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Abstract We establish some new effective oscillation conditions for solutions to linear delay
differential equations of the first order We develop a new approach to obtaining oscillation
conditions in the form of the upper limit of a function of equation parameters We apply the
proposed approach to equations with one and several concentrated delays and to those with a
distributed delay We demonstrate the advantages of the obtained results over the well known
ones
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INTRODUCTION

The main essential distinction of delay differential equations from ordinary ones consists in the
fact that linear equations of the first order may have oscillating solutions [1] Research techniques
for distinguishing oscillating solutions to delay equations from sign constant ones have been being
systematically developed since the middle of the XXth century First oscillation criteria were
established for simplest delay equations The more complicated are the considered equations,
the more difficult is the task of establishing oscillation criteria for their solutions It is possibly
to generalize some criteria, provided that they satisfy certain requirements such as the effective
verifiability, simplicity, and accuracy

In this paper, we study the family of oscillation criteria that go back to results obtained in the
70th of the last century in papers |2, 3| Let us give the result obtained in the monograph [4]| (we
generalize it below)

Consider the equation
&(t) +pt)z(h(t)) =0, >0, (1)
where functions p and h are continuous, p(t) > 0 and h(t) < tfor allt > 0, and lim;_,  A(t) = +00

Theorem 1. Let the function h be monotonically increasing, while

t

lim p(s)ds > 1.
t—o0 h(t) ()

Then all solutions to Eq (1) are oscillating

Proof is rather simple It consists in getting a rough integral estimate of the coefficient p, which
ensures the oscillation property This result was later refined and generalized Here we consider only
the ideas that seem to be most promising The main result of this paper consists in strengthening
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OSCILLATION CRITERIA FOR SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS 63

the well known sufficient oscillation conditions for all solutions to delay equations of various kinds
by using the principal idea of [5]

In the first section of this paper, we consider the ways to refine Theorem 1 In the second section,
we study an equation with several delays; we give some known results for it, get some new ones, and
compare them to each other In the third section, we establish oscillation conditions for solutions
to distributed delay equations We apply the obtained result to an integro differential equation and
compare it with well known results

1 THE WAYS TO REFINE THEOREM 1

Let us find out the ways to weaken the oscillation conditions indicated in Theorem 1

In paper [3], one proves that the constant value in the right hand side of the inequality is
unimprovable Moreover, one can easily modify considerations made in [3] so as to prove that the
strict inequality cannot be replaced with a nonstrict one

The requirement of the monotonicity of the function A mentioned in Theorem 1 is essential
Moreover, in the paper [6], one proves that if the function h is not monotonic, then no positive
constant value A makes the inequality

t
lim p(s)ds > A
t—o0 h(t) ( )

imply the oscillation of all solutions to Eq (1) Nevertheless, one can weaken the requirement of
the delay monotonicity by using functions constructed on the base of the function h

Denote g(t) = sup,<; h(s) Evidently, the function g is monotonically increasing, while g(t) >
h(t) for all ¢

Theorem 2. Let

1im/ p(s)ds > 1. (2)

t—o0 (t)
Then all solutions to Eq (1) are oscillating

Theorem 1 is a corollary of Theorem 2, because if the function h is monotonically increasing,
then g(t) = h(t) Theorem 2, in turn, can be refined by increasing the integrand

t 9(t)
lim / p(s) exp {/ p(T)dT} ds > 1. (3)
=00 Jg(t) h(s)

Then all solutions to Eq (1) are oscillating

Theorem 3 ([7], [6]). Let

Let us now consider Eq (1) under the following assumptions: the function p is locally summable,
the function h is Lebesgue measurable, and h(t) <t for almost all (a a) ¢t >0 We understand a
solution to Eq (1) as a locally absolutely continuous function z : [0,00) — R, for which there exists
an initial function ¢ : (—o0,0] — R such that for a a t > 0, equality (1) is valid with z(§) = (&)
for £ <0 For any bounded Borel measurable function ¢, Eq (1) has a unique solution ([8], Ch 5)

We call an equation, all whose solutions are oscillating, an oscillating equation

All further results are obtained under the assumption that p(t) >0 for aa ¢>0 and
ess tlg-noo h(t) = +o0o0 Put g(t) = esssup h(s)

s<t
g(t)
One can further refine inequality (3) In the paper [9], one replaces the function exp [ p(7)dr
h(s)

with majorizing ones that are obtained with the help of a recurrent correlation In a more general
case, this idea is realized in the paper [10] for an equation with several delays
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64 CHUDINOV, MALYGINA
Let us describe the result obtained for Eq (1) Denote Ny = {0} UN Put

ao(t,s) =1;  ag1(t,s) = exp {/ p(T)ak(T,h(T))dT} , k€N (4)

Theorem 4 ([10]). Assume that for some k € Ny,

lim p(s)ar(g(t),h(s))ds > 1. (5)

t—o00 g(t)

Then Eq (1) is an oscillating one

Consider one more recently proposed approach to refining Theorem 2

Denote H(t) = {s| h(s) <t < s}
Theorem 5 ([5]). Let

lim p(s)ds > 1.
t—o0 H(t) ( )

Then Eq (1) is an oscillating one

The proof of Theorem 5 is nearly as simple as that of Theorem 2 In the case when the function
h is monotone, these theorems are equivalent, otherwise Theorem 5 always gives a larger value of
the integral in the left hand side of the inequality than that in Theorem 2 Moreover, Theorem 5 is
valid in certain cases, when Theorem 3 is false

Example 1. Consider Eq (1), where

o(t) = 05, t € 2n,2n +1); he) = 2 t e [2n,2n + 1);
9’ te2n+1,2n+2), 2n—1, te2n+1,2n+2), n € Ny.
By  Theorem 5, this equation is an oscillating one Really, since

H(2n+1)=[2n+1,2n+2) U [2n + 3,2n + 4), we conclude that

( ) d ( ) d 2n+2 d 2n+4 5 d 10
lim p(s 82/ p(s s:/ s+/ 5 = > 1.
t=00 J (1) H(2n+1) ont1 9 on+3 9 9

However Theorem 3 does not allow one to prove the oscillation Really, for ¢ € [2n,2n + 2), n € Ny,
we get the equality g(¢) = 2n, whence

t g(t) 2n+2 2n
lim p(s) exp / p(T)dr pds = / p(s) exp / p(r)dr pds =
1200 Jg(t) h(s) 2n h(s)

2n+2 5 2n 5 5 exp 5
= exp / dT} ds = 9 <1
Ln-i—l 9 { 2n—1 9 9

Therefore, Theorem 3, which is the first iteration of Theorem 4, is not stronger than Theorem 5
However, the further iterations can compensate this drawback In the next section, we obtain a
result that has all virtues of theorems 4 and 5
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OSCILLATION CRITERIA FOR SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS 65
2 AN EQUATION WITH SEVERAL DELAYS

21 Some well known results Consider the equation

where for ¢ = 1, m functions p; are locally summable, functions h; are Lebesgue measurable, and
hi(t) <t for aa t>0 For any bounded Borel initial function, Eq (6) has a unique solution,
whose definition verbatim coincides with the definition of a solution to Eq (1)

In what follows, we assume that p;(t) >0 and esstlirgl hi(t) =400, i=1,m Put g;(t) =
—+oo

esssup h;(s) and g(t) = max; g;(t)
s<t

One can easily generalize Theorem 2 as follows

Theorem 6 ([11], P 44). Let

Then Eq (6) is an oscillating one

An evident weakness of this oscillation condition is the fact that the value of the integral does not
increase as h;(t) become less and g(¢) remains constant, though the oscillation property of Eq (6)
mostly depends just on the terms with relatively large differences t — h;(¢) In particular, by adding
a term without a delay in the equation, one makes Theorem 6 false

The following generalization of inequality (2) for Eq (6) seems to be quite natural:

m

Jim / pils)ds > 1. (7)

tmoo = Jau(t)

However, the example given in the paper [5] demonstrates that inequality (7) does not imply the
oscillation property of Eq (6) On the other hand, considering in the same way as in the paper [6],
we get the following refined variant of Theorem 6

Theorem 7. Let
. t M g(t)
tlgélo /g(t) Zz:;pi(s) exp /hi(s) lz:;pl(u) duds > 1. (8)
Then Eq (6) is an oscillating one
Theorem 7 is a generalization of Theorem 3 for Eq (6)

One can further increase the left hand side of inequality (8) and thus refine the oscillation
condition Put

ap(t,s) =1; agy1(t,s) = exp{/ sz T)ag (7, hi( ))dT}, k € No. 9)
Theorem 8 ([10]). Assume that for some k € Ny,

lim /@ sz S)ar(g(t), hi(s)) ds > 1. (10)

Then Eq (6) is an oscillating one
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66 CHUDINOV, MALYGINA

Applying Theorem 8 to Eq (1), we get Theorem 4, and for £ = 1 Theorem 8 implies Theorem 7
In subsection 2 3, we describe some recent attempts to strengthen Theorem 8

Consider one more approach For ¢ =1, m we denote

Hi(t) ={s| hi(s) <t <s}. (11)
Theorem 9 ([5]). Let

tligloZ/ s)ds > 1.

Then Eq (6) is an oscillating one

Note that condition (7) does not ensure the oscillation property of Eq (6) However, by
replacing the integration over segments [g;(t),t] with that over sets H;(t) we generalize Theorem 5
as Theorem 9, where each coefficient p; is integrated over its set

Example 1 demonstrates that Theorem 5 can be valid in some cases, when Theorem 3 is false
In view of the said above, the transition to several delays strengthens the effect This suggests the
possibility of combining the virtues of theorems 8 and 9 in one assertion

22 New results Let us use the sequence of functions {ay} defined by formulas (9) and the family
of sets {H;} defined by formula (11)

Lemma 1 ([10]). Let = be a positive solution to Eq (6) Then x(t)ag(t,s) < x(s) for all k € Ny,
s;$teR,0<s<t

Theorem 10. Assume that for some k € Ny,

m

lim Z/H pi(s)ak(t, hi(s))ds > 1.

t—o00 Py 7'(t)
Then Eq (6) is an oscillating one

Proof Assume that all assumptions of the theorem are fulfilled, but the solution = to Eq (6) is not

oscillating Without loss of generality, we assume that there exists tg > 0 such that x(¢) > 0 for all

t >ty Since ess 1121 h;(t) = 400, there exists t; > to such that h;(t) >ty for i = 1,m and a a
—+00

t >ty Since (t) < 0fora a t > ty, there exists to > t1 such that x(h;(t)) > z(t) for all t > t5 and
1 = 1, m; in addition,

Z/ s)ag(ta, hi(s)) ds > 1.

Finally, there also exists t3 > t3 such that

;/Sl pi(s)ar(ta, hi(s))ds > 1,

where S; = H;(t2) N [te,t3] Therefore, in view of formula (6) and Lemma 1,

ts M

i(s)ds = x(ts) — / > pi(s)z(hi(s)) ds <

t2 =1

t3

x(t3) = z(t2) + /

to

< w(ts) Z/ pls)aha(s) ds < a(tz) Y / pi(s)a(t2)an(ta, ha(s)) ds —

i=1 S" =1 Sz

<1 i/g s)ag(ta, hi(s ))d8> <0,

i=1

which contradicts the assumption
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OSCILLATION CRITERIA FOR SOLUTIONS OF DELAY DIFFERENTIAL EQUATIONS 67

Theorem 8 follows from Theorem 10 Really, [g(t),t] C H;(g(t)) for i=1,m and a a t >0
Consequently, if condition (10) is fulfilled, then so is the condition

Jim / pi(8)ag(g(t), hy(s)) ds > 1.
t*”Z:Hmm>
It remains to note that g(t) — oo as t — o0

By fixing k = 1 we get the following assertion

Corollary 1. Let

t m
lim / pi(s) exp/ pi(T)drds > 1.
t*mZ:Hm> M@Z;

Then Eq (6) is an oscillating one

Since Theorem 8 follows from Theorem 10, Theorem 7 follows from Corollary 1 On the other
hand, example 1 demonstrates that even among equations in form (1) there exist those whose
oscillations are proved in Corollary 1 but cannot be substantiated by Theorem 7 As for Eq (6),
the following example demonstrates that Corollary 1 is more effective than Theorem 7 even in the
case of constant coefficients and delays

Example 2. Counsider the equation
1 1
z(t) + 4:13(t -1+ 4:13(15 —-2)=0.

Let us apply Theorem 7 It holds that g(t) =t — 1,

t 1 t—1 1 t—1 1
pi(s) exp pi(u) duds = / <exp / du + exp / du> ds =
/g(t Zz; / Z . t-14 s—1 2 s—2 2

1/t t—s+ t—s+1) 1/‘2 s e—1<1
= ex ex S = ex S = .
4 ), \FP o L 4 ), OPo 2

Now by applying Corollary 1 we conclude that Hi(t) = [t,t + 1], Ha(t) = [t,t + 2],

t+11 t 1
Z/ exp/ Zpl duds-/t 4 exp/s_12duds+

t+27 t 1 ! S 2 s e;—l—i—e—l
duds = d ds | = > 1.
—i—/t 4exp/s_22 uds 4(/0 exp2 s+/oexp2 s> 9

Therefore, the number of iterations of Theorem 10 that are necessary for proving the oscillation
property of Eq (6) cannot be greater (but can be less) than the number of necessary iterations of
Theorem 8

23 Some comparisons Before comparing the results obtained above with results of other recently
published papers, let us apply theorems given in Section 1 to an autonomous equation, ie, the
simplest case of Eq (1)

Let p(t) = c=const >0, h(t) =t —r, and r = const >0 Eq (1) takes the form
z(t)+cx(t—r)=0, t>0. (12)
As is known ([1], Ch 4), all solutions to Eq (12) are oscillating if and only if the characteristic

equation A 4+ ce~*" = 0 has no real roots, which is equivalent to the condition er > i
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68 CHUDINOV, MALYGINA

By applying theorems 1 and 2 to Eq (12) we get the oscillation condition c¢r>1, while the
application of Theorem 3 leads to the condition c¢r > In2 Let us prove that Theorem 4 implies the
condition cr > i

Formula (4) gives the correlation

t
ak+1(t,s) = exp {c/ ag(T, T — 1) dT} )

whence

eCT

creCT

ay (t, S) _ ecf: dr _ ec(t—s)’ (12(1'3, S) _ ecfst erdr _ e(t—s)ce”" . ak(t, S) _ e(t—s)ce
Denote the left hand side of inequality (5) by F(k) = lim;— f;(t)p(s)ak(g(t),h(s))ds It holds
that
t T
T _ fk+1) -1
F(k) = ctllglo - ay(t,s)ds = c/o ay(r,s)ds = (k) , k&N,

where the recurrent sequence {f(k)} is a solution to the problem
flk+1) = ()™, f£(0) =1.

Put u(z) =e* —z If cr > i, then m>1]8 u(z) > 0, consequently, king f(k+1)— f(k) >0, and
= €Np

ecmm — 400 as x — +00, we conclude that

therefore f(k) — 400 as k — oo Hence, since
(ecr)f(k) -1
f(k)

By Theorem 4 Eq (12) is an oscillating one

F(k) = — 400 with k£ — oo.

Moreover, Theorem 4 demonstrates that the oscillation condition cr > i isexact Really, consider
the case when cr < ! Then there exists 21 € (1, €] such that u(z1) = 0 It holds that f(0) = 1 < 1,
and if f(k) < x1, then f(k+ 1) = e /®) < %1 = 1 whence in view of the induction principle,
f(k) <z <eforall k€ Ny One can easily see that the function v(z) = ¢ !
the segment [1, €], consequently, for all k € Ny,

is increasing on

After publishing the paper [10], in international press there have appeared several papers whose
authors claimed to having strengthened Theorem 8 Moreover, they believed that each new set of
conditions ensuring the oscillation of Eqs (1) and (6) “improves all known results”

Theorem 11 ([12]). Let po(t) = p(t) and for all k =0,1,2,...,

t g(t)
1+ /h(t) po(s)exp (/h(s) Pr(T) d7'> ds] . (13)

t 9(t)
lim / po(s)exp </ pr(T) dT) ds > 1, (14)
=0 Jg(t) h(s)

Pr+1(t) = po(t)

If for some k € Ny,

then Eq (1) is oscillating

The following example demonstrates that Theorem 11 does not allow one to get the oscillation
criterion cr > ! for the autonomous equation (12)
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Example 3. Consider the equation

(1) + ;az(t —9) =0, t>0. (15)

Since cr = § -2 > !, Eq (15) is oscillating

Let us apply Theorem 11 to this equation Since p(t) = pg = const and h(t) = g(t) =t —2, in
view of Definition (13) and the induction principle, py(t) = pr = const for all k € Ny; here

1 tq t=2 1 1 [? 1 e2pr — 1
= |1 dulds| =_ (1 PeSds | = (1 )
pea =g [ [ pow ([, i) as] = 5 (g [Fermas) = 5 (14 707

2x . . . . .
Denote f(xz) = 1" One can easily see that f(z) is increasing for z > 0 Consequently, if
pr € (0, 3), then

1 1 1 1 1 1 1 1
= . = -2(e—1
0 < prt1 5+25f(pk)<5+25 f<2> 51 o5 (e )<2
Since py = § € (0, 3), we conclude that pj, € (0, 3) for all k € Ny

Let us verify inequality (14) It holds that

1/t 1 [? e —1 flpr)  f(3)  2e—1)
1 . — = PkS g = 2 =
tl_n)m - exp (pr - (t —s))ds /0 ePr® ds 5o 5 < 5 5 < 1.

Inequality (14) is violated with any k € Ny, consequently, Theorem 11 is inapplicable to Eq (15)

In subsequent papers, Theorem 11 was refined by increasing the number of integrals in
formulas (13) and (14) and by refining the function py The result was applied both to Eq (1)
and to Eq (6)

Theorem 12 ([13]). Let

o h(t) =max; hi(t), i = 1,m, and P(t) = 35, p;(t);

t

o a= lim [ P(s)ds and let A = Xy be the least root of the equation \ = e
t—>+ooh(t)

o Py(t) = AoP(t) and for all k =0,1,2,...

1+ /};(t) P(s)exp </};(3) P(u)exp ( o) Py(v) dv) du) d3] . (16)

If for some k € Ny it holds that

Py (t) = P(t)

t g(t) U
lim P(s)exp </ P(u)exp < Py (v) dv) du) ds > 1, (17)
) h )

=00 Jg(t (s) h(u

then Eq (6) is oscillating

The next example demonstrates that Theorem 12 generalizes neither Theorem 8, nor even
Theorem 7 The reason is analogous to the mentioned above property of Theorem 6, namely,
the left hand side of inequality (17) does not grow when some functions among h; diminish
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Example 4. Consider the equation

b (@) + 3(ha()) =0, teRy, (18)

x(t) + 10

where

hi(t) =

{t—l, te[2n,2n + 1); o) =
J(t) =

t—12, t€[2n,2n+1);
t—12, te[2n+1,2n+2),

t—1, te2n+1,2n+2).

Let us apply Theorem 7 Since g(t) =t — 1, we conclude that

X g(t) ™ ] 1 t 2 1 t—1
Jim , Z:pi(S)exp/hi(s);pz(u) duds = lim 10/t (;exp5/h du | ds >

-1 1(s)

¢ 1 1 1 12 11 1
> 10/t_1 <exp5(t—s+11)+exp5(t—s)> ds = 5 (exp 5 T XD . —|—exp5—1> > 1.

By applying Theorem 9, we get the correlation
) ) t+1 1 t+12 1 13
tliglOZ/ pi(s)ds:tliglo t 10d8+/t 10ds=10>1.

Therefore, Theorem 7, i e, the very first iteration of Theorem 8, as well as Theorem 9 allow us
to reveal the oscillation of Eq (18)

Let us now apply Theorem 12  Since p(t) =po = )‘50 = const and h(t) =t—1, in view of
Definition (16) and the induction principle, the correlation Py(t) = py = const is valid for all £ € Ny,
and

1 b1 | u
D1 = 14+ exp exp prdé | du | ds| =
5 t—1 5 s—1 5 u—1
1 1t 1 1 s — g5
_ D o _
= [1+5/t_1exp<5e k(t s—|—1)> ds] = [1—!— - .

t
It holds that a = lim [ éds = L The least root Ay of the equation \ = e5 satisfies the

5
t—oot—1

inequality A\g < 5, whence py = )‘50 <1

2z x
Denote f(z) = ¢°~° One can easily see that f(z) grows with z >0 If py € (0,1), then

T

2e e
1 1—|—f(6) 1+e5_1—e5_1
1 Dk —
S+ fE) < .
According to the induction principle, we conclude that p; < 1 for all k € Ny

Let us verify condition (17) It holds that

t t—1 u 1 Lepk
. 1 1 1 ePk s es -1
tllglo .5 exp (/5—1 5 exp </u_1pk dv) du> ds = 5 /0 exp 5 ds = o

The function fi(z) = 65;1 is increasing on the interval (1, e), consequently, for pg < 1,

0<pk+1: < 1.

A < fe="""<1

e

Therefore, no iteration of Theorem 12 allows one to reveal the oscillation of Eq (18)
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Remark. In papers [12] and [13], one studies Eq (6) under narrower assumptions than those
considered in this paper, namely, functions p; and h; are assumed to be continuous However, it
is evident that one can make functions hy and he in Eq (18) continuous without violating the
estimates obtained in example 4

3 A DISTRIBUTED DELAY EQUATION

Let us find out whether the assumption of the delay concentration in Eq (1) (made in theorems 1
5) is important Another question is whether theorems 4 and 5 can be generalized for integro
differential equations and equations with distributed delay

31 The main result Consider the functional differential equation

t
x(t) —i—/ x(s)dsr(t,s) =0, t>0, (19)
h(t)
under the following assumptions: the function r (¢,-) has a bounded variation, r(¢,0) =0, the
function p(t) = vary;)<s<; 7(t, ) is locally summable, the function h(t) is measurable, h(t) < ¢, and

the integral is understood in the Riemann Stieltjes sense

In what follows, we assume that the function r(t,-) is monotonically increasing and . liin h(t) =
— 400
400

Eq (19) includes Eqs (1) and (6) as particular cases The definition of a solution to Eq (19)
verbatim repeats the definitions for Eqs (1) and (6) Under commonly accepted assumptions, for
any bounded Borel initial function, Eq (19) has a unique solution

Analogously to formula (9), we put

t ¢
Py(t,s) =1, Pyii(t,s) =exp {/ </h(<) Pi(¢,n) dﬂ((,n)) dC} , ke Np.

Similarly to Lemma 1, we deduce the following assertion

Lemma 2. Let x be a solution to Eq (19) and x(t) > 0 fort >ty Then there exists t1 > to such
that for t > s > t1 it holds that

x(t)Pg(t,s) < x(s). (20)

Proof Applying the induction principle with respect to k, we rewrite Eq (19) in the form
t
L(t) + p(t)x(t) = /h( )(w(t) —z(n)) dyr(t,n)-
t

Since with t > ¢y the solution z(t) is monotonically decreasing, it holds that z(t) < x(n), conse
quently, &(t) + p(t)z(t) <0 By the formula

o(0) = exp (- /t:p@) ic ) alto) + / oo (- [ (0) «) [ ; (2(5) — 2(n)) dyr(s, 1) s,

we get the following representation of the solution:

st0) < st (- | 0(0) ic) = s(9Pi(t),

i e, for k =1 the assertion of the lemma, is valid
Assume that inequality (20) is valid for some £>1 Then z(t) Py (t,n) < x(n), consequently,

t

o(t) +x(t) [ Pe(t,n)dyr(t,n) <0.
h(t)
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Applying the Grownwall Bellman inequality, we conclude that

t ¢
x(t)Sﬂc(s)eXp{—/ </h(QPk<n dr<n> }

Taking into account the definition of Py, we conclude that x( (t)Pra1(t, s)

As in Section 1, we denote H(t) = {s | h(s) <t < s}

Theorem 13. If the inequality

t
lim Py(t,n) dyr(s,n)ds > 1

t=00 JH @) Jh(s)

is valid for some k € Ny, then Eq (19) is oscillating

Proof Assume that the desired assertion is false, i e, the solution to Eq (19) remains positive,
beginning with some point Since tliin h(t) = 400, this solution is monotonically decreasing,
—+oc0

beginning with some point T" Without loss of generality, we assume that

T
/ / Py(T,n)dy(s,m)ds > 1.
H(T) Jh(s)

// n) dyr(s,n)ds >0, t>T.
h(s)

Using the inclusion H (T") C [T, 00) and the definition of the set H(T'), we conclude that

T>// drsnds>/ / drsnds>/ / n) dyr(s,n) ds.
h(s) h(s) h(s)

By Lemma 2 it holds that z(n) > «(T)Py(T,n), consequently, taking into account conditions of the
theorem, we conclude that

x(T) >/H(T/ n) dpr(s,n)ds > x(T) /H(T/ Pu(T,n) dyr(s,n)ds > z(T),

which is impossible

Formula (19) implies that

Corollary 2. If

t
lim dyr(s,n)ds > 1,

e JH(t) Jn(s)
then Eq (19) is oscillating
Proof follows from the evident inequality Px(¢,17) > 1 and the monotonicity of the function (¢, -)
For Eq (1) Corollary 2 coincides with Theorem 5

32 The integro differential equation Consider the equation

x(t) + /i:t) k(t,s)x(s)ds =0, t>0, (21)

which is a particular case of Eq (19)
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For Eq (21) functions Py(¢,s) take the form

t ¢
PO(t’ S) = 1) Pk+1(t78) = eXp {/ (/h(c) Pk(Cﬂ?)k(C,U) dn) dC} 9 ke NO'

Applying Theorem 13 to Eq (21), we deduce the following oscillation conditions
Theorem 14. Let k(t,s) > 0 If the inequality

t
lim / / Pi(t,n)k(s,n)dnds > 1
t=00 JH(#) Jh(s)

is valid for some k € Ny, then Eq (21) is oscillating

Theorem 14 implies the well known oscillation conditions for Eq (21)

Corollary 3 (|14]). Let k(¢t,s) >0 If

t
lim k(s,n)dnds > 1,

o0 JH(8) hs)
then Eq (21) is oscillating

Proof follows from the evident inequality Py(t,n7) > 1 and the nonnegativity of the function
k(t, s)

In the paper [15], one considers an equation with a distributed delay stated differently from
Eq (21), namely,

b(t)
+/ R(t,s)x(t —s)ds =0, t>0. (22)
0

Here the function b is continuous and positive on the semiaxis [0,00), while the function R is
piecewise continuous on the segment [0,00) x [0, b(t)]
Theorem 15 (|15]). Let R(t,s) >0, tlim (t —0b(t)) = oo and let the function b be monotonically

—00
increasing on [0,00) If

b(t) pt+s

lim R(n,s)dnds > 1,
t

t—o00 0

then Eq (22) is oscillating

Let us prove that Theorem 15 follows from Corollary 3 Note that one can reduce Eq (22) to
form (21) by changing variables t — s = 7 in the integral and using denotations ¢ — b(t) = h(t) and
R(t,t —7) = k(t,T)

Since the function b is monotonically increasing, it holds that b(n) > b(t) for n >t, and if
t <n<t+b(t), then n—b(n) <t <mn, consequently, n € H(t) Since the function R is nonnegative,
we get the following chain of inequalities:

b(t) ptts t+b(t) [ rb(t)
/ R(n, >dnds—/ R(,9)ds ) dn =
t n—

t+b(t) tb(t
/ / R(n,n—r den</ / k(n,t de77</ k(n,7)dT dn,
b(t) H(t) Jh(n)

whence it follows that assumptions of Theorem 15 ensure the validity of conditions in Corollary 3
The converse assertion is false, because the monotonicity of the function b(t) = t — h(t) in Corollary 3
is not required
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CHUDINOV, MALYGINA
CONCLUSION

Oscillation conditions for Egs (1), (6), and (19) usually represent estimates of integrals of

equation coefficients over segments that depend on delays In this paper, we prove that by using
sets H and H; in place of integration intervals, we get much wider classes of oscillating equations,
and the well known results appear to be corollaries of new ones
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