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Abstract—Ones of the main questions in theory of local bifurcations and its applications
are questions about direction of bifurcations (sub- or supercriticality) and on stability of
the solutions arising in neighborhood of a nonhyperbolic equilibrium point or cycle dynamic
system. We consider problems of local bifurcations in dynamical systems with discrete time.
New features are proposed to orientation of bifurcations and properties stability of bifurcation
solutions for problems on basic scenarios of bifurcations. We also propose new algorithms
for constructing central manifolds of the corresponding problems, allowing to obtain new
bifurcation formulas, in particular, formulas to calculate Lyapunov quantities. Proposed
algorithms and formulas are based on the common operator method the study of problems
on local bifurcations and allow under the new conditions effective qualitative analysis of
bifurcations in terms of the initial equations.
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1. INTRODUCTION AND PROBLEM STATEMENT

Consider the following discrete-time dynamic system:

xn+1 = A(μ)xn + a(xn, μ), xn ∈ R
N , n = 0, 1, 2, . . . , (1)

where μ ∈ R
K is a parameter, the matrix A(μ) and the function a(x, μ) are continuously

differentiable in x and μ,

a(x, μ) = a2(x, μ) + a3(x, μ) + ã4(x, μ), (2)

terms a2(x, μ) and a3(x, μ) are quadratic and cubic in x, correspondingly, and ã4(x, μ) satisfies the
correlation ‖ã4(x, μ)‖ = O(‖x‖4), x→ 0, uniformly with respect to μ.

System (1) with any values of the parameter μ has the equilibrium point x = 0. Assume that
with some μ = μ0 this point is nonhyperbolic, i.e., the matrix A(μ0) has one or more eigenvalues
which are modulo equal to unity. In this case, μ0 is called the bifurcation point or the bifurcation
value of the parameter of system (1). The following nonhyperbolicity cases are the main ones,
namely, the matrix A(μ0) can have

P1) one simple eigenvalue 1;

P2) one simple eigenvalue −1;

P3) a pair of simple eigenvalues in the form e±i2πθ0 , where 0 < θ0 < 1/2 and θ0 �= 1/3, 1/4.
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In all these cases, the matrix A(μ0) is assumed to have no other eigenvalues which are modulo equal
to unity.

In all these cases, the codimension of the corresponding bifurcations equals unity. Therefore in
what follows we assume that the parameter μ is scalar.

Note that the nonhyperbolicity case, when the matrix A(μ0) has a pair of simple eigenvalues in
the form e±i2πθ0 , where θ0 equals either 1/3 or 1/4, is referred to a strong resonance; we do not
consider it here. In this connection, note also that the subcase of case P3), when θ0 is rational, is
called a weak resonance.

Cases P1)–P3) lead to various scenarios of local bifurcations in system (1). Namely, the
occurrence of nonzero equilibrium points near the point x = 0 (case P1)), the occurrence of cycles of
period 2 (case P2)), and the occurrence of invariant tori (case P3)) (e.g., [1–4]). Strictly speaking,
the implementation of the mentioned scenarios requires the fulfillment of certain transversality
conditions; we mention some of them below.

There are many papers (e.g., [1–9]) devoted to various aspects of bifurcations in dynamical
systems. It is most important to establish the so-called bifurcation formulas that allow one to study
basic properties of bifurcations such as transversality conditions, the bifurcation direction (sub- or
supercriticality), the stability of occurring solutions, etc. Lyapunov quantities give an example of
bifurcation formulas.

There are two approaches to establishing bifurcation formulas. The first one implies the
construction of such formulas in terms of initial equations. As a rule, the formulas deduced in
such a way are rather complicated (e.g., [1], P. 209; [2], P. 99; or [4], P. 110). The main advantage of
these formulas is the fact that they allow one to study bifurcations immediately in terms of initial
equations.

The second approach is connected with the application of the Central Manifold Theorem [1], [4],
[10–12] and the method of normal forms [1, 2, 6, 9, 13]. The bifurcation formulas obtained in such
a way appear to be much simpler and sufficiently effective for the bifurcation analysis. However,
the use of these formulas for studying concrete equations, as a rule, requires some preliminary
transformation of initial equations, which can represent a nontrivial task.

The choice between these two approaches is not evident. Since properties of problems of various
classes essentially differ, in certain cases some methods are more preferable than other ones. One
should also keep in mind the fact that various applied approaches necessarily lead to the same final
formulas (certainly, provided that their comparison is performed correctly).

In this paper, we study the first approach. First, we propose new bifurcation formulas in problems
on main scenarios of local bifurcations of system (1) in terms of initial equations. Second, we
propose new algorithms for constructing central manifolds of the corresponding nonlinear maps. The
proposed formulas and algorithms allow us to perform (in new conditions) an effective qualitative
analysis of main bifurcation scenarios and, in particular, to establish new formulas for calculating
Lyapunov quantities. The proposed analysis schemes are based on the general operator research
method for studying local bifurcations of dynamical systems [15, 16].

The results obtained in this paper are applicable (after some natural modifications) for studying
local bifurcations in neighborhoods of nonhyperbolic cycles of discrete systems and for studying
analogous problems for systems described by nonautonomous periodic differential equations, in
particular, equations in the form

dx

dt
= A(t, μ)x+ a(x, t, μ), x ∈ R

N ,

where the matrix A(t, μ) and the nonlinearity a(x, t, μ) are T -periodic in t, while a(x, t, μ) uniformly
in t and μ satisfies the correlation ‖a(x, t, μ)‖ = O(‖x‖2) with x→ 0.
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2. THE STUDY OF MAIN BIFURCATION SCENARIOS

2.1. Case P1) (the bifurcation of equilibrium states).
2.1.1. Bifurcation conditions. The main scenario here is the bifurcation connected with the
occurrence of nonzero equilibrium points near the equilibrium point x = 0 of system (1). Let us
adduce the relevant notions (e.g., [15, 16]).

A value μ0 is called a bifurcation point of an equilibrium state of system (1) if there exists a
sequence μk → μ0 such that with each μ = μk system (1) has a nonzero equilibrium point x = x∗k,
while x∗k → 0. Solutions x∗k of system (1) and the corresponding values of the parameter μk are said
to be bifurcating solutions of system (1).

Evidently, if μ0 is a bifurcation point of equilibrium states of system (1), then the matrix A(μ0)
has the eigenvalue 1. However, a value μ0, for which the matrix A(μ0) has the eigenvalue 1, is not
necessarily a bifurcation point of equilibrium states of system (1).

Let us adduce one of variants of a sufficient bifurcation condition (e.g., [15]). With μ close to
μ0 the matrix A(μ) has a simple real eigenvalue λ(μ) such that the function λ(μ) is continuously
differentiable and λ(μ0) = 1. Then if

γ0 ≡ λ′(μ0) �= 0, (3)

then μ0 is a bifurcation point of equilibrium states of system (1).

2.1.2. Continuous branches of bifurcating solutions. Bifurcating solutions of system (1), as a rule,
form continuous branches in the following sense. One can find ε0 > 0 and defined with ε ∈ (−ε0, ε0)
continuous functions μ(ε) and x(ε) such that with μ = μ(ε) system (1) has a nonzero (with ε �= 0)
equilibrium point x = x(ε) such that x(0) = 0 and μ(0) = μ0.

Note that the range of the function μ(ε) can represent: (S1) an interval (μ0 − δ0, μ0 + δ0),
(S2) a half-interval [μ0, μ0 + δ0) or (μ0 − δ0, μ0], (S3) a point μ = μ0. The latter case is said to be
degenerate; it is typical, e.g., for linear or conservative systems. The first two cases take place under
certain non-degeneracy conditions with respect to the nonlinear term (2) in system (1). Case (S1)
is referred to as a transcritical bifurcation, case (S2) is called a fork-type bifurcation, and case (S3)
is said to be an explosive bifurcation.

Fig. 1. Continuous branches of bifurcating solutions: (S1) a transcritical bifurcation, (S2) a fork-type
bifurcation, (S3) an explosive bifurcation.

In Fig. 1, continuous branches of bifurcating solutions are shown as curves that transversally
intersect the axis μ at the point μ0. Points located on curves correspond to separate bifurcating
solutions (equilibrium points) of system (1). Colored points correspond to stable equilibrium points,
while non-colored points do to unstable ones.

Therefore, under a transcritical bifurcation, system (1) has a unique continuous branch of
bifurcating solutions x∗(μ) which is defined in some interval (μ0 − δ0, μ0 + δ0) so that x∗(μ0) = 0
and x∗(μ) �= 0 with μ �= μ0. Under a fork-type bifurcation, system (1) has two continuous branches
of bifurcating solutions x∗1(μ) and x∗2(μ) which are defined in one of half-intervals [μ0, μ0 + δ0) or
(μ0 − δ0, μ0] so that x∗j (μ0) = 0 and x∗j(μ) �= 0 (j = 1, 2) for μ �= μ0, while for other values of μ
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system (1) has no bifurcating solutions. Under an explosive bifurcation, with μ < μ0 and μ > μ0
system (1) has no bifurcating solutions, while with μ = μ0 there occurs a continuum of equilibrium
points.

2.1.3. Bifurcation formulas. Let us establish new formulas for bifurcations of equilibrium states of
system (1) which would allow us to decide which of cases (S1), (S2), or (S3) is realized (the
bifurcation direction) and to describe stability properties of occurring solutions. To this end,
we denote by e and g eigenvectors of the matrix A0 = A(μ0) and the conjugate one A∗(μ0) that
correspond to the eigenvalue 1. We can choose these vectors in accordance with the equalities

‖e‖ = 1, (e, g) = 1. (4)

Then for calculating value (3) we can use the following formula (see [15], [17]):

γ0 = (A′(μ0)e, g); (5)

here A′(μ) is the matrix consisting of derivatives of elements of the matrix A(μ).
In what follows, for simplicity, we use one and the same denotation for the square real matrix

and the linear operator generated by it in the standard basis of the space R
N .

Denote by P0 and P 0 the linear operators that act in R
N and obey the equalities

P0x = (x, g)e, P 0 = I − P0 (6)

(if N = 1, then P0x = x and P 0x = 0). Put B0 = I −A0 + P0. By construction, the operator
B0 : R

N → R
N is invertible. Finally, for simplicity, we put

a2 = a2(e, μ0), a3 = a3(e, μ0), a′2 = a′2(e, μ0); (7)

here a′2(x, μ) is the Jacobian matrix of the vector function a2(x, μ).
Introduce values

l1 = (a2, g), l2 = (a′2B
−1
0 P 0a2, g) + (a3, g). (8)

In assertions given below, we assume that absolute values of eigenvalues of the matrix A0 different
from unity are less than 1.

Theorem 1. Let γ0l1 �= 0. Then μ0 is a transcritical bifurcation point of system (1). If, in
addition, γ0 < 0 (γ0 > 0), then the occurring continuous branch of bifurcating solutions x∗(μ) with
μ > μ0 consists of nonstable (asymptotically stable) equilibrium points, and with μ < μ0 it does of
asymptotically stable (nonstable) ones.

Theorem 2. Let l1 = 0 and γ0l2 �= 0. Then μ0 is a fork-type bifurcation point of system (1).
If, in addition, γ0l2 > 0 (γ0l2 < 0), then continuous branches of equilibrium points x∗1(μ) and x∗2(μ)
occur with μ < μ0 (μ > μ0). These equilibrium points are asymptotically stable (nonstable), if l2 < 0
(l2 > 0).

See proofs of these assertions and other main ones in Section 4.

Remark 1. If the matrix A0 mentioned in conditions of theorems 1 and 2 has at least one eigenvalue
whose absolute value exceeds unity, then the occurring continuous branches of bifurcating solutions
of system (1) consist of only nonstable equilibrium points.

Remark 2. Values (8) define the same bifurcation properties as the first and second Lyapunov
quantities in the problem on the bifurcation of equilibrium states of system (1) ([2], P. 179).
Moreover, in the proof of theorems 1, 2 one ascertains that values (8) coincide with these Lyapunov
quantities.

Remark 3. There are only two ways to choose the normalizing rule for vectors e and g in accordance
with equalities (4); they differ only in signs. Therefore, in essence, we propose two variants of
bifurcation formulas for l1 and l2. In these variants, values of l1 differ only in signs, while values of
l2 coincide.
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2.1.4. Example 1. Consider the following two-dimensional system (depending on the parameter
μ):

xn+1 = (1 + μ)xn + 2xnyn, yn+1 = μxn + qyn + x2n + y2n; (9)

here q is a fixed value, |q| < 1. This system takes form (1) with N = 2, A(μ) =
[

1+μ 0
μ q

]

, and with

the quadratic nonlinearity a2(x, y) =
[

2xy
x2+y2

]

.

The matrix A(μ) with μ = 0 has eigenvalues λ1 = 1 and λ2 = q. Therefore it should be expected
that when the parameter μ runs through μ = 0 in a neighborhood of the equilibrium point (0, 0) of
system (9), there occur nonzero equilibrium points. Really, calculations performed by formulas (4)–
(8) lead to the equalities γ0 = 1, l1 = 0 and l2 = 2/(1 − q). Therefore Theorem 2 implies that
the value μ = 0 is a fork-type bifurcation point for system (9). Since γ0 > 0 and l2 > 0, continuous
branches of nonzero equilibrium points of system (9) occur with μ < 0, and these equilibrium points
are nonstable.

One can confirm the results of the performed research by direct calculations, which demonstrate
that in system (9) with μ < 0 there occur two continuous branches of nonzero equilibrium points

(x∗1,2(μ), y
∗
1,2(μ)) =

(

−μ±√μ(q − 1)

2
,−μ

2

)

which are nonstable.

2.2. Case P2) (the period-doubling bifurcation).
2.2.1. Bifurcation conditions. In this case, there takes place a bifurcation connected with the
occurrence of cycles of period 2. Let us give the corresponding notion (e.g., [15, 16]).

A value μ0 is called a period-doubling bifurcation point of system (1), if there exists a sequence
μk → μ0 such that with each μ = μk system (1) has a nonstationary cycle x∗k = {xk0 , xk1} of period 2,
while max

0�i�1
‖xki ‖ → 0.

Evidently, if μ0 is a period-doubling bifurcation point of system (1), then the matrix A(μ0) has
the eigenvalue −1. However, a value μ0, for which the matrix A(μ0) has the eigenvalue −1, is not
necessarily a period-doubling bifurcation point of system (1).

There takes place an analog of the sufficient condition (3) for the bifurcation of equilibrium
states. Namely, with μ close to μ0 the matrix A(μ) has a simple real eigenvalue λ(μ) such that the
function λ(μ) is continuously differentiable and λ(μ0) = −1. Then if γ0 = λ′(μ0) �= 0, then μ0 is a
period-doubling bifurcation point of system (1).

Furthermore, similarly to case P1), here there also occur nonzero branches of bifurcating
solutions. Namely, in case P2), as a rule, system (1) has exactly one continuous branch of cycles
of period 2 x∗(μ) = {x1(μ), x2(μ)} defined in one of half-intervals [μ0, μ0 + δ0) or (μ0 − δ0, μ0] so
that x∗(μ0) = 0 and x∗(μ) �= 0 with μ �= μ0. Moreover, with other values of μ system (1) has no
bifurcating solutions.

See Fig. 2 for the scheme of a continuous branch of bifurcating solutions x∗(μ) = {x1(μ), x2(μ)}
of system (1) in the period-doubling bifurcation problem. This branch is formed by two continuous
functions x1(μ) and x2(μ). Arrows connect points that form cycles of period 2 in system (1).

2.2.2. Bifurcation formulas. Let us establish new bifurcation formulas for the period-doubling
bifurcation problem for system (1) that would allow us to determine the bifurcation direction and
to study stability properties of occurring solutions. To this end, denote by e and g eigenvectors
of the matrix A(μ0) and the conjugate one A∗(μ0) that correspond to the eigenvalue −1. We can
choose these vectors in accordance with equalities (4). Then we can calculate values γ0 = λ′(μ0) by
formula (5) [15].

Denote by P0 and P 0 the (acting in R
N ) operators defined by equalities (6) as applied to case P2)

considered here. By construction, the linear operator I −A2
0 + P0 : R

N → R
N is invertible. Put
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Fig. 2. Continuous branches of bifurcating solutions: a period-doubling bifurcation.

Γ0 = (I −A2
0 +P0)

−1 : RN → R
N . In what follows, for brevity, we use denotations (7) in application

to the considered case P2).
Put

l1 = −(2a3 + a′2x[I + Γ0(I +A0)
2]a2, g)

2
. (10)

In the assertion given below we additionally assume that absolute values of eigenvalues of the
matrix A0 that differ from −1 are less than 1.

Theorem 3. Let γ0l1 �= 0. Then μ0 is a period-doubling bifurcation point of system (1). If, in
addition, γ0l1 > 0 (γ0l1 < 0), then continuous branches x∗(μ) = {x1(μ), x2(μ)} of cycles of period 2
occur with μ > μ0 (μ < μ0). If l1 < 0 (l1 > 0), then cycles x∗(μ) = {x1(μ), x2(μ)} are asymptotically
stable (nonstable).

Here an analog of Remark 1 also takes place, as well as the following analog of Remark 2.

Remark 4. Value (10) defines the same bifurcation properties as the first Lyapunov quantity for
the period-doubling bifurcation problem for system (1) ([2], P. 193). Moreover, in the proof of
Theorem 3 one makes sure that value (10) coincides with this Lyapunov quantity.

Consider a particular case, when system (1) is scalar, i.e., consider the equation

xn+1 = β1(μ)xn + β2(μ)x
2
n + β3(μ)x

3
n +O(x4n), xn ∈ R

1,

where functions βj(μ) are smooth, while β1(μ0) = −1. In this case, formula (10) takes a simpler
form, namely,

l1 = −(β22 + β3), (11)

where β2 = β2(μ0) and β3 = β3(μ0).

2.2.3. Example 2 (a period-doubling bifurcation in the Hénon map). Consider the Hénon model
(e.g., [2]):

un+1 = vn, vn+1 = a− μun − v2n, (12)

where 0 < a < 3 and −1 < μ < 1. In what follows, we assume that the value a is fixed, while μ is
the bifurcation parameter.

System (12) has an equilibrium point (u∗(μ), v∗(μ)), where

u∗(μ) = v∗(μ) =
−(1 + μ) +

√

(1 + μ)2 + 4a

2
.

Changing variables u = x+ u∗(μ) and v = y + v∗(μ) in formula (12), we get the system

xn+1 = yn, yn+1 = −μxn − 2u∗(μ)yn − y2n,
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i.e., a system in form (1) with N = 2 and

A(μ) =

⎡

⎣

0 1

−μ −2u∗(μ)

⎤

⎦ , a(w,μ) = a2(w) =

⎡

⎣

0

−y2

⎤

⎦ ; (13)

here w = (x, y). The matrix A(μ) with μ = μ0 = 2
√

a/3− 1 has eigenvalues λ1 = −1 and λ2 = −μ0.
Therefore it is natural to expect that when the parameter μ runs through μ = μ0 in a neighborhood
of the equilibrium point (u∗(μ), v∗(μ)) of system (12) there occur cycles of period 2.

Really, calculations by formulas (4)–(7) and (10) lead to equalities γ0 = 3
2(1−μ0)

and l1 = 1
2(μ2

0−1)
.

Then l1γ0 < 0 and l1 < 0. Hence and from Theorem 3 it follows that cycles of period 2 in a
neighborhood of the equilibrium point (u∗(μ), v∗(μ)) of system (12) occur with μ < μ0 and they are
asymptotically stable.

2.3. Case P3) (Andronov–Hopf bifurcation).
2.3.1. Bifurcation conditions. For simplicity, we restrict ourselves to considering the cases when
system (1) is two-dimensional, namely,

xn+1 = A(μ)xn + a(xn, μ), xn ∈ R
2, n = 0, 1, 2, . . . ; (14)

here we assume that

A(μ) = ρ(μ)

⎡

⎣

cos 2π(θ0 + ω(μ)) − sin 2π(θ0 + ω(μ))

sin 2π(θ0 + ω(μ)) cos 2π(θ0 + ω(μ))

⎤

⎦ ,

where the value θ0 satisfies conditions of case P3), and smooth functions ρ(μ) and ω(μ) do conditions
ρ(μ0) = 1 and ω(μ0) = 0.

The main bifurcation scenario in case P3) is the Andronov–Hopf bifurcation (see [1–3]). Namely,
when the value of the parameter μ runs through μ0 in a neighborhood of the equilibrium point
x = 0 of system (14), there usually occurs a closed invariant curve Γ(μ) that confines the attraction
(repulsion) domain of the fixed point x = 0 of the system (Fig. 3).

Fig. 3. The Andronov–Hopf bifurcation.

The curve Γ(μ) smoothly depends on μ and contracts to the point x = 0 as μ→ μ0. The dynamic
behavior of system (14) on the curve Γ(μ) can be rather complex, including various families of
quasiperiodic and periodic trajectories. In a general case, when μ tends to μ0 on the curve Γ(μ),
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there occur and disappear long-period cycles of system (14). The mentioned effect (the subfurcation
of periodic oscillations) was first described by V. S. Kozyakin [18].

The invariant curve Γ(μ) usually occurs in one of following three cases: (S1) μ ∈ (μ0, μ0 + δ), (S2)
μ ∈ (μ0 − δ, μ0), or (S3) μ = μ0, where δ > 0. Case (S3) is called degenerate, it is typical for linear
and conservative systems. Cases (S1) and (S2) require the fulfillment of a certain nondegeneracy
condition for the nonlinear part of system (14). In addition, each value of μ in the corresponding
interval corresponds to one closed invariant curve Γ(μ). Note also that an invariant curve Γ(μ) can
be an attractor of system (14) (i.e., it can attract all trajectories that start in some neighborhood
of this curve); in this case we say that the curve Γ(μ) is asymptotically stable. We also define the
notion of a nonstable curve Γ(μ) in a natural way.

2.3.2. Bifurcation formulas. Let us establish new bifurcation formulas for the Andronov–Hopf
bifurcation problem for system (14), which would allow us to determine the bifurcation direction
and to establish stability properties of the invariant curve Γ(μ). For simplicity, we restrict ourselves
to the case, when the nonlinearity a(x, μ) in this equation starts with the cubic term. i.e.,

a(x, μ) = a3(x, μ) + ã4(x, μ). (15)

Put χ(ϕ) = (a3(e(ϕ), μ0), h(ϕ)), where e(ϕ) =

⎡

⎣

cosϕ

sinϕ

⎤

⎦, h(ϕ) =

⎡

⎣

cos(ϕ+ 2πθ0)

sin(ϕ + 2πθ0)

⎤

⎦,

while γ0 = ρ′(μ0) and

L1 =
1

2π

2π
∫

0

χ(ϕ) dϕ. (16)

Theorem 4. Let γ0L1 �= 0. Then μ0 is an Andronov–Hopf bifurcation point of system (14). If, in
addition, γ0L1 < 0 (γ0L1 > 0), then the closed invariant curve Γ(μ) occurs with μ > μ0 (μ < μ0).
This curve is asymptotically stable, if L1 < 0; it is nonstable, if L1 > 0.

Remark 5. Value (16) defines the same bifurcation properties as the first Lyapunov quantity of
system (14) in the Andropov–Hopf bifurcation problem ([2], P. 222). Moreover, in the proof of
Theorem 4 one makes sure that (16) coincides with this Lyapunov quantity.

2.3.3 Example 3 (the Zaslavsky model). Consider the Zaslavsky model that depends on a scalar
parameter μ ([8], P. 74)

un+1 = un + μvn − μ sinun, vn+1 = μvn − 3μ sinun. (17)

System (17) has the zero equilibrium point u = v = 0 with any μ. The Jacobian matrix of the
right-hand side of the system at this point takes the form A(μ) =

[

1−μ μ
−3μ μ

]

. With μ = μ0 = 1/2

the matrix A(μ0) has eigenvalues e±iπ/3, i.e., we get case P3) with θ0 = 1/6. Therefore one should
expect that as μ runs through μ0 in a neighborhood of the zero equilibrium point of system (17)
the Andronov–Hopf bifurcation scenario is implemented. Let us study this issue.

System (17) with μ = μ0 in the Jordan basis of the matrix A(μ0) takes the form

wn+1 = B0wn + a3(wn) +O(|wn|4),
where w = [ xy ], B0 =

[

1/2 −√
3/2√

3/2 1/2

]

, a3(w) = 1
48

[

x3

−√
3x3

]

. Calculations performed by formula (16)

give L1 = −1/128. Furthermore, the value γ0 = ρ′(μ0) here equals 3/2. Hence and from Theorem 4
we deduce that the value μ0 = 1/2 is an Andronov–Hopf bifurcation point of system (17). In
addition, a closed invariant curve Γ(μ) in a neighborhood of the zero equilibrium point of this
system occurs with μ > μ0, and this curve is asymptotically stable.
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3. THE CONSTRUCTION OF CENTRAL MANIFOLDS

To prove the above assertions, we proceed from initial problems to reduced equations on the
corresponding central manifolds. To this end, it is necessary to approximate these manifolds. In
this section, we propose new approaches to such constructions. Though this section is an auxiliary
one, the proposed schemes are of independent interest.

Consider the map F : RN → R
N defined by the formula

F (x) = A0x+ a2(x) + a3(x) + ã4(x), (18)

where A0 is a square matrix, functions a2(x) and a3(x) are, correspondingly, quadratic and cubic
terms with respect to x, while ã4(x) is smooth and satisfies the correlation ‖ã4(x)‖ = O(‖x‖4),
x→ 0.

Assume that the spectrum σ of the operator A0 : R
N → R

N consists of two nonempty parts,
i.e., σ = σ0 ∪ σ0, where σ0 contains eigenvalues that are modulo equals 1, while σ0 does the rest
eigenvalues. Denote by E0 and E0 root subspaces of the matrix A0 that correspond, respectively, to
parts σ0 and σ0 of its spectrum. Let k0 and k0 be dimensions of subspaces E0 and E0. The space
R
N is representable as the direct sum R

N = E0
⊕

E0 of invariant for the operator A0 : R
N → R

N

subspaces E0 and E0. Denote by P0 : R
N → E0 and P 0 : RN → E0 the corresponding projection

operators.
In accordance with the central manifold theorem (e.g., [1], [4, 10, 12]) one can find a δ0-

neighborhood T (0, δ0) of the point x = 0 such that map (18) has in the ball T (0, δ0) a smooth
invariant k0-dimensional manifold Wc containing the point x = 0 and tangential at this point
to the subspace E0; the invariance of the manifold Wc for map (18) means that if x ∈Wc and
F (x) ∈ T (0, δ0), then F (x) ∈Wc. The manifold Wc is said to be central for map (18) in a
neighborhood of the fixed point x = 0; it can be defined by the equation v = ψ(u), where u ∈ E0,
v ∈ E0, while the function ψ(u) is smooth and satisfies equalities ψ(0) = 0 and ψ′(0) = 0.

Here we consider the same main cases as those considered above when studying bifurcations of
system 1), namely, the cases when the matrix A0 has

P1) one simple eigenvalue 1;

P2) one simple eigenvalue −1;

P3′) a pair of simple eigenvalues e±ϕ0i, where 0 < ϕ0 < π.

We assume that absolute values of the rest eigenvalues of the matrix A0 differ from 1. Let us
construct an approximation of the central manifold Wc.

3.1. Case P1). There exist eigenvectors e and g of matrices A0 and A∗
0, respectively, that

correspond to the simple eigenvalue 1 and satisfy equalities (4). The subspace E0 is one-dimensional
and contains the vector e. Finally, projection operators P0 and P 0 obey equalities (6).

Since the subspace E0 is one-dimensional, one can define vectors u ∈ E0 by the equality u = εe,
where ε ∈ (−∞,+∞). Correspondingly, any vector x ∈ R

N is uniquely representable as the sum
x = εe+ v so that ε = (x, g) and v = P 0x. Finally, one can define the central manifold by the
equality

Wc = {x : x = εe+ ψ(ε)}, (19)

where

S1) the function ψ(ε) takes on values in the subspace E0;

S2) the function ψ(ε) is smooth, while ψ(0) = 0 and ψ′(0) = 0;

S3) there exists δ0 > 0 such that if x1 ∈ T (0, δ0), x1 = ε1e+ ψ(ε1) for some ε1 and, in addition,
x2 = F (x1) ∈ T (0, δ0), then x2 = ε2e+ ψ(ε2) with some ε2.
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Taking into account the above requirements, it is natural to construct the desired function in
the form

ψ(ε) = ε2ψ2 + ε3ψ3 + ̂ψ4(ε), (20)

where coefficients ψ2, ψ3 ∈ E0 have to be defined, while the function ̂ψ4(ε) takes on values in the
subspace E0, it is smooth and satisfies the correlation ‖ ̂ψ4(ε)‖ = O(ε4), ε→ 0.

Put B0 = I −A0 + P0. By construction, the operator B0 : R
N → R

N is invertible, while
subspaces E0 and E0 are invariant for it. In what follows, for brevity, we write

a2 = a2(e), a3 = a3(e), a′2 = a′2(e). (21)

Theorem 5. Assume that matrix A0 have a simple eigenvalue 1, while absolute values of its
rest eigenvalues differ from 1. Then the central manifold Wc obeys equality (19), where ψ(ε) is
function (20), while

ψ2 = B−1
0 P 0a2, ψ3 = B−1

0 P 0[−2(a2, g)(A0ψ2 + a2) + a′2ψ2 + a3]. (22)

3.2. Case P2). There exist eigenvectors e and g of matrices A0 and A∗
0, respectively, that

correspond to the simple eigenvalue −1 and satisfy equalities (4). Here the subspace E0 (as well as
in case P1)) is one-dimensional and contains the vector e. Finally, projection operators P0 and P 0

obey the same equalities (6).
Similarly to case P1), here we will seek for the equation for the central manifold Wc in the

form (20). Put

B1 = I −A0, B2 = I +A0 + P0. (23)

By construction, operators B1 : R
N → R

N and B2 : R
N → R

N are invertible, while subspaces E0

and E0 are invariant for them.

Theorem 6. Assume that matrix A0 has the simple eigenvalue −1, while absolute values of its
rest eigenvalues differ from 1. Then the central manifold Wc obeys equality (19), where ψ(ε) is
function (20), while

ψ2 = B−1
1 P 0a2, ψ3 = B−1

2 P 0[−2(a2, g)(A0ψ2 + a2)− a′2ψ2 − a3]. (24)

3.2.1. Example 4 (the central manifold in the Hénon model). Consider the Hénon model (12)
under assumptions of Example 2. The corresponding matrix A0 = A(μ0) (see (13)) has eigenvalues
λ1 = −1 and λ2 = −μ0. Let us construct the central manifold Wc for system (12) with μ = μ0.

Calculations by formulas (4), (6), (23), and (24) lead to the following equalities:

e =
1√
2

⎡

⎣

1

−1

⎤

⎦ , g =

√
2

μ0 − 1

⎡

⎣

μ0

1

⎤

⎦ , ψ2 =
1

2(μ20 − 1)

⎡

⎣

1

−μ0

⎤

⎦ . (25)

Therefore the desired central manifold Wc = {x : x = εe+ ε2ψ2 +O(ε3)}, where e and ψ2 are vectors
indicated in (25).
3.3. Case P3′) should be considered only with N � 3.

Since the matrix A0 has a pair of simple eigenvalues e±iϕ0 , there exist nonzero vectors e, g, e∗, g∗ ∈
R
N such that

A0(e+ ig) = eiϕ0(e+ ig), A∗
0(e

∗ + ig∗) = e−iϕ0(e∗ + ig∗); (26)

here A∗
0 is the transposed matrix. We can treat vectors e, g, e∗, and g∗ as normalized ones in

accordance with equalities

‖e‖ = ‖g‖ = 1, (e, e∗) = (g, g∗) = 1, (e, g∗) = (g, e∗) = 0. (27)
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Assume that E0 is the (two-dimensional) root subspace of the operator A0 that corresponds to
simple eigenvalues e±iϕ0 ; for its basis we can use vectors e and g. The space R

N is representable in
the form R

N = E0 ⊕E0, where E0 is the additional invariant for A0 subspace of dimension N − 2.
The equality R

N = E0 ⊕ E0 defines projection operators P0 : R
N → E0 and P 0 : RN → E0 so

that P 0 = I − P0, while the operator P0 is representable as P0x = (x, e∗)e+ (x, g∗)g; the latter
formula follows from the fact that by assumption vectors e, g, e∗, and g∗ are chosen in accordance
with equalities (27).

The central manifold in the considered case takes the form
Wc = {x : x = u+ ψ(u), u ∈ E0}, (28)

where ‖u‖ < δ with some δ > 0, while

S′
1) the function ψ(u) is defined in the circle ‖u‖ < δ in the subspace E0 and takes on values in

the subspace E0;

S′
2) the function ψ(u) is smooth, while ψ(0) = 0 and ψ′(0) = 0;

S′
3) there exists δ0 > 0 such that if x1 ∈ T (0, δ0), x1 = u1 + ψ(u1) for some u1 ∈ E0 and, in

addition, x2 = F (x1) ∈ T (0, δ0), then x2 = u2 + ψ(u2) with some u2 ∈ E0.

Taking into account the stated requirements, we construct the desired function in the form

ψ(u) = ψ2(u) + ψ3(u) + ̂ψ4(u), (29)

where functions ψ2(u) and ψ3(u) (they are quadratic and cubic, correspondingly) have to be defined,
while the function ̂ψ4(u) takes on values in the subspace E0, it is smooth and satisfies the correlation
‖ ̂ψ4(u)‖ = O(‖u‖4), u→ 0.

In order to define functions ψ2(u) and ψ3(u), denote by Q0 the contraction of the operator
A0 : R

N → R
N on the subspace E0, i.e., Q0 : E0 → E0 and Q0u = A0u for u ∈ E0. The operator

Q0 has a pair of simple eigenvalues e±iϕ0 , consequently, it is invertible.
Furthermore, denote by Fp the set of homogeneous of order p (p is a positive integer number)

functions which are defined in the subspace E0 and take on values in the subspace E0, i.e.,

Fp = {ϕ(u) | ϕ : E0 → E0, ϕ(αu) ≡ αpϕ(u)}.
For each p the set Fp forms a linear space with usual operations of addition of elements and
multiplication by real values. Denote by L a linear operator that acts in the space Fp and maps
each function ψ(u) ∈ Fp to a function Lpψ(u) ∈ Fp:

Lψ(u) = ψ(u)−A0ψ(Q
−1
0 u). (30)

Lemma. The linear operator L : Fp → Fp defined by equality (30) is invertible.

Denote by L−1 the inverse operator for (30). In what follows, for simplicity, we denote by L and
L−1 the operators that act in spaces Fp of the corresponding operators independently of the value
p.

Put
b2(u) = P 0a2(Q

−1
0 u); (31)

the inclusion b2(u) ∈ F2 is valid by construction. In what follows, assume that

ψ2(u) = L−1b2(u), (32)

where L−1 is the inverse operator for (30) with p = 2.
Put

b3(u) = P 0a3(Q
−1
0 u) +A0ψ

′
2(Q

−1
0 u)f2(u) + P 0a′2(Q

−1
0 u)[f2(u) + ψ2(Q

−1
0 u)],
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where f2(u) = −Q−1
0 P0a2(Q

−1
0 u). Then b3(u) ∈ F3 and, consequently, the following function is

defined:
ψ3(u) = L−1b3(u), (33)

where L−1 is the inverse operator for that (30) with p = 3.

Theorem 7. Assume that matrix A0 has a pair of simple eigenvalues e±iϕ0 , where 0 < ϕ0 < π,
while absolute values of its rest eigenvalues differ from 1. Then the central manifold Wc obeys
equality (28), where ψ(u) is function (29), while functions ψ2(u) and ψ3(u) obey equalities (32)
and (33), correspondingly.

3.3.1. Construction of functions ψ2(u) and ψ3(u). The proof of Theorem 7 given in Section 4,
in essence, proposes a way for constructing functions ψ2(u) and ψ3(u) that obey equalities (32)
and (33). Let us adduce the corresponding scheme, restricting ourselves to constricting the function
ψ2(u).

Denote by Ec the complexification of the real linear space E.

1. Choose a basis in the subspace E0 consisting of vectors e, g ∈ R
N (see (26)). Then for u ∈ E0

it holds that u = u1e+ u2g with some real u1 and u2. Let us write the vector defined by
equality (31) in the form b2(u) = b2(u1, u2).

2. By putting z = u1 + iu2 we define the function ˜b2(z) = b2((z + z)/2, (z − z)/2i) and represent
it as follows: ˜b2(z) = c1z

2 + c2zz + c1z
2, where c1, c2 ∈ E0

c (here, in fact, c2 ∈ E0).

3. Equations

ϕ1 = e−2iϕ0A0ϕ1 + c1, ϕ2 = A0ϕ2 + c2, (34)

allow us to define vectors ϕ1, ϕ2 ∈ E0
c . These equations are uniquely solvable, because the

operator A0 : E
0
c → E0

c has no eigenvalues that are modulo equal to 1.

4. Define the function ˜ψ(z) = ϕ1z
2 + ϕ2zz + ϕ1z

2.

5. Put ψ2(u) = ˜ψ(u1 + iu2).

3.3.2. Example 4 (construction of the central manifold). Consider operator (18) in the form

F (x) = A0x+ a2(x), x ∈ R
3, (35)

where

A0 =

⎡

⎢

⎢

⎢

⎣

cosϕ0 − sinϕ0 0

sinϕ0 cosϕ0 0

0 0 k0

⎤

⎥

⎥

⎥

⎦

, a2(x) =

⎡

⎢

⎢

⎢

⎣

0

0

x21 + x22 + x23

⎤

⎥

⎥

⎥

⎦

;

here 0 < ϕ0 < π and k0 �= ±1.

Then (see formula (26)) e = e∗ =

⎡

⎢

⎢

⎢

⎣

1

0

0

⎤

⎥

⎥

⎥

⎦

, g = g∗ =

⎡

⎢

⎢

⎢

⎣

0

−1

0

⎤

⎥

⎥

⎥

⎦

. Then the vector u ∈ E0 is representable

as u =

⎡

⎢

⎢

⎢

⎣

u1

u2

0

⎤

⎥

⎥

⎥

⎦

, while the operator Q−1
0 takes the form Q−1

0 u =

⎡

⎢

⎢

⎢

⎣

cu1 cosϕ0 + u2 sinϕ0

−u1 sinϕ0 + u2 cosϕ0

0

⎤

⎥

⎥

⎥

⎦

.
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Therefore

b2(u) = b2(u1, u2) =

⎡

⎢

⎢

⎢

⎣

0

0

u21 + u22

⎤

⎥

⎥

⎥

⎦

, ˜b2(z) = b2((z + z)/2, (z − z)/2i) =

⎡

⎢

⎢

⎢

⎣

0

0

zz

⎤

⎥

⎥

⎥

⎦

.

Then c1 =
[

0
0
0

]

, c2 =
[

0
0
1

]

. Solving system (34), we get ϕ1 =
[

0
0
0

]

, ϕ2 =
[ 0

0
1/(1−k0)

]

. Therefore,

according to formula (28), the central manifold of map (35) obeys the equality

Wc =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x : x =

⎡

⎢

⎢

⎢

⎣

u1

u2

(u21 + u22)/(1 − k0)

⎤

⎥

⎥

⎥

⎦

+O(‖u‖3)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.

4. PROOFS OF MAIN ASSERTIONS

Proofs of Theorems 1–3. Analogous assertions proved in [15] imply that in assumptions of
Theorems 1–3 the value μ0 is the point of the corresponding bifurcation of system (1) and there
occur continuous branches of bifurcating solutions. Therefore it remains only to verify assertions
of theorems 1–3 with respect to the stability property of occurring solutions. For proving these
assertions we use a scheme based on the transition from initial problems to reduced equations
on the corresponding one-dimensional central manifolds (theorems 5 and 6) and on the analysis of
obtained Lyapunov quantities. Let us restrict ourselves to the description of this scheme for proving
Theorem 3.

For simplicity, consider the case when system (1) is two-dimensional, i.e., N = 2. Moreover, for

simplicity, we also assume that with μ = μ0 the matrix A(μ) takes the form A0 = A(μ0) =

⎡

⎣

−1 0

0 b

⎤

⎦,

where b �= ±1. Finally, assume that in nonlinearity (2) the quadratic and cubic nonlinearities with
μ = μ0 are represented, correspondingly, as follows:

a2(x) =

⎡

⎣

a20x
2
1 + 2a11x1x2 + a02x

2
2

b20x
2
1 + 2b11x1x2 + b02x

2
2

⎤

⎦ ,

a3(x) =

⎡

⎣

a30x
3
1 + 3a21x

2
1x2 + 3a12x1x

2
2 + a03x

3
2

b30x
3
1 + 3b21x

2
1x2 + 3b12x1x

2
2 + b03x

3
2

⎤

⎦ . (36)

We get

e = g =

⎡

⎣

1

0

⎤

⎦ , P0 =

⎡

⎣

1 0

0 0

⎤

⎦ , P 0 =

⎡

⎣

0 0

0 1

⎤

⎦ ,

a2 =

⎡

⎣

a20

b20

⎤

⎦ , a′2 = 2

⎡

⎣

a20 a11

b20 b11

⎤

⎦ , a3 =

⎡

⎣

a30

b30

⎤

⎦ .

Then Eq. (1) reduced with μ = μ0 on the corresponding one-dimensional central manifold
(Theorem 6) is scalar and representable in the form εn+1 = G(εn), where G(ε) = −ε+ (a(εe +
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ψ(ε), μ0), g); here ψ(ε) is function (20) with coefficients (24). Since with small |ε| we get the
correlation

G(ε) = −ε+ ε2(a2, g) + ε3[(a′2ψ2, g) + (a3, g)] +O(ε4),

the indicated reduced equation is representable as follows:

εn+1 = −εn + γ2ε
2
n + γ3ε

3
n +O(ε4n), (37)

where γ2 = (a2, g) and γ3 = (a′2ψ2, g) + (a3, g).
In [2] (P. 114) one proves that the first Lyapunov quantity of the one-dimensional equation (37)

obeys the formula

l1 = −(γ22 + γ3), (38)

which coincides with (11).
It remains to make sure that values (10) and (38) coincide. Taking into account formulas (24),

by immediate calculations we conclude that expressions (10) and (38) equal one and the same value,
namely,

l1 = −
(

a220 + a30 +
2

1− b
a11b20

)

.

The analysis of the calculated Lyapunov quantity with the help of the corresponding assertions of
the theory of local bifurcations (e.g., [2], P. 193) completes the proof of Theorem 3.
Proof of Theorem 4. For simplicity, assume that in nonlinearity (15) the function a3(x, μ) with
μ = μ0 obeys equality (36). For this case, in [1] (P. 209) one gives the following formula for the
Lyapunov quantity L1:

L1 =
3

8
[(a30 + a12 + b21 + b03) cos 2πϕ0 + (b30 + b12 − a21 − a03) sin 2πϕ0]. (39)

Therefore we can prove formula (16) by substituting (36) in (16) and calculating the obtained
integral. As a result, we get the value that coincides with (39).

For completing the proof of Theorem 4, it remains to study the obtained Lyapunov quantity
with the help of the corresponding assertions of the theory of local bifurcations (e.g., [2], P. 222).

Proof of Theorems 5 and 6 follow one and the same scheme, so we restrict ourselves to proving the
first of them.

Assume that the function ψ(ε) in (19) obeys equality (20), where coefficients ψ2 and ψ3 are
vectors (22). For proving the theorem, it suffices to verify item S3) in Definition (19) for the central
manifold Wc.

Let x = εe+ψ(ε) with some small ε. Put y = F (x). Then it suffices to prove that y = δe+ ψ(δ)
with some small δ.

Taking into account equality (20), we get the formula

F (x) = F (εe+ ε2ψ2 + ε3ψ3 + ̂ψ4(ε)) = A0(εe+ ε2ψ2 + · · · )
+ a2(εe + ε2ψ2 + · · · ) + a3(εe+ ε2ψ2 + · · · ) + ã4(εe+ ε2ψ2 + · · · ),

where the symbol “ · · · ” stands for terms ε3ψ3 + ̂ψ4(ε). Hence, taking into account equalities (which
use denotations (21))

A0e = e, a2(εe+ ε2ψ2 + · · · ) = ε2(a2 + εa′2ψ2) +O(ε4), a3(εe + ε2ψ2 + · · · ) = ε3a3 +O(ε4),

we get the formula

F (x) = εe+ ε2P0a2 + ε3P0(a
′
2ψ2 + a3) + P0b4(ε)

︸ ︷︷ ︸

+ ε2P 0a2 + ε3P 0(a′2ψ2 + a3) + ε2A0ψ2 + ε3A0ψ3 + P 0b4(ε)
︸ ︷︷ ︸

,
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where the function b4(ε) is smooth and satisfies the correlation ‖b4(ε)‖ = O(ε4), ε→ 0. The first
group of terms in the obtained equality belongs to the subspace E0, while the second does to E0.
For completing the proof of the theorem, it remains to make sure that the mentioned groups of
terms are representable in the form δe + ψ(δ) with some δ; in other words, we have to prove that
there exists δ (it is small, if so is ε) such that

δ = ε+ ε2(a2, g) + ε3(a′2ψ2 + a3, g) + (b4(ε), g),

ψ(δ) = ε2P 0a2 + ε3P 0(a′2ψ2 + a3) + ε2A0ψ2 + ε3A0ψ3 + P 0b4(ε).
(40)

With small δ the first equation in this system has a unique solution with respect to ε:

ε = δ + δ2k2 + δ3k3 +O(δ4), (41)

where k2 = −(a2, g), k3 = 2(a2, g)
2 − (a′2ψ2 + a3, g) (one can verify this correlation by substitut-

ing (41) in the first equation in system (40) and deducing the equality δ = δ accurate to O(δ4)). It
remains to make sure that by substituting (41) in the second equation in system (40) we get the
following equality (analogous to (20)):

ψ(δ) = δ2ψ2 + δ3ψ3 + ̂ψ4(δ). (42)

Really,

ψ(δ) = δ2(A0ψ2 + P 0a2) + δ3[A0ψ3 + 2k2(A0ψ2 + P 0a2) + P 0(a′2ψ2 + a3)] +O(δ4).

In view of formula (22) the latter equality coincides with (42). �
Proof of the lemma. Consider the equation

ψ(u) = A0ψ(Q
−1
0 u) + b(u) (43)

with respect to the unknown function ψ(u) ∈ Fp and with a given one b(u) ∈ Fp. For proving the
lemma, it suffices to make sure that Eq. (43) is uniquely solvable.

Let vectors e, g ∈ R
N (see (26)) form a basis in the subspace E0. Then any vector u ∈ E0 is

uniquely representable as u = u1e+ u2g with some real u1 and u2. Proceeding in formula (43) from
u to the complex variable z = u1 + iu2, we get the equivalent (in a natural sense) equation

ψ(z) = A0ψ(e
−iϕ0z) + b(z), (44)

where, for simplicity, we use the same denotations for the corresponding functions.
For definiteness, we put p = 2, i.e., functions ψ(z) and b(z) in Eq. (44) are quadratic with respect

to the variable z, they take on values in the complexification E0
c of the subspace E0. These functions

are representable in the form

ψ(z) = ϕ1z
2 + ϕ2zz + ϕ1z

2, b(z) = c1z
2 + c2zz + c1z

2,

with some ϕ1, ϕ2, c1, c2 ∈ E0
c (here, in fact, ϕ2, c2 ∈ E0). Since

ψ(e−iϕ0z) = ϕ1e
−2iϕ0z2 + ϕ2zz + ϕ1e

2iϕ0z2,

Eq. (44) is equivalent to the system

ϕ1 = e−2iϕ0A0ϕ1 + c1, ϕ2 = A0ϕ2 + c2, ϕ1 = e2iϕ0A0ϕ1 + c1.

This system is uniquely solvable, because the operator A0 : E
0
c → E0

c has no eigenvalues which are
modulo equals 1. �
Proof of Theorem 7. Assume that the function ψ(u) in (28) obeys equality (29), while functions
ψ2(u) and ψ3(u) do equalities (32) and (33). For proving the theorem, it suffices to verify item S3) in
Definition (28) of the central manifold Wc. In turn, for this it suffices to prove that if x = u+ ψ(u)
with some small ‖u‖, u ∈ E0, then the vector y = F (x) is representable in the form y = v + ψ(v)
with some small ‖v‖, v ∈ E0. One can prove this fact by the same scheme as that used for proving
an analogous assertion in Theorem 5.
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CONCLUSION
In this paper, we propose new formulas for calculating Lyapunov quantities in problems on

the main scenarios of local bifurcations of system (1) in terms of initial equations. Namely, we
propose formula (8) for the first and second Lyapunov quantities in the problem on bifurcation
of equilibrium states, formula (10) for the first Lyapunov quantity in the problem on the period-
doubling bifurcation, and formula (16) for the first Lyapunov value in the problem on the Andronov–
Hopf bifurcation. We prove assertions (Theorems 1–4) that allow one to perform (in new conditions)
an effective qualitative analysis of the main bifurcation scenarios. We propose new algorithms
for constructing central manifolds of the corresponding nonlinear maps in the main cases of the
degeneration of the linearized operators. These algorithms are described in Theorems 5–7.
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