ1 +

1

8
Δ2 + · · ·+ 1

2k+1
Δk = xk0s0 + xk1s1 + . . .+ xkksk (6)

takes place for any aj.

First, let us substitute expressions a0 = 1 and aj = 0 for all j > 0 in formula (6). Calculate
sj = 1 = Δj, which is true for any j, whence we get the correlation

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k+1
= xk0 + xk1 + . . .+ xkk.

Consequently,

xk0 + xk1 + . . .+ xkk = 1− 1

2k+1
. (7)

Second, let us substitute expressions aj = λj with j = 0, 1, . . . , k in formula (6). Then by the
binomial formula, Δt = (1 + λ)t. Let us transform the left-hand side of the desired identity (6) by
using the formula for the sum of a geometric progression, namely,

1

2
+

1

4
(1 + λ) +

1

8
(1 + λ)2 + · · ·+ 1

2k+1
(1 + λ)k =

1

2

1
2k+1 (1 + λ)k+1 − 1

1/2(1 + λ)− 1
=

1
2k+1 (1 + λ)k+1 − 1

λ− 1
.

Let us now transform the right-hand side, taking into account formula (7). We get the expression

xk0 + xk1(1 + λ) + xk2(1 + λ+ λ2) + · · ·+ xkk(1 + λ+ λ2 + · · · + λk) =

= xk0
1− λ

1− λ
+ xk1

1− λ2

1− λ
+ xk2

1− λ3

1− λ
+ · · ·+ xkk

1− λk+1

1− λ
=

=
1

1− λ

(

1− 1

2k+1

)

− λ

1− λ

(
xk0 + xk1λ+ xk2λ

2 + · · ·+ xkkλ
k
)
.

Equating the left- and right-hand sides, concurrently multiplying them by λ− 1 and dividing by −1,
we get the correlation

1

2k+1
(1 + λ)k+1 =

1

2k+1
+ λ

(
xk0 + xk1λ+ xk2λ

2 + · · · + xkkλ
k
)
.

Consequently,

1

2k+1

(1 + λ)k+1 − 1

λ
= xk0 + xk1λ+ xk2λ

2 + · · · + xkkλ
k. (8)

For calculating xkt let us use the Cramer’s rule, replacing λ in formula (8) in rotation with pairwise
distinct nonzero values λ0, λ1, λ2, · · · , λk. As a result, we get the linear system of k + 1 equations
with k + 1 unknowns and the Vandermonde determinant

W = (λ1 − λ0) . . . (λk − λ0)(λ2 − λ1) . . . (λk − λ1) . . . (λk − λk−1) �= 0.

Let us now calculate the determinant Dt of the matrix obtained from W by replacing its tth column
with that

S :=

(
1

2k+1

(1 + λ0)
k+1 − 1

λ0
, . . . ,

1

2k+1

(1 + λk)
k+1 − 1

λk

)�
,

i. e., with the column of free terms in the linear system mentioned above. Expand

1

2k+1

(1 + λ)k+1 − 1

λ
=

1

2k+1
((k + 1) +C2

k+1λ+ · · · + Ct+1
k+1λ

t + · · ·+ λk). (9)
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Substituting the column S at the tth place in the matrix W and expand it into the sum of k
determinants in accordance with formula (9), we make all terms except that with the column

Ct+1
k+1

2k+1
(λt

0, λ
t
1, . . . , λ

t
k)

�,

vanish. The reason is that each of them contains two proportional columns (for example, for the
term, where the determinant contains the column (k + 1)/2k+1(1, 1, 1, . . . , 1)� at the tth place, we
get the proportionality with the first column, the column C2

k+1/2
k+1(λ0, λ1, · · · , λk)

� appears to
be proportional to the second one and so one). The unique nonzero term containing the column

mentioned above gives the value Dt =
Ct+1

k+1

2k+1 W . Consequently, by applying the Cramer formula
xkt = Dt/W we obtain the correlation

xkt =
Ct+1
k+1

2k+1
=

(k + 1)k . . . (k − t+ 1)

2k+1(t+ 1)!
. (10)

We have proved that coefficients (10) are appropriate for at = λt and turn formula (6) into
the equality. Note that rows (1, λj , λ

2
j , . . . , λ

k
j ) for pairwise distinct λ0, λ1, . . . , λk form a basis in

the space of k + 1-dimensional vectors, because the determinant of the matrix composed of these
rows, i. e., W , differs from zero. The summation operation st, as well as operations Δt are linear.
Consequently, if numbers (10) are appropriate for some basis, then they also are appropriate for
any row (a0, a1, . . . , ak).

In conclusion, we immediately verify equality (7), namely,

xk0 + xk1 + . . .+ xkk =
k∑

t=0

Ct+1
k+1

2k+1
=

1

2k+1

(
k∑

t=−1

Ct+1
k+1 − 1

)

=

=
1

2k+1

(
k+1∑

m=0

Cm
k+1 − 1

)

=
1

2k+1

(
2k+1 − 1

)
= 1− 1

2k+1
.

Thus, we deduce the main result of this paper, namely, the combinatorial identity
1

2
Δ0 +

1

4
Δ1 +

1

8
Δ2 + · · ·+ 1

2k+1
Δk =

1

2k+1

[
C1
k+1s0 + C2

k+1s1 + · · · +Ck+1
k+1sk

]
(11)

or

Δ0 +
1

2
Δ1 +

1

22
Δ2 + · · ·+ 1

2k
Δk =

1

2k

[
C1
k+1s0 + C2

k+1s1 + · · ·+ Ck+1
k+1sk

]
.

Note that the value written at the left of the equality sign in formula (11) is the kth partial sum
of the series that defines the Euler sum of the series a0 − a1 + a2 − a3 + · · · . Let us mention the
following corollary.

Corollary. All values xkt (t = 0, 1, 2, . . . , k) are positive, and their sum for t ∈ [0; k]N is less than
one by the value 1/2k+1 (see formula (7)).

Equating coefficients at at in formula (11), we get the correlation

1

2t+1
+

C1
t+1

2t+2
+ · · · + Ct

k

2k+1
=

1

2k+1

[
Ct+1
k+1 + Ct+2

k+1 + · · ·+ Ck+1
k+1

]

or, multiplying it by 2k+1,

2k−tC0
t + 2k−t−1C1

t+1 + · · ·+ 20Ct
k = Ct+1

k+1 + Ct+2
k+1 + · · · + Ck+1

k+1 . (12)
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The identity
∑

j≤t

Cj
t+j2

−j = 2t

(see [2], p. 193, formula (5.20)) represents a particular case of identity (12) with k = 2t. This fact
follows from the equality

Ct+1
2t+1 + Ct+2

2t+1 + · · ·+ C2t+1
2t+1 =

1

2

2t+1∑

j=0

C2t+1 = 22t

where we used the correlation Ct
n = Cn−t

n between binomial coefficients.

3. THE REGULARITY OF THE EULER SUMMATION
Given a series

u0 − u1 + u2 − u3 + · · · , (13)

denote ak = (−1)kuk. Let Δk := Δku0 stand for the difference of the kth order. Then the value Δk

obeys formula (5).

Proof of the theorem. If series (13) converges to some value s, then the series
∞∑

k=0

Δku0

2k+1 also converges

to s.
According to assumptions of the theorem and the denotation ak = (−1)kuk, the series

∑∞
k=0 ak

converges to the value s. We need to prove that the series
∑∞

k=0
Δk

2k+1 also converges to the same
value s. As above, sk = a0 + · · · + ak are partial sums.

Choose ε > 0 and find positive integer N such that |sn − s| < ε for any n ≥ N . Estimate the
value

∣
∣
∣
∣
1

2
Δ0 +

1

4
Δ1 +

1

8
Δ2 + · · ·+ 1

2k+1
Δk − s

∣
∣
∣
∣ =

∣
∣
∣
∣

1

2k+1

[
C1
k+1s0 + C2

k+1s1 + · · ·+ Ck+1
k+1sk

]
− s

∣
∣
∣
∣ ≤

≤
∣
∣
∣
∣
∣

C1
k+1

2k+1
s0 +

C2
k+1

2k+1
s1 + · · ·+ CN

k+1

2k+1
sN−1

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

j=k∑

j=N

Cj+1
k+1

2k+1
sj − s

∣
∣
∣
∣
∣
∣
.

Partial sums sj are bounded. Assume that |sj| ≤ C for any j = 0, 1, 2, . . . . Then it also holds that

|s| ≤ C. There exists a number K > N such that
Cj
k+1

2k+1
<

ε

N
for any k ≥ K and any 0 ≤ j ≤ N .

This is possible, because 2k grows faster than any polynomial of the variable k. More precisely,
lim
k→∞

P (k)
2k

= 0 independently of the polynomial P (k) (one can verify this fact with the help of the

L’Hôpital rule for a continuous variable in place of the discrete one k). Then
∣
∣
∣
∣
∣

C1
k+1

2k+1
s0 +

C2
k+1

2k+1
s1 + · · ·+ CN

k+1

2k+1
sN−1

∣
∣
∣
∣
∣
≤

N−1∑

t=0

|st| < Cε.

Furthermore,
∣
∣
∣
∣
∣
∣

j=k∑

j=N

Cj+1
k+1

2k+1
sj − s

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

j=k∑

j=N

Cj+1
k+1

2k+1
(sj − s)−

N−1∑

j=−1

Cj+1
k+1

2k+1
s

∣
∣
∣
∣
∣
∣
≤

≤
∣
∣
∣
∣
∣
∣

j=k∑

j=N

Cj+1
k+1

2k+1
(sj − s)

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

N−1∑

j=−1

Cj+1
k+1

2k+1
s

∣
∣
∣
∣
∣
∣
≤ ε+

ε

N
(N + 1)C ≤ ε+ 2Cε
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because
∑k

j=−1

Cj+1
k+1

2k+1 = 1. Thus,
∣
∣
∣
∣
1

2
Δ0 +

1

4
Δ1 +

1

8
Δ2 + · · ·+ 1

2k+1
Δk − s

∣
∣
∣
∣ ≤ Cε+ ε+ 2Cε = (3C + 1)ε.

Since due to the choice of ε > 0 the value indicated above can be infinitesimally small, we have
proved that

lim
k→∞

[
1

2
Δ0 +

1

4
Δ1 +

1

8
Δ2 + · · · + 1

2k+1
Δk

]

= s.
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