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Abstract—A class of discrete-time filters (systems) is selected, the frequency characteristics
of which are functions of the Markov–Stieltjes type. A description of these filters is given in
terms of their system function and impulse response. The properties of stationarity, causality,
stability, and reversibility are investigated. A wide class of filters with rational transfer functions
is indicated, which is subject to the main results of the work.
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1. INTRODUCTION

In this paper, we consider a class of filters (systems) with discrete time (DT systems) with
a frequency response that is a function of the Markov–Stieltjes type, i.e., the Markov–Stieltjes
transform of some bounded measure. We give a description of these filters in terms of their
frequency response (or, equivalently, the transfer function), as well as in terms of their impulse
response. In particular, it was shown that this class contains all filters with completely monotonic
impulse responses. The latter case may arise, for example, in the discretization of filters (systems)
with continuous time (CT systems; see Remark 3.2 below). The properties of stationarity, causality,
stability, and reversibility of the corresponding systems are investigated. In the case of reversibility,
the inverse operator is calculated. It is important to note that the class of Markov–Stieltjes type
functions contains a wide subclass of rational functions, which are the frequency responses of linear
time-invariant discrete-time filters (DT-LIT systems). In this connection, a wide class of filters with
rational transfer functions (see Example 3.1) is indicated, which is a subject of the main theorem
of this paper, Theorem 3.1.

Some of the results were announced in [1].
We note that earlier the authors investigated the properties of the Markov–Stieltjes transform of

functions in the Hardy spaces Hp(D) (here and below D denotes an open unit disk in the complex
plane) and the Lebesgue spaces Lp(0, 1) (see [2]–[5]).

In what follows, we denote by M b([0, 1],C) (M b([0, 1],R)) the space of all bounded complex
(respectively, real) measures on [0, 1], and by M b

+ ([0, 1]) its subspace consisting of positive measures.
The distribution function of the measure μ is denoted by μ(t).

Definition 1.1 ([6], Ch. 6). The Markov–Stieltjes transform of the measure μ ∈ M b([0, 1],C) is a
function given with z ∈ C \ [1,+∞) by the formula

Sμ(z) =

∫ 1

0

dμ(t)

1− tz
. (1)
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30 MIROTIN, KOVALEVA

With z ∈ [1,+∞) the integral on the right-hand side of (1) is understood in the sense of the
main value, i. e., as the limit

Sμ(z) = lim
ε→+0

∫
[0,1]∩{|t−1/z|>ε}

dμ(t)

1− tz
. (1′)

We note that rational functions of the form
∑r

i=1 μi/(1− tiz) (μi ∈ C, ti ∈ [0, 1]) are the Markov–
Stieltjes functions.

Theorem 1.1. The Markov–Stieltjes transform of the measure μ ∈ M b([0, 1],C) is holomorphic in
the domain C \ [1,+∞), and also exists almost everywhere on the ray [1,+∞).

Proof. Note that

Sμ(z) =

∫ 1

0

dμ(t)

1− tz
=

1

z

∫ 1

0

dμ(t)
1
z − t

=
π

z
Hμ1

(
1

z

)
,

where Hμ1 is the Hilbert transform of the measure μ1, having the distribution function

μ1(t) :=

{
μ(t), t ∈ (0, 1);

0, t /∈ (0, 1).

Hence from the well-known property of the Hilbert transform, the assertion follows that the Markov–
Stieltjes transform is holomorphic. An application of the Loomis theorem on the Hilbert transform
(see, for example, [7], p. 239) completes the proof of the theorem.

In connection with the corollary below, we recall that the disk algebra A(D) consists of functions
that are analytic in the open unit disk D and continuous in its closure.

Corollary 1.1. Let μ ∈ M b ([0, 1],C) , F = Sμ. Then

1) F ∈ Hp(D) with all p ∈ (0, 1);

2) let p ∈ [1,∞), 1/p + 1/q = 1; if
∫ 1
0 d|μ|(t)/(1 − t)ε+1/q < ∞ with some ε ∈ (0, 1/p), then

F ∈ Hp(D);

3) if
∫ 1
0 d|μ|(t)/(1− t) < ∞, then F belongs to the disk algebra A(D); if, in addition, μ > 0, then

F does not vanish on the unit circle T.

Proof. All assertions, except the last one, follow from Theorem 1.1 and estimates established with
the proof of Theorem 1 in ([8], p. 4). Let us prove the last assertion. Evidently, μ does not
concentrated at point 1. Therefore μ([0, 1)) > 0. Then with eıθ ∈ T we have

|F (eıθ)|2 =
1∫

0

1∫

0

dμ(t)dμ(s)

(1− teıθ)(1− se−ıθ)
=

1∫

0

1∫

0

Re
1

(1− teıθ)(1 − se−ıθ)
dμ(t)dμ(s).

But

Re
1

(1− teıθ)(1− se−ıθ)
=

1− (t+ s) cos θ + ts

|1− teıθ|2|1− se−ıθ|2 ≥ (1− t)(1 − s)

|1− teıθ|2|1− se−ıθ|2 ≥ (1− t)(1− s)

(1 + t)2(1 + s)2
.

Hence

|F (eıθ)|2 ≥
1∫

0

1∫

0

(1− t)(1− s)

(1 + t)2(1 + s)2
dμ(t)dμ(s) =

⎛
⎜⎝
∫

[0,1)

1− t

(1 + t)2
dμ(t)

⎞
⎟⎠

2

> 0.
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DISCRETE-TIME SYSTEMS WITH FREQUENCY RESPONSE 31

2. DESCRIPTION OF MARKOV–STIELTJIES TRANSFORMS OF MEASURES

This section has an auxiliary sense. It contains the description of functions presentable in form (1)
for complex and positive measures, which we need below.

Lemma 2.1. For the function F (z) the following assertions are equivalent.
1) There exists a measure μ ∈ M b ([0, 1],C) such that ‖μ‖ ≤ c and F = Sμ.
2) F (z) is analytic in D, F (z) =

∑∞
k=0 akz

k and for any complex numbers λi and any natural m∣∣∣∣∣
m∑

k=0

λkak

∣∣∣∣∣ ≤ cmax

{∣∣∣∣∣
m∑
k=0

λkt
k

∣∣∣∣∣ : t ∈ [0, 1]

}
. (2)

Proof. 1) ⇒ 2). Let F = Sμ. Decomposing the integrand into a series and applying the Lebesgue
theorem on termwise integration of the series, we have

F (z) =

∫ 1

0

dμ(t)

1− tz
=

∫ 1

0

( ∞∑
n=0

tnzn

)
dμ(t) =

∞∑
n=0

anz
n,

where an =
∫ 1
0 tndμ(t). Therefore∣∣∣∣∣

m∑
k=0

λkak

∣∣∣∣∣ =
∣∣∣∣∣
m∑
k=0

λk

∫ 1

0
tkdμ(t)

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

(
m∑
k=0

λkt
k

)
dμ(t)

∣∣∣∣∣ ≤

≤ ‖μ‖max

{∣∣∣∣∣
m∑
k=0

λkt
k

∣∣∣∣∣ : t ∈ [0, 1]

}
≤ cmax

{∣∣∣∣∣
m∑
k=0

λkt
k

∣∣∣∣∣ : t ∈ [0, 1]

}
.

2) ⇒ 1). For an arbitrary polynomial p(t) =
∑m

k=0 λkt
k we set

Λ(p) :=

m∑
k=0

λkak.

Evidently, Λ is a linear bounded functional on the space of all polynomials in the metric C[0, 1]
and ‖Λ‖ ≤ c. Applying the Hahn–Banach theorem, we extend it to C[0, 1] with preservation of the
norm. By F. Riesz’s theorem on the general form of functionals in C[0, 1] there exists a measure
μ ∈ M b ([0, 1]) such that

Λ(x) =

∫
[0,1]

x(t)dμ(t),

and ‖μ‖ = ‖Λ‖ ≤ c. In addition, ak = Λ
(
tk
)
=
∫ 1
0 tkdμ(t).

Therefore,

F (z) =

∞∑
k=0

akz
k =

∞∑
k=0

(∫ 1

0
tkdμ(t)

)
zk =

∫ 1

0

( ∞∑
k=0

tkzk

)
dμ(t) =

∫ 1

0

dμ(t)

1− tz
= Sμ(z),

that completes the proof of lemma.
Remind [9] that the function g belongs to the class R[a, b], if g is holomorphic in an open upper

half-plane, maps it to the closure of this half-plane, and is also holomorphic and positive on (−∞, a)
and holomorphic and negative on (b,∞). (From these conditions it follows that g maps an open
upper half-plane into itself.) Here due to ([9], Theorem P.6) this function can be uniquely presented
in the form

g(z) =

∫ b

a

dτ(t)

t− z
,
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32 MIROTIN, KOVALEVA

where τ is a bounded positive regular Borel measure concentrated on the segment [a, b] (“representing
measure”).

Lemma 2.2. The function F has the form Sμ for some measure μ ∈ M b
+ ([0, 1]), if and only if the

following conditions are fulfilled:
1) F is holomorphic in C \ [1,+∞) and positive on the interval (−∞, 1),

2) the function ζF (ζ) maps an open lower half-plane to its closure.

Proof. Necessity. The holomorphic property of F in C \ [1,+∞) was already indicated above.
Further, if ζ < 1, then 1− tζ > 0 with t ∈ [0, 1), and therefore F (ζ) > 0.

Finally, since Im(ζ/(1− tζ)) < 0 with Imζ < 0, t ∈ (0, 1), we have

Im(ζF (ζ)) =

∫ 1

0
Im

ζ

1− tζ
dμ(t) ≤ 0.

That completes the proof of necessity.
Sufficiency. Note that under conditions 1) and 2) the function (ζ = 1/z)

F1(z) := −1

z
F

(
1

z

)
= −ζF (ζ)

is holomorphic in the upper half-plane and ImF1(z) ≥ 0 with Imz > 0. In addition, from the
condition 1 it follows that it is holomorphic and negative on the interval (0, 1) and holomorpic and
positive on the interval (−∞; 0). Hence, F1 belongs to the class R[0, 1] of the Markov type functions
and has the integral presentation

F1(z) =

∫ 1

0

dμ(t)

t− z

with representing measure μ ∈ M b
+ ([0, 1]) , and therefore

F (ζ) =

∫ 1

0

dμ(t)

1− tζ
= Sμ(ζ),

as desired.

3. SYSTEMS WITH MOMENT IMPULSE RESPONSE

Further we mostly use the terminology of the theory of signal processing, applied in ([10], pp. 153–
159 and [11]). In particular, below the filter Φ is the operator f �→ Φf. We will consider only the
case of discrete time (DT-signals).

We call a filter Φ stationary, if:
1) Φ is a linear bounded operator in �2(Z);
2) Φ is time-invariant, i. e., permutable with shift: Φ(Dsf) = Ds(Φf) for each moment s and

each signal f, where Dsf(n) = f(n− s) is the shift operator.
We call a filter Φ causal, if the absence of input signal up to the moment s ∈ Z, i. e., f(t) = 0 for

t < s, implies the absence of output signal: (Φf)(t) = 0 for t < s. For a time-invariant filter, this is
equivalent to the fulfillment of the last condition for s = 0.

We call a filter Φ stable, if it transforms bounded signals to bounded ones.
We call a filter Φ invertible, if the corresponding linear operator has a bounded inverse operator.
We call a sequence W = Φδ0, where δn := (δkn)k∈Z, the impulse response of filter Φ, its inverse

(discrete) Fourier transform

ϕ(z) = (F−1W )(z) :=
∑
n∈Z

W (n)zn (z ∈ T)
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DISCRETE-TIME SYSTEMS WITH FREQUENCY RESPONSE 33

the frequency response of filter Φ, and the norm ‖ϕ‖L∞ its amplitude distortion. We denote by F
the Fourier transform on a unit circle T given by the formula (n ∈ Z)

(Fg)(n) =
1

2π

∫ 2π

0
g(eıλ)e−ınλdλ.

It is known (Wiener’s lemma) that every stationary filter is exactly a convolution operator with
the sequence W, i. e., it has the form

(ΦW f)(n) = (f ∗W )(n) =
∑
k∈Z

f(k)W (n− k),

where the function ϕ = F−1W belongs to L∞(T). Here for the causality of this filter, it is necessary
and sufficient that the condition is fulfilled ϕ ∈ H∞(D), i. e., the condition W (n) = 0 holds with
n < 0 (see, for example, [10], pp. 155–156, Lemmas 7.2.1, 7.2.3).

Below we consider a case, when the impulse response (W (n))n∈Z+ is the sequence (
∫ 1
0 tndμ(t))n∈Z+

of moments of some measure μ (and, in particular, is a completely monotone sequence). In this
case, filters arise with the frequency response F (z) and the transfer function F (1/z), where F (z)
is a Markov–Stieltjes type function with representing measure μ. Such functions, as a rule, allow
good rational approximations. For example, in [12] a wide class of Markov–Stieltjes type functions
is distinguished whose uniform approximations (that is, the approximation errors calculated in the
Chebyshev metric) by rational functions of degree at most n are of order exp(−c

√
n) (c = const > 0)

(see also [8], [13], [14] and the references therein). In this case, the filters discussed below can be
well approximated by filters with rational transfer functions, which are of great practical interest
(see, for example, [11], [15], [16]).

As we noted earlier, for the measure μ ∈ M b([0, 1],C) with |z| < 1

F (z) = Sμ(z) =

∞∑
n=0

h(n)zn, where h(n) =

∫ 1

0
tndμ(t).

Let Dx(k) = x(k − 1) be a shift operator in �2(Z). We consider an operator

F (D) :=

∞∑
k=0

h(k)Dk,

defined initially on left finite signals from �2(Z).

Remark 3.1. On the set of plus-signals (i. e., on the subspace �2(Z+) of the space �2(Z)) the
system y = F (D)v allows a realization if the form of the following dynamic system:

Pn(t) = tPn−1(t) + v(n) (n ∈ N), P0(t) = v(0),

y(n) =

1∫

0

Pn(t)dμ(t).

(We note that the state equation of this system is independent of the measure μ, i. e., the filter.)
In fact, for the input plus-signal v(n) we consider the following sequence of polynomials:

Pn(t) =
∑n

k=0 t
kv(n− k)(n ∈ N), P0(t) := v(0). It is easy to verify that it satisfies the state equation

of the system. On the other hand, if h(n) is, as above, the sequence of moments of measure μ, then
it is not difficult to verify that

y(n) =

n∑
k=0

h(k)Dkv(n) =

n∑
k=0

h(k)v(n − k) = h ∗ v(n) =
1∫

0

Pn(t)dμ(t).
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34 MIROTIN, KOVALEVA

Thus, part of the results obtained in this paper can be interpreted in terms of this dynamical
system.

To state and prove the following theorem (concerning the calculation of the inverse operator),
we need some information about the functional calculus constructed in [17]–[19].

We will say that a (generally speaking, closed densely defined) operator A in a Banach space X
belongs to the class V1(X), if [0, 1) is contained in the resolvent set ρ(A) of operator A, and for
some M > 0 the inequality is fulfilled

‖R(t, A)‖ ≤ M

1− t
, t ∈ [0, 1)

(hereinafter R(t, A) = (tI −A)−1 is the resolvent of operator A, I is the unit operator). Further we
need the fact that unitary operators in a Hilbert space H belong to V1(H). This easily follows from
the spectral theorem for such operators.

We also say that a function g belongs to the class R1, if it belongs to the class R[0, 1] (see
the definition of this class in Section 2) and is continuous at point 1. If g is a function of
class R1 with representing measure μ, A ∈ V1(X), then the operator g(A) is defined by formula
g(A) =

∫ 1
0 R(t, A)dμ(t). We call arising functional calculus R1-calculus.

We set Q1 = {ϕ|ϕ = 1/g, g ∈ R1}. It is known that the function ϕ of class Q1 has the form
ϕ(z) = α+ βz − f(z), where f ∈ R1. In this case, with A ∈ V1(X) the operator ϕ(A) with domain
D(A) is defined by the formula ϕ(A) = α+ βA− f(A), in which f(A) is understood in the sense
of R1-calculus. We call the arising functional calculus Q1-calculus.

In [19] it was shown (the inversion theorem) that for any function g ∈ R1 and any A ∈ V1(X)
the operator g(A) has the left inverse one given by the formula

g(A)−1 = ϕ(A),

where ϕ = 1/g and the right–hand side is understood in the sense of Q1-calculus. Here from the
point of view of applications of this theorem, it is important to note that the coefficients α and β,
appearing in the representation ϕ(z) = α+ βz − f(z) of the function ϕ = 1/g, can be calculated by
the formulas

β = − 1

μ([a, b])
, α =

1

μ([a, b])2

b∫

a

tdμ(t),

where μ is the representing measure of function g, and the representing measure of the function f
can be found, for example, using the inversion formula for the Stieltjes transform [20] (see [19]).

Theorem 3.1. Let F (z) = Sμ(z), μ ∈ M b([0, 1],R). If
∫ 1

0

d|μ|(t)
1− t

< ∞, (3)

then operator F (D) uniquely extends to an operator in �2(Z), which is stationary, causal, and stable
filter with frequency response F and amplitude distortion ‖F‖H∞ ; here ‖F (D)‖�2→�2 = ‖h‖�1 (h is
the sequence of coefficients of the Taylor series of the function F at zero) and

F (D) =

1∫

0

(I − tD)−1dμ(t), (4)

where the Bochner integral converges in the norm of the operator.
With μ ≥ 0 condition (3) is also necessary for the operator F (D) to have an extension to all

�2(Z) to a stationary and causal filter. In addition, in this case the filter F (D) is invertible, and its
inverse one has the form

F (D)−1 = −
(

1

F1

)
(D−1)D,
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DISCRETE-TIME SYSTEMS WITH FREQUENCY RESPONSE 35

where F1 is a function from R1 with representing measure μ, and (1/F1)(D
−1) is understood in the

sense of Q1-calculation.

Proof. Further we assume that h(n) = 0 with n < 0. Let condition (3) be fulfilled. Then h ∈ �1(Z),
because

∞∑
n=0

|h(n)| =
∞∑
n=0

∣∣∣∣
∫ 1

0
tndμ(t)

∣∣∣∣ ≤
∫ 1

0

∞∑
n=0

tnd|μ|(t) =
∫ 1

0

d|μ|(t)
1− t

< ∞.

As we noted above, for left finite signals x from �2(Z)

F (D)x = h ∗ x.
Therefore, for such signals ‖F (D)x‖�2 ≤ ‖h‖�1‖x‖�2 , and hence the operator F (D) is uniquely
continued to a (bounded) convolution operator with h in �2(Z), i. e., to the stationary filter, and
‖F (D)‖ = ‖h‖�1 . And since h is concentrated on Z+, the filter F (D) is causal.

Since h ∈ �1(Z), we have that F belongs to a disk-algebra A(D) and, in particular, F (z) =∑∞
n=0 h(n)z

n with all z ∈ T. Hence, F = F−1h, i. e., F is the frequency response of the filter F (D).

In addition, the condition h ∈ �1(Z) guarantees the stability of the filter F (D).
Finally, since μ does not have mass at point 1, we obtain

1∫

0

(I − tD)−1dμ(t) =

∫
[0,1)

(I − tD)−1dμ(t) =

=

∫
[0,1)

( ∞∑
n=0

tnDn

)
dμ(t) =

∞∑
n=0

∫
[0,1)

tnDndμ(t) =

∞∑
n=0

h(n)Dn = F (D).

Here the termwise integration of the series is legal by virtue of the Lebesgue theorem, because,
taking into account the B. Levy theorem and condition (3), we have

∞∑
n=0

∫
[0,1)

‖tnDn‖d|μ|(t) =
∞∑
n=0

∫
[0,1)

tnd|μ|(t) =
∫
[0,1)

d|μ|(t)
1− t

< ∞.

Let μ ≥ 0 and the operator F (D) is continued to all �2(Z), where the corresponding filter is
stationary and causal. Then by the Wiener lemma ([10], p. 155, 7.2.1)

F (D)x = W ∗ x, (5)

and by the other Wiener lemma (see [10], p. 156, 7.2.3) W = Fϕ and ϕ ∈ H∞(D). By setting in (5)
x = δn, we obtain with all integer n

FF (n) = h(n) = W (n) = Fϕ(n),

hence F = ϕ and, therefore, F ∈ H∞(D). If the number c is such that |F (z)| ≤ c, then with
z = r ∈ (0, 1) we have

c ≥ |F (r)| =
1∫

0

dμ(t)

1− rt
.

Tending r to 1 and applying B. Levy’s theorem, we conclude that condition (3) is satisfied. Let us
prove the reversibility. Since the operator D is unitary and its spectrum is T, under condition (3)
the convolution operator F (D) coincides with the value of the function F on the operator D in
the sense of the classical functional calculus of unitary operators (F ∈ A(D), see Corollary 1.1).
In particular, the spectrum of F (D) equals F (T). Since, by Corollary 1.1, the function F has no
zeros on the unit circle, the operator F (D) has a bounded inverse operator, i. e., the corresponding
filter is reversible. To find the inverse operator, we recall that the proof of Lemma 2.2 shows that
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36 MIROTIN, KOVALEVA

the function F1(z) := −1/zF (1/z) belongs to R[0, 1] and has a representing measure μ. Moreover,
condition (3) implies F1 ∈ R1. Since the unitary operator D−1 belongs to V1(�

2(Z)), by the definition
of R1-calculus and formula (4)

D−1F1(D
−1) =

1∫

0

D−1R(t,D−1)dμ(t) = −
1∫

0

(I − tD−1)−1dμ(t) = −F (D)

(we used the identity D−1R(t,D−1) = −(I − tD−1)−1). Hence F (D)−1 = −(F1(D
−1))−1D =

−(1/F1)(D
−1)D.

Corollary 3.1. Under conditions of Theorem 3.1 the amplitude-frequency response (AFR) of the
filter Φ on the unit circle has the form

A(ω)2 =

∫

[0,1)2

1− (t+ s) cosω + ts

(1− 2t cos ω + t2)(1− 2s cosω + s2)
dμ(t)dμ(s) (ω ∈ R).

In particular, if μ > 0, then the estimate holds

A(ω) ≥
∫

[0,1)

1− t

1− 2t cosω + t2
dμ(t) ≥

∫

[0,1)

1− t

(1 + t)2
dμ(t) (ω ∈ R).

Proof. In fact,

A(ω)2 = |F (eıω)|2 = F (eıω)F (eıω) =

∫

[0,1)

dμ(t)

eıω − t

∫

[0,1)

dμ(s)

e−ıω − s
=

∫

[0,1)2

dμ(t)dμ(s)

1 + st− seıω − te−ıω
=

=

∫

[0,1)2

Re
1

1 + st− seıω − te−ıω
dμ(t)dμ(s) =

∫

[0,1)2

1− (t+ s) cosω + ts

(1− 2t cosω + t2)(1− 2s cosω + s2)
dμ(t)dμ(s).

It remains to use the fact that 1− (t+ s) cosω + ts ≥ (1− t)(1− s).

Further we call a Z-transform H̃(z) :=
∑∞

n=−∞W (n)z−n the transfer function of stationary
filter Φ = ΦW (the term of the system function is also used, see, for example, [11], [15]).

The following example gives us a wide class of filters with rational transfer functions, which are
subjects of Theorem 3.1.

Example 3.1. We consider DT-LTI-system (a recursive filter) Φ of finite order described by the
difference equation (ak, bl ∈ R)

p∑
k=0

aky[n+ k] =

q∑
l=1

blx[n+ l].

We assume that q ≤ p and the characteristic equation
p∑

k=0

akz
k = 0

has p different roots ti ∈ [0, 1) (i = 1, . . . , p). Using the decomposition into simplest fractions, we
obtain for the transfer function of filter Φ the presentation

H̃1(z) =

∑q
l=1 blz

l∑p
k=0 akz

k
=

p∑
i=1

μiz

z − ti
=

p∑
i=1

μi

1− tiz−1
, (6)
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where μi = H̃1(z)(1− tiz
−1)|z=ti are real numbers. The measure μ :=

∑p
i=1 μiδti (δti is the measure

of unit mass concentrated at point ti) satisfies condition (3). Let us consider a rational function of
the Markov–Stieltjes type

F (z) := Sμ(z) =

p∑
i=1

μi

1− tiz
.

Then Φ = F (D). In fact, the impulse response of system F (D), as we showed earlier,
is h(n) =

∫ 1
0 tndμ(t) =

∑p
i=1 μit

n
i (n ∈ Z+). Therefore the transfer function of filter F (D) is (with

|z| > maxi |ti|)

H̃(z) =

∞∑
n=0

h(n)z−n =

∞∑
n=0

(
p∑

i=1

μit
n
i

)
z−n =

p∑
i=1

∞∑
n=0

μi

(
ti
z

)n

=

p∑
i=1

μi

1− tiz−1
= H̃1(z),

i. e., it coincides with the transfer function of the filter Φ. Thus, by Theorem 3.1, Φ is sta-
tionary, causal, and stable filter with frequency response F and amplitude distortion ‖F‖H∞ =
supz∈D |∑p

i=1
μi

1−tiz
|. Here

‖Φ‖�2→�2 = ‖h‖�1 =

∞∑
n=0

∣∣∣∣∣
p∑

i=1

μit
n
i

∣∣∣∣∣ .

Due to the Corollary 3.1 for AFR of this filter we have

A(ω)2 =

p∑
i,j=1

1− (ti + sj) cosω + tisj
(1− 2ti cosω + t2i )(1 − 2sj cosω + s2j)

μiμj .

Further, Φ =
∑p

i=1 μi(I − tiD)−1. As is known, the spectrum of shift operator D in the space
�2(N) is the unit disk D, and therefore the operator (I − tD)−1 exists with |t| < 1. It is easy to
verify that for any left finite DT-signal x ∈ �2(N) and any t with |t| < 1

((I − tD)−1x)[n] = tn−1x[1] + tn−2x[2] + · · · + tx[n− 1] + x[n] (n ∈ Z).

Therefore, due to formula (4) under our assumptions the filter Φ has the form

y[n] = (Φx)[n] =

p∑
i=1

μi(t
n−1
i x[1] + tn−2

i x[2] + · · · + tix[n− 1] + x[n]) (n ∈ N).

This formula also gives (under above imposed constraints) a solution to the considered difference
equation in the space �2(N).

If additionally all μi > 0, then we have a case of positive measure. (The simplest situation, when
this can happen: p = q = 1, a1 = 1, a0 ∈ (−1, 0), b1 > 0. In the case p = q = 2 we are talking about
systems of the form

y[n+ 2] + a1y[n+ 1] + a0y[n] = b2x[n+ 2] + b1x[n+ 1],

where a1 = −(t1 + t2), a0 = t1t2, b1 = −(t1μ2 + t2μ1), b2 = μ1 + μ2, and t1, t2 ∈ [0, 1), μ1, μ2 > 0.)
In this case, the filter is invertible and Theorem 3.1 gives an algorithm of its inversion.

Remark 3.2. The case of positive measure can also arise with the discretization of CT-systems
of finite order. Really, if the transfer function HI of such a system is decomposed into simplest
fractions as follows:

HI(s) =

m∑
i=1

Ai

s− si
,
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then the transfer function arising with its discretization, with the step T of DT-system is

H̃(z) =

m∑
i=1

AiTz

z − esiT
(T > 0)

(see, for example, [15], p. 167, (5-133), (5-134)). With Ai > 0 and si < 0 we obtain a transfer
function of form (6) with μi = AiT > 0, ti = esiT ∈ [0, 1). As we showed in Example 3.1, the
corresponding DT-system has the form F (D) with positive representing measure μ =

∑m
i=1 μiδti .

The following two theorems characterize the filters of the form F (D) in terms of their transfer
functions. To formulate the first of them (which also describes the impulse response) we consider
iterated difference operators (Δ := I −D−1)

ΔnW (k) =

n∑
j=0

(−1)jCj
nW (j + k) (k, n ∈ Z+).

Theorem 3.2. Let Φ be a stationary and causal filter with transfer function H̃ and impulse
response W . The following assertions are equivalent :

1) Φ has the form F (D), where F = Sμ, μ ∈ M b
+([0, 1]);

2) the function H̃(1/z) satisfies the conditions of Lemma 2.2;
3) ΔnW (k) ≥ 0 (k, n ∈ Z+), i. e., the sequence W is completely monotone .
Here F (z) = H̃(1/z), and W is the sequence of moments of the measure μ.

Proof. 1) ⇒ 2). In notation introduced above, if Φ = F (D) := Sμ(D), then ∀n W (n) = h(n). And
since

H̃(ζ) =
∞∑
n=0

W (n)ζ−n =
∞∑
n=0

h(n)

(
1

ζ

)n

= F

(
1

ζ

)
,

we have that the function H̃(1/z) = F (z) satisfies conditions of Lemma 2.2.
2) ⇒ 3). Let a function H̃(1/z) satisfy conditions of Lemma 2.2. Then H̃(1/z) = Sμ(z), μ ≥ 0,

where z ∈ D. Hence it follows that W (n) =
∫ 1
0 tndμ(t) (n ∈ Z+), therefore due to the Hausdorff

theorem, assertion 3) holds true (see, for example, [21]).
3) ⇒ 1). If 3) is fulfilled, then by the mentioned Hausdorff theorem W (n) =

∫ 1
0 tndμ(t) (n ∈ Z+)

for some measure μ ∈ M b
+([0, 1]). If we set F (z) := Sμ(z), then in terms introduced above h = W.

Here for any left finite subsequence from �2(Z) due to formula (5) the equality holds Φx = W ∗ x =
F (D)x. Therefore, the operator F (D) is bounded, hence Φ = F (D).

Theorem 3.3. A stationary causal filter Φ with transfer function H̃ has the form F (D), where
F = Sμ, μ ∈ M b ([0, 1],C) if and only if the function H̃(1/z) satisfies conditions of Lemma 2.1. In
addition, F (z) = H̃(1/z).

The proof of this theorem is similar to the proof of Theorem 3.2.
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