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Abstract—We study a system of the reaction–diffusion type, where diffusion coefficients depend
in an arbitrary way on spatial variables and concentrations, while reactions are expressed as
homogeneous functions whose coefficients depend in a special way on spatial variables. We prove
that the system has a family of exact solutions that are expressed through solutions to a system of
ordinary differential equations (ODE) with homogeneous functions in right-hand sides. For a special
case of the ODE system we construct a general solution represented by Jacobi higher transcendental
functions. We also prove that these periodic solutions are analytic functions that can be expressed
near each point on the period by convergent power series.
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INTRODUCTION

Mathematical models of reaction–diffusion processes usually represent systems of nonlinear
parabolic differential equations [1]. The exact solution of this class of equations is a very difficult task; one
of the most effective techniques for it assumes the reduction of the initial system to a system of ordinary
differential equations (ODE), which is possible only under certain conditions [2]. As is indicated in [3], it
is actual to study the solvability of systems of reaction–diffusion equations with distributed parameters
and to construct their exact periodic solutions. This is important both for applications in the chemical
technology and from the theoretical point of view for the qualitative theory of differential equations.
The study of these questions on the base of various approaches and techniques is being conducted
now (e.g., [4] and references therein). In this paper, we consider a system of reaction–diffusion type,
where the diffusion coefficients arbitrarily depend on spatial variables and concentrations, while reaction
coefficients are described by homogeneous functions whose parameters depend (in a certain way) on
spatial variables. We prove that the system under consideration has a family of exact solutions expressed
in terms of solutions to a system of ODE with homogeneous functions in the right-hand sides. For a
particular form of this system, we construct a general solution expressed via special Jacobi functions. We
prove that solutions represent periodic functions and satisfy nonlinear differential equations with delay
(advance), whose value depends on initially stated conditions. We also prove that these periodic solutions
to equations with delay (advance) are analytic functions representable in a neighborhood of each point
on a period by convergent power series. Note that there is no analog to the general Cauchy theorem on
the existence of analytic solutions to ODE [5] for nonlinear equations with deviating argument; there
are only some papers [6–9] that deal mainly with linear equations with variable coefficients. Therefore,
the analytic periodic solutions constructed in this paper can be of interest for the analytic theory of
differential equations with deviating argument.
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1. THE REDUCTION OF A SYSTEM OF REACTION–DIFFUSION EQUATIONS TO A
SYSTEM OF ODE

Consider the following system of reaction–diffusion equations:

∂Ui

∂t
= gi(x, U)ΔUi + ai(x)Fi(U), i = 1, N. (1)

Here t ∈ R is time, x ∈ R
n are independent spatial variables, Ui(t,x) are the desired functions (we

treat them as concentrations of interacting substances), and Δ is the Laplace operator. Functions
Fi(U) = Fi (U1, U2, . . . , UN ) describe interactions. Coefficients ai(x) can express the dependence of
reaction rates on spatial coordinates; it can be connected, e.g., with temperature differences or the
presence of physical fields. If there is no reaction, i.e., Fi(U) ≡ 0, i = 1, N , system (1) turns into a
set of diffusion equations whose coefficients gi(x, U) depend on spatial variables and concentrations.

Theorem 1. Assume that functions Fi(U) are positively homogeneous of order mi > 0, while
positive in a domain x ∈ D ⊂ R

n functions ai(x) are representable as ai(x) = [b(x)]1−mi for all
i = 1, N ; here b(x) is some positive harmonic function. Then system (1) has the following
solution:

Ui(t,x) = b(x)Xi(t), i = 1, N, (2)

where Xi(t) are arbitrary solutions to the following system of ODE:

Ẋi = Fi (X) , i = 1, N. (3)

Proof is performed by the direct substitution of solutions (2) in system (1). As a result, we get N
identities

bẊi = gi(x, U)XiΔb + Fi (bX) ai or bẊi = bmiFi (X) b1−mi ,

which are true under the theorem assumptions. As examples of functions ai(x) satisfying assumptions of
Theorem 1 with N = mi = 3, we can choose ai(x) = a(x) ≡ r2 = x2

1 + x2
2 + x2

3 for all i = 1, N . In this

case, b(x) ≡
(
x2

1 + x2
2 + x2

3

)−1/2. For the indicated function a(x) ≡ r2, one particular case of system (1)
with N = 3 and gi(x, U) ≡ 1 is of interest, namely,

1
r2

∂U1

∂t
= ΔU1 + U2

1 (λU2 − μU3) ,
1
r2

∂U2

∂t
= ΔU2 + U2

2 (−λU1 + σU3) ,

1
r2

∂U3

∂t
= ΔU3 + U2

3 (μU1 − σU2) . (4)

Here Ui = Ui (t, x1, x2, x3), Δ is the Laplace operator in a three-dimensional coordinate space, λ, μ,
and σ are nonzero real-valued parameters. By Theorem 1 the solution to system (4) takes the form
Ui = Xi(t)/r, while functions Xi = Xi(t), i = 1, 3, satisfy the nonlinear system

Ẋ1 = X2
1 (λX2 − μX3) , Ẋ2 = X2

2 (−λX1 + σX3) , Ẋ3 = X2
3 (μX1 − σX2) . (5)

The autonomous system of ODE (5) is interesting by the fact that it has the following independent first
integrals:

I1 = X1X2X3 = C1, I2 =
σ

X1
+

μ

X2
+

λ

X3
= C2; (6)

one can use them for the qualitative analysis of the system and for constructing its solutions. Here
C1 �= 0 and C2 �= 0 are arbitrary real constants.

2. CONSTRUCTION OF PERIODIC SOLUTIONS TO THE SYSTEM OF ODE (5) STATED
IN TERMS OF ELLIPTIC JACOBI FUNCTIONS

Let us prove the following theorem.
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Theorem 2. Let parameters of system (5) satisfy the condition

λμσ > 0. (7)

Then in the domain X1X2X3

(
σ

X1
+ μ

X2
+ λ

X3

)
> 27λμσ system (5) has the following general

solution:

X1(t) =
z∗1 + σ

C2
− z∗1 − z∗2

C2
sn2 (T, k) , (8)

X2(t) =
C1C

2
2

2λ
z∗1 − (z∗1 − z∗2) sn2 (T, k) + δ P sn (T, k) cn (T, k) dn (T, k)

(z∗1 + σ − (z∗1 − z∗2) sn2 (T, k))2
, (9)

X3(t) =
C1C

2
2

2μ
z∗1 − (z∗1 − z∗2) sn2 (T, k) − δ P sn (T, k) cn (T, k) dn (T, k)

(z∗1 + σ − (z∗1 − z∗2) sn2 (T, k))2
. (10)

Here C1 �= 0 and C2 > 0 are arbitrary real constants such that C1C
3
2 > 27λμσ, while z∗1 > z∗2 > z∗3

are real roots of the cubic equation

z3 − C1C
3
2 − 12λμσ

4λμ
z2 + 3σ2z + σ3 = 0. (11)

Functions sn(T, k), cn(T, k), and dn(T, k) are, correspondingly, elliptic sine, cosine, and Jacobi

delta amplitude, k =
√

z∗1−z∗2
z∗1−z∗3

is a model of an elliptic function,

P = 2

√
λμ

C1C
3
2

(z∗1 − z∗2)
√

z∗1 − z∗3 , T = −δ

√
λμ C1

C2

√
z∗1 − z∗3 (t − C3) ,

δ = ±1, and C3 is an arbitrary constant value.

Proof. Using formulas (6), we find

X2(t) =
C1C2 X1(t) − σC1 + δ

√
Ω

2λX2
1 (t)

, X3(t) =
C1C2 X1(t) − σC1 − δ

√
Ω

2μ X2
1 (t)

. (12)

Here for convenience we denote

Ω = C1

(
σ2C1 − 2σ C1C2 X1(t) + C1C

2
2 X2

1 (t) − 4λμ X3
1 (t)

)
, δ = ±1.

Taking into account formula (12), we reduce system (5) to the equation Ẋ1 = F (X1), where

F (X1) =
C1

[
(C2 X1 − σ)

(
C1C2 X1 − σC1 + δ

√
Ω

)
− 4λμ X3

1

]

C1C2 X1 − σC1 + δ
√

Ω
.

Put z = C2 X1(t) − σ or X1(t) = 1
C2

(z + σ). Then

Ω =
4λμC1

C3
2

(
−z3 +

C1C
3
2 − 12λμσ

4λμ
z2 − 3σ2z − σ3

)
. (13)

Rewrite the function F (X1) as

F (X1) = C1 z − 4λμC1

C3
2

(z + σ)3

C1 z + δ
√

Ω
.

Multiplying the numerator and the denominator of the latter term by the value C1 z − δ
√

Ω and taking
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into account the equality δ2 = 1, we get the formula

F (X1) = C1 z − 4λμC1

C3
2

(z + σ)3(C1 z − δ
√

Ω)
C2

1 z2 − Ω
.

Since C2
1 z2 − Ω = 4λμC1

C3
2

(z + σ)3, we finally get the representation F (X1) = δ
√

Ω, where Ω is defined

in formula (13). In this case the ODE Ẋ1 = F (X1) for the new variable z takes the form

ż = C2δ
√

Ω.

Therefore, we have reduced the evaluation of the function X1(t) to that of the integral

Φ(z) =
δ

2

∫
dz

√
λμC1

C2

(
−z3 + C1C3

2−12λμσ
4λμ z2 − 3σ2z − σ3

) . (14)

Under the theorem assumptions the discriminant of Eq. (11) takes the form

D =
σ3C2

1C6
2

(
C1C

3
2 − 27λμσ

)

16λ3μ3
;

it is positive, because the cubic equation (11) has three real roots z∗1 > z∗2 > z∗3 , and integral (14) is
reducible to the quadrature form

√
C2

λμ C1

δ F (ϕ, k)
√

z∗1 − z∗3
= − (t − C3) , ϕ = arcsin

√
z∗1 − z

z∗1 − z∗2
, k =

√
z∗1 − z∗2
z∗1 − z∗3

.

Here F (ϕ, k) =
ϕ∫

0

dϕ√
1−k2 sin2 ϕ

is the elliptic integral of the first kind. Inverting this elliptic integral, we

find the function X1(t) which takes the form (8). Using correlation (8), by formulas (12) we evaluate
functions X2(t) and X3(t) that obey formulas (9) and (10).

Evidently, each particular solution that is obtained from the (earlier calculated) general solution (8)–
(10) to system (5) is periodic; its period τ depends on parameters λ, μ, and σ and on constant values
C1 and C2. This property follows from the periodic behavior of Jacobi functions sn(T, k), cn(T, k), and
dn(T, k) and from the linear dependence of T on time t. As is well-known [10], for real T , functions
sn(T, k) and cn(T, k) have real period of 4K, while the function dn(T, k) has the real period of 2K;
here K is a complete elliptic integral of the first kind, namely,

K =
∫ π

2

0

dϕ
√

1 − k2 sin2 ϕ
, k2 =

z∗1 − z∗2
z∗1 − z∗3

,

and periodicity correlations take the form

sn(T + 4K,k) = sn(T, k), cn(T + 4K,k) = cn(T, k), dn(T + 2K,k) = dn(T, k).

Here real values z∗1 , z∗2 , and z∗3 that define the model of the elliptic function k and satisfy the chain of
inequalities z∗1 > z∗2 > z∗3 are roots of the cubic equation (11) whose coefficients depend on parameters λ,
μ, and σ and constant values C1 and C2. Consequently, the value of the complete elliptic integral K
and real periods 4K and 2K of the evaluated elliptic functions depend on the indicated parameters and
constants. Moreover, the value of the period τ in the scale of the initial time t takes the form τ = 4K

θ ,

where θ =
√

λμ C1

C2

√
z∗1 − z∗3 .

Remark. Functions (9) and (10) with the constant C3 = 0 are such that

X2(−t) =
μ

λ
X3(t), X3(−t) =

λ

μ
X2(t). (15)
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If C3 = 0, then the change of the variable t → −t is equivalent to the transform T → −T . Since the
function sn(T, k) is odd, while functions cn(T, k) and dn(T, k) are even, equalities (15) immediately
follow from formulas (9) and (10).

Along with the solution that is representable in terms of elliptic Jacobi functions by formulas (8)–
(10), system (5) has a particular solution that can be expressed in terms of trigonometric functions. The
following assertion is valid.

Proposition 1. With λμσ > 0 system (5) has the following particular solution:

X1(t) =
σ

C2

3
(
4 cos2 T − 3

)

4 cos2 T
,

X2(t) =
μ

C2

6 cos T
[
−9 cos T + 8cos3 T − 3

√
3 δ sin T

]

9 − 24 cos2 T + 16 cos4 T
, (16)

X3(t) =
λ

C2

6 cos T
[
−9 cos T + 8cos3 T + 3

√
3 δ sin T

]

9 − 24 cos2 T + 16 cos4 T
,

where T = δ 9
√

3λμσ
2 C2

2
(t − C3) and C3 is an arbitrary constant.

We get this particular solution by choosing initial data X1(t0), X2(t0), and X3(t0) at some time
moment t0 ≥ 0 so as to fulfill the equality C1C

3
2 − 27λμσ = 0 with constant values C1 and C2 of first

integrals (6). In this case, the cubic equation (11) takes the form

z3 − 15
4

σz2 + 3σ2z + σ3 = 0

and has roots z∗1,2 = 2σ and z∗3 = −σ/4. Note that in this case the corresponding Cauchy problem for
system (5) is not globally solvable in the interval [t0,+∞), solutions explode.

3. NONLINEAR DIFFERENTIAL EQUATIONS WITH DELAY (ADVANCE)

Let us prove that (evaluated in the previous Section) functions (8)–(10) that solve system (5) satisfy
the following differential equations with delay (advance):

Ẋ1(t) =
λμ

σ
X2

1 (t)
[
X1 (t − T ∗) − X1 (t + T ∗)

]
, (17)

Ẋ2(t) = −λσ

μ
X2

2 (t)
[
X2 (t + T ∗) − X2 (t + 2T ∗)

]
, (18)

Ẋ3(t) =
μσ

λ
X2

3 (t)
[
X3 (t − T ∗) − X3 (t − 2T ∗)

]
, (19)

where λ �= 0, μ �= 0, σ �= 0, and T ∗ �= 0 are real parameters.

Theorem 3. Differential equations with delay (advance) (17)–(19), where

T ∗ = C3 −
δ

√
z∗1 − z∗3

√
C2

λμC1
sn−1(η), η =

√
z∗1 − z∗3
z∗1 + σ

, δ = ±1, (20)

while sn−1(η) is the inverse function for the elliptic Jacobi sine function, have exact solutions that
obey formulas (8)–(10), correspondingly.
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Proof. Let us calculate values of function (8) at time moments t̂ = t ± T ∗, where T ∗ obeys correla-
tion (20). Using addition formulas for elliptic Jacobi functions [10]

sn
(
t̂, k

)
=

sn (t, k) cn (T ∗, k) dn (T ∗, k) ± sn (T ∗, k) cn (t, k) dn (t, k)
1 − k2 sn2 (t, k) sn2 (T ∗, k)

,

cn
(
t̂, k

)
=

cn (t, k) cn (T ∗, k) ∓ sn (t, k) sn (T ∗, k) dn (t, k) dn (T ∗, k)
1 − k2 sn2 (t, k) sn2 (T ∗, k)

,

dn
(
t̂, k

)
=

dn (t, k) dn (T ∗, k) ∓ k2 sn (t, k) sn (T ∗, k) cn (t, k) cn (T ∗, k)
1 − k2 sn2 (t, k) sn2 (T ∗, k)

,

and correlations for roots of the cubic equation (11)

z∗1 + z∗2 + z∗3 =
C1C

3
2 − 12λμσ

4λμ
, z∗1z∗2z

∗
3 = −σ3, z∗1z∗2 + z∗1z

∗
3 + z∗2z∗3 = 3σ2,

by certain transforms we get the equality X1(t + δT ∗) = f(T ), δ = ±1, where

f(T ) =
C1C

2
2σ

2λμ

z∗1 − (z∗1 − z∗2) sn2 (T, k) − δ P sn (T, k) cn (T, k) dn (T, k)
(z∗1 + σ − (z∗1 − z∗2) sn2 (T, k))2

.

Comparing f(T ) with functions (9) and (10), we get correlations

X2(t) =
μ

σ
f(T )

∣
∣∣
δ=−1

, X3(t) =
σ

λ
f(T )

∣
∣∣
δ=1

. (21)

Formula (21) implies that

X2(t) =
μ

σ
X1(t − T ∗), X3(t) =

λ

σ
X1(t + T ∗). (22)

Hence,

X2(t + T ∗) =
μ

σ
X1(t), X3(t − T ∗) =

λ

σ
X1(t), (23)

X2(t + 2T ∗) =
μ

σ
X1(t + T ∗), X2(t) =

μ

λ
X3(t − 2T ∗). (24)

Taking into account formulas (22)–(24), we conclude that solutions (8)–(10) to system (5) also solve
differential equations with delay (advance) (17)–(19).

4. ANALYTIC PERIODIC SOLUTIONS TO EQUATIONS WITH DELAY (ADVANCE)

For systems of ODE with analytic right-hand sides, including (5), the Cauchy theorem [5] is valid.
It guarantees the existence and uniqueness of analytic solutions. Note that there is still no analog of
the general theorem on analytic solutions to nonlinear equations with delay (advance). These questions
were studied by several mathematicians (e.g., [6–9] and references therein). They mainly considered
linear equations of various types with variable coefficients.

Using the connection between solutions to system (5) and equations with delay (advance) (17)–(19)
that was established in the previous Section, we conclude that constructed periodic solutions (8)–(10)
are analytic functions of time. Really, since they are solutions to system (5), they allow the application of
the Cauchy theorem mentioned above. Due to the periodicity of solutions they are located in a bounded
domain; therefore by using the Cauchy theorem we consecutively express solutions in terms of power
series that converge in some neighborhood of each point t0 ∈ [0, τ ], where τ > 0 is a real period of
solutions to equations with delay (advance) (8)–(10); it is defined by the choice of initial values X1(0),
X2(0), and X3(0).
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Example. For values of parameters λ=1, μ=2, and σ=1 and initial conditions X1(0) = 1, X2(0) = 1,
and X3(0) = 1, the first nine terms of the power series are the following ones:

X1(t) = 1 − t +
4
3

t3 − t4 − 8
15

t5 +
4
3

t6 − 148
315

t7 − 4
5

t8 +
2668
2835

t9,

X2(t) = 1 + t2 +
1
3

t4 − 7
45

t6 − 26
315

t8,

X3(t) = 1 + t − 4
3

t3 − t4 +
8
15

t5 +
4
3

t6 +
148
315

t7 − 4
5

t8 − 2668
2835

t9.

Note that one can treat these polynomials with respect to nonlinear equations with delay (ad-
vance) (17)–(19) as polynomial quasisolutions that were studied in [8] for linear functional differential
equations with variable coefficients. However, as distinct from [8], here the convergence of series is
guaranteed, i.e., solutions to equations with delay (advance) are analytic.
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