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Abstract—We prove a combinatorial identity containing k-order differences of sequences, as
well as binomial coefficients. The Euler summation operation implies the calculation of all
order differences of terms of the initial series. The regularity of the summing function means
the coincidence with the “ordinary” sum of the series, provided that this sum exists. The
proved combinatorial identity allows one to easily prove the regularity of the Euler summation
operation.
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1. INTRODUCTION
For calculating the sum of a series v = > ;uy,, it is necessary to define the summation rule.

According to the standard and most widely used definition of the sum, so(v) = lim;, 00 Z’;zg U
But this is not the only way to map a series v to its sum s(v). Such techniques are called summing
functions. A summing function s has a sense if, at least, it obeys the regularity and linearity rules.

Definition 1 ([1], Ch. 15, §2). A summing function is a transform s that maps some numerical
series v = ) uy, to the value s(v) satisfying the following rules.

Regularity: if the series v converges in the usual sense and its sum equals so(7), then the value
s(7y) exists and coincides with so(7y). In particular, if 7 is a finite sum, then s(v) coincides with the
usual arithmetic sum of nonzero terms of the series ~.

Linearity: if series -, [ are s-summable, then for any numbers a,b the series a7y + b3 is also
s-summable, and s(avy + b3) = as(y) + bs(5).

The standard summation operation is regular by definition, and it is also linear. One of significant
summation procedures for numerical series was proposed by L. Euler (see, e.g., [1], Ch. 14, §5). One

should first define the sequence of the first differences for the sequence ug, uq, w9, us,.... This new
sequence is Aug, Auq, Ausg, . .., where Au, = u, — upy1 with n=1,2,3,... . We understand the
sequence of the kth differences for ug, u1,us, . .. as the sequence of the first differences of the sequence

of (k — 1)th differences, namely,
AFug, A*uy, AFus, ...

where AFu, = A(AF1u,) = AF Ly, — ARy, .
It is convenient to write terms of sequences of the kth differences for various k in the triangular
table

UQ (A U2 us Usq
Aug Auy Auo Aus
A2y A2y A2uy
ASUO A3u1
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For example, for a sequence of powers of two, this triangle takes the form

Applying the induction method with respect to k and using the main recurrent correlation
between binomial coefficients, we can prove the formula

AFu, =, — C,iunﬂ + C’,%un” — .+ (—1)kun+k; (2)

here C}" = ml(k—m)! A€ binomial coefficients. It suffices to verify this formula for n = 0. Let us
apply the mathematical induction method. For k = 1 this formula is valid, because its right-hand
side turns into ug — Ciuy = ug — ug, which coincides with Alug. Let us now assume that formula (2)

is valid for n = 0 and for some k. Then

ARt lyg = AFug — AFuy =

= (up — Chuy + Cug — ... + (—=1)*up) — (ug — Clug + Cluz — ... + (=1)F luy ) =
=up— (Cf + Duy + (CF+ CHug — ... + ((=1)F + (=D CPup, + (1) gy, =
= ug — Chppqur + Cppquz — o+ (=1 O + (1) g,
o0
Definition 2 ([1], Ch. 14, §5). The Euler transform of a series Y (—1)"u, is the transition from
n=0
this series to that
o0
Alug 1 1 1
Z on+l 2U0+4AU0+8A2UO4—"' . (3)
n=0
o0
For n =0, by definition, A™u,, = u,,. We sum the series v = > (—1)"u,, in the sense of Euler,
n=0

provided that there exists the limit

k=n
) Ay
sp(y) = lm > o0 (4)
k_

this limit value is said to be the Fuler sum of the series 7.

The linearity of the Euler summation operation follows from the linearity of the limit transition
and the linearity of the operation of forming the sequence of the first and, more generally, any
difference. In the next theorem, we study the regularity of the Euler summation operation.

Theorem. If the series > oo o(—1)"u, converges, then so does its Euler transform, and sums of
these two series coincide.

Here one does not assume that wu, > 0; the sign (—1)" is used only for technical reasons. The
proof of this theorem is described in ([1], Ch. 14, §5); it occupies three pages and essentially uses
the Markov theorem on double series. In Section 3, we briefly describe the proof of the regularity
of the Euler summation; it is based on the combinatorial identity (11) which is proved below and
constitutes the original part of this paper.
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68 DUBROVIN

Let us prove that in the case when the sum ug — u1 + - - - + (—1)Nuy is finite, the theorem is valid

(this consideration is not necessary for the short proof of the theorem and identity (11)). Denote
wy, = (—1)"uy,. By formula (2),

A"ug :w0+C’,1Lw1 —|—C’%+~-+Cﬁwn.

Since
o) o) N
A"ug wo + Clwy + -+ + Clwy, Cck
Z on+1 = Z on+1 = Zwk on+1’
n=0 n=0 k=0 n>k
it remains to prove the equality
> gt =1
on+1
n>k
for any fixed k =0,1,2,... . Let us prove it by induction with respect to k. The induction base,
i.e., the case k = 0, follows from the formula for the sum of a geometric progression, namely,
cY 11 1
ZQn—i—l :2+4+8+“':1'

n>0

k
Denote Xj :=>" -, 2511. Again using the main correlation for binomial coefficients (C¥ =

Ck | 4+ CF1), we conclude that

1 ck .+l 11 Cck_
Xk + Z n—1 n—1 + Z n—1 +

~ ok+1 on+t1 ~ okl T 9 9(n—1)+1
n>k+1 n—1>k
1 ch 11 1 1 1 1
+2 9(n—1)+1 ~ 9k+1 + 2Xk + 2 Xp-1— ok | QXI‘? + 2Xk_1’

n—1>k

whence we get the equality X, = Xj_1. Consequently, all X} are equal to one.

The Euler summation is much stronger. Namely, let us calculate the Euler sum of the series
1—2+4—8+---; according to formula (1), it equals the standard sum

1 1 1 1 1/2 1
2 478 16 1+1/2 3

However, we do not calculate the Euler sum of the series formed by powers of two, i.e., 1 +2+4 +
8+ 16 + - - -, because for this series u, = (—1)"2", n > 0, and

AnuO:1_,_6%,2_’_05.44_...4_03.2”:(14—2)”:3”.

We get the following divergent geometric progression: »_ - 2211 . Note that in the 3-adic topology
of rational numbers, this geometric progression converges to the value —1, which remarkably

coincides with the sum ano 2" = 1£2 = —1 in the 2-adic topology.

2. THE COMBINATORIAL IDENTITY

For the sequence ag, a1, as,as, ..., we denote partial sums
So=ap, S1 =aqp+ai, Sa=ap+a+a,...,S41 = Sn + ant1

and differences of the alternate sequence a1, —as, ag, —agq, . ..

k
A():ao, Ak:CZ()—FC%CM+O]§(I2+“‘+O]I§_lak_1+ak:ZC]Z,CL]‘. (5)
7=0
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THE EULER SUMMATION 69

Let us find coefficients :1:]5’ .k, ac’g, . :1:]]2 such that the correlation

1

oht1 Ap = abso+absi 4+ ...+ aks, (6)

1 1 1
A A Ao - -
90 + 421 + g2 + -+
takes place for any a;.

First, let us substitute expressions ag =1 and a; =0 for all j > 0 in formula (6). Calculate
sj =1 = A;, which is true for any j, whence we get the correlation

1 1 1 | A o &
2+4+8+~'—|—2k+1—x0—|—$1+..—I—ﬂck.
Consequently,
1
ko ok k
:r0+a:1—|—...+:1:k—1—2k+1. (7)

Second, let us substitute expressions a; = M with j=0,1,...,k in formula (6). Then by the

binomial formula, A; = (1 + A)!. Let us transform the left-hand side of the desired identity (6) by
using the formula for the sum of a geometric progression, namely,

11 1 1 1o (LA —1 L 1+ A —1

1 1 24 ... 1 =
o TN F GO b N = 2 ey -1 A-1

Let us now transform the right-hand side, taking into account formula (7). We get the expression

L G RREDY I 16 IR R R 1 (I D W AP L AP Ly I

_ ol )\+xk1—)\2+ 1_)‘3+ +xk1—)\k+1_
B P L R 21—)\ B

1 1 A 2 &
:1_)\<1—2k+1>—1_)\(x0+m1)\+x)\ +mk)\)

Equating the left- and right-hand sides, concurrently multiplying them by A — 1 and dividing by —1,
we get the correlation

1

o1 (1 + )\)k—i—l

ok t1 + A (:130 +afNF a4 :L‘k)\k)

Consequently,
L (14N -1
2k+1 b\

For calculating acf let us use the Cramer’s rule, replacing A in formula (8) in rotation with pairwise
distinct nonzero values Ag, A1, Az, -, A. As a result, we get the linear system of k + 1 equations
with k + 1 unknowns and the Vandermonde determinant

W= —X)- e —20) A2 = A1) oo Ae = M) oo (A — A1) # 0.

Let us now calculate the determinant D, of the matrix obtained from W by replacing its tth column
with that

= af 4+ 2N a2 4 2R (8)

g 1 (k-1 1 (1+ M)kt =1\ "
— \ 9k+1 o 7T 9k A\ ’

i.e., with the column of free terms in the linear system mentioned above. Expand

I 1+ -1 1

2k+1 A - 9k+1 ((k + 1) + 0134_1)\ + - C;:__ll)\t -+ )\k) (9)
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70 DUBROVIN

Substituting the column S at the tth place in the matrix W and expand it into the sum of k
determinants in accordance with formula (9), we make all terms except that with the column

Cft-i-l

k+1 T
2kjl AL AT

vanish. The reason is that each of them contains two proportional columns (for example, for the
term, where the determinant contains the column (k +1)/25+1(1,1,1,...,1)T at the tth place, we
get the proportionality with the first column, the column C’,%H/Zk“()\o,)\l, -+, M) " appears to
be proportional to the second one and so one). The unique nonzero term containing the column
citt

mentioned above gives the value D; = ki1 W Consequently, by applying the Cramer formula

zF = D;/W we obtain the correlation

mkzc,iillz(k+1)k...(k—t+1) (10)
t ok+1 2k+1(¢ 4 1)!

We have proved that coefficients (10) are appropriate for a; = A* and turn formula (6) into
the equality. Note that rows (1,2, )\?, . ,)\?) for pairwise distinct Ag, A1, ..., A\; form a basis in
the space of k4 1-dimensional vectors, because the determinant of the matrix composed of these
rows, i.e., W, differs from zero. The summation operation s, as well as operations A; are linear.
Consequently, if numbers (10) are appropriate for some basis, then they also are appropriate for

any row (ag,ai,...,ax).
In conclusion, we immediately verify equality (7), namely,

k Ct—‘,—l 1 k
ko ok k_ k1 _ t+1 —
R _Z ok+1 — 9k+1 (Z Ck+l_1> =
t=0 t=—1

A 1 1
— — k41 —
T okt (Zcﬁl_1> T 9kt (2 _1) _1_2k+1'

m=0

Thus, we deduce the main result of this paper, namely, the combinatorial identity

1 1

1 1 1
2A0 + 4A1 + 8A2 Tt 2k+1Ak = gk+1

(Chiso+ CRusi+-+Chfls] (1)

or

1 1 1 1
Dot A+ Dot Ap =, [C,iHsoJrC,%Hsl+---+C§jllsk].

Note that the value written at the left of the equality sign in formula (11) is the kth partial sum
of the series that defines the Euler sum of the series ag — a1 +as — a3z + ---. Let us mention the
following corollary.

Corollary. All values zf (t =0,1,2,...,k) are positive, and their sum for ¢ € [0; k]y is less than
one by the value 1/2F+! (see formula (7)).

Equating coefficients at a; in formula (11), we get the correlation

1 Ctl-i-l Cltf _ 1 Ct—‘,—l Ct+2 Ck’-i—l
gt+1 T gtz T T ok T opr [kt T ORI T T Oy

or, multiplying it by 2F+1,
hte) 42l 200, = CE + O+ O (12)
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The identity

Z t+]2 7 :2t

J<t

(see [2], p. 193, formula (5.20)) represents a particular case of identity (12) with k& = 2¢. This fact
follows from the equality
1 2]

41 t+ 2+1 _
Cop1 + O2t+1 T+ Oy = E , Cory1 = 2%
where we used the correlation C! = C"~! between binomial coefficients.

3. THE REGULARITY OF THE EULER SUMMATION
Given a series

up — U + U2 —uz+ -, (13)
denote ay, = (—1)*uy. Let Ay := AFuyg stand for the difference of the kth order. Then the value Ay,
obeys formula (5).

o0
Proof of the theorem. If series (13) converges to some value s, then the series ) %:flo also converges

k=0
to s.

According to assumptions of the theorem and the denotation ay = (—1)Fuy, the series Yoo, ax
converges to the value s. We need to prove that the series Y - ﬁfl also converges to the same
value s. As above, s = ag + - - - + aj are partial sums.

Choose € > 0 and find positive integer N such that |s,, — s| < e for any n > N. Estimate the
value
1

Ap—s| = ok+1

1 1 1
A A A <
9 0+4 1+8 2+ + <

{Cli—i-lSO + CRy1s1+ - Cli:gj-_ll } - s

9k+1

j=k ~j+1
n Z Ck:+18, s
ok-+1"J :

Partial sums s; are bounded. Assume that |s;| < C for any j =0,1,2,... . Then it also holds that

_|a c? cN
+1 k1 k+1
g1 50 T opp1 ST F gy SN-1

C’
|s| < C. There exists a number K > N such that 2::11 < ; for any k> K and any 0 < j < N.

This is possible, because 2% grows faster than any polynomial of the variable k. More precisely,
P(k)
k—o0 2"
L’Hopital rule for a continuous variable in place of the discrete one k). Then

= 0 independently of the polynomial P(k) (one can verify this fact with the help of the

Clist Ol%—i-l N Nl
gk+1 50 T op1 ST opiq SN-1 < 2 s¢] < Ce.
Furthermore,

=k C]+1 i=k C]+1 N—1 C]J'_l

Z ok+1 55— Z 2k+l - Z 2k+18 <

Jj=N j=N j=—1
j=k C]]:—l N—1 C]_:,_l -

+1 k41

z;v 2k+1 + 'Zl 2k+18 §5+N(N+1)C§6+205
= j—
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72 DUBROVIN

k Cj+1
because Zj:_l oot1 = 1. Thus,

1 1 1
2A0+4A1+8A2+"'+2k+1Ak—8 §CE+€+QC€:(3C+1)E.

Since due to the choice of € > 0 the value indicated above can be infinitesimally small, we have
proved that

. 1 1 1 1
lim 2A0+4A1+8A2+"'+2k+1Ak:|:S.

k—o0
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