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Abstract—We study local differential-geometrical properties of curvilinear k-webs defined by
symmetric functions (webs SW (k)). This class of k-webs contains in particular algebraic rectilinear
k-webs defined by algebraic curves of genus 0. On a web SW (3), there are three three-parameter
families of closed Thomsen configurations. We find equations of a rectilinear web SW (k) in terms
of adapted coordinates and prove that the curvature of a symmetric three-web is a skew-symmetric
function with respect to adapted coordinates. In conclusion, we formulate some open problems.
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Introduction. Recall that a k-web W (k) on the plane is a collection of k families of smooth curves
in general position. In some recent publications, the k-webs in question are called ordered. We however
will follow the terminology introduced by W. Blaschke, the founder of the differential-topological theory
of webs. By the domain of a k-web we mean the maximal domain in which the families form transverse
foliations, i.e., leaves of a web are pairwise transverse at each point of its domain.

The paper is devoted to the study of local aspects of the theory of symmetric k-webs, i.e., k-webs
whose equations for a certain choice of parameters of the families are not changed under any permutation
of arguments. Following W. Blaschke [1], we consider webs up to local diffeomorphisms, i.e., up to the
widest equivalence relation. Local diffeomorphisms preserve transversality of lines of a k-web, closure
or nonclosure of sufficiently small configurations formed by lines of a web.

The most important symmetric webs are rectilinear webs of special form. Recall that a k-web formed
by k families of straight lines (not necessary parallel) is called rectilinear and denoted by LW (k). The
most difficult problems of the theory of curvilinear webs which have more than centennial history are
connected with rectilinear three-webs.

Fist of all this is so-called “anamorphosis problem”, possibility to represent a function in two
variables by nomogram. The complete solution to this problem in terms of differential invariants of a web
is given in [2] and is contained in [3]. Another problem also came from nomography and is connected
with the proof of Gronwall conjecture (1912) [1]. Its positive solution was found in [4]. In [3], it is
given in the following formulation: if two rectilinear three-webs are equivalent, then they are projectively
equivalent.

An important subclass of rectilinear k-webs is formed by algebraic webs defined by homogeneous
algebraic equations of degree k connecting tangential coordinates of current line. In Item 12, we
show that if such an equation defines a curve of genus 1 (a curve birationally equivalent to a straight
line), then the corresponding rectilinear k-web is symmetric. In the paper, we generalize this property,
namely, we investigate symmetric k-webs or webs SW (k) whose functions, for a choice of parameters of
families, are symmetric functions. The geometric characteristic of symmetric three-webs is as follows.
Such webs carry three three-parameter families of closed Thomsen configurations (Theorems 1 and 3).
Equations of a rectilinear three-web are symmetric if and only if all its families belong to one family
(Theorem 4). The condition for existence of a symmetric rectilinear three-web (3-web SLW ) is given
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in Theorem 5. In Items 7–9, we find equations of a 3-web SLW and those of a semisymmetric 3-
web in terms of complete symmetric polynomials. For a k-web SLW , these results are generalized in
Theorems 7 and 8. In conclusion, we prove that the curvature of a semisymmetric three-web is a skew-
symmetric function of adapted parameters and formulate problems. All functions considered in the paper
are assumed to be real analytic.

1. Consider a k-web W (k) formed by k families λα, α = 1, 2, . . . , k, of smooth curves. Webs are
studied in this paper from local point of view, so it can be assumed that the families λα are foliations and
are given on the plane with Cartesian coordinates (x, y) by equations

λα(x, y) = uα, (1)

where uα is the parameter of the family λα. Eliminating from Eqs. (1) the coordinates x, y, we obtain
(k − 2) equations

Fi(u1, u2, . . . , uk) = 0, i = 1, 2, . . . , k − 2, (2)

connecting the parameters of lines of a k-web W (k) passing through one point. Since leaves of a web
are transverse, Eqs. (2) are functionally independent, and all variables in system (2) are essential. A
three-web is defined by a single equation of the form (2).

Since webs are considered from local point of view, the domains of functions Fi are found as follows.
Let M0 be an arbitrary point of the plane at which leaves of foliations λα are pairwise transverse.
Then transversality of leaves takes place in a neighborhood U of M0. In this neighborhood, the
parameter uα of the foliation λα varies within some interval Iα. Then the domain of Fi is a domain
in I = I1 × I2 × · · · × Ik containing the point (u0

1, u
0
2, . . . , u

0
k), where u0

α are the parameters of the leaves
through the point M0.

Eliminating from some three Eqs. (1) the variables x, y, we obtain an equation of the form

Fαβγ(uα, uβ , uγ) = 0, (3)

which is the equation of the three-subweb of the k-web W (k) formed by the families λα, λβ , λγ . It is
denoted by W (α, β, γ).

Taking the first and the second families as basis ones, we can write system (2) in the usual form

F3(u1, u2, u3) = 0, F4(u1, u2, u4) = 0, . . . , Fk(u1, u2, uk) = 0 (4)

or

u3 = f3(u1, u2), u4 = f4(u1, u2), . . . , uk = fk(u1, u2). (5)

Systems (4) and (5) are locally equivalent, but, generally speaking, are not equivalent globally.
Equations (2), (4), (5) are called the equations of a k-web, the functions Fi, F3, F4, . . . , Fk and

f3, f4, . . . , fk are called the functions of a k-web. Their form depends on parameterization of the families.
It is clear that the functions Fi, and even F3, F4, . . . , Fk , are defined not uniquely. We will write the
equation of a three-web in the form

F (u1, u2, u3) = 0. (6)

If two k-webs are equivalent (locally diffeomorphic), then the equations of one of them can be
transformed into the equations of the other with the use of coordinate change

uα → ũα(uα), α = 1, 2, . . . , k. (7)

Such transformations in the theory of quasigroups are called isotopic transformations or an isotopy. On
the other hand, change of variables (7) can be viewed as parameter transformation in families of lines of
some k-web. In particular, if all functions ũα(uα) are the same, an isotopy is called an isomorphism.

In k-dimensional space of parameters uα, system (2) defines a two-dimensional surface V 2. The
coordinate hyperplanes uα = const cut on V 2 a k-web ̂W (k) equivalent to the initial k-web W (k).

Equations (5) can be interpreted as equations of a three-web ˜W (k) on the plane with Cartesian
coordinates u1, u2 formed by the coordinate net u1 = const, u2 = const and the level lines of the
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functions f3, f4, . . . , fk. This k-web is also equivalent to the initial web W (k) and it is obtained as
the projection of the k-web ̂W (k) to the coordinate 2-plane u1, u2.

In what follows, instead of a k-web W (k), we will, as a rule, consider equivalent webs ̂W (k) and
˜W (k) in the space of parameters.

2. We assume that the definitions of a symmetric and a skew-symmetric functions are known. In
what follows the following assertions will be useful.

Proposition 1. Let a function F (u1, u2, . . . , uk) be symmetric with respect to the arguments ui,
uj and skew-symmetric with respect to the arguments ui, uk, all i, j, k are different. Then
F (u1, u2, . . . , uk) ≡ 0.

Proof.

F (. . . , ui, . . . , uj , . . . , uk, . . . ) = F (. . . , uj , . . . , ui, . . . , uk, . . . )
= −F (. . . , uj , . . . , uk, . . . , ui, . . . ) = −F (. . . , uk, . . . , uj , . . . , ui, . . . )

= F (. . . , uk, . . . , ui, . . . , uj , . . . ) = F (. . . , ui, . . . , uk, . . . , uj , . . . )
= −F (. . . , ui, . . . , uj , . . . , uk, . . . ). �

Proposition 2. If a function F (u1, u2, . . . , uk) is skew-symmetric with respect to the arguments ui

and uj , then there exists a real analytic function ˜F (u1, u2, . . . , uk) symmetric with respect to the
arguments ui, uj such that

F (u1, u2, . . . , uk) = (ui − uj) ˜F (u1, u2, . . . , uk).

Corollary. If a function F (u1, u2, . . . , uk) is skew-symmetric with respect to all arguments, then

F (u1, u2, . . . , uk) =
∏

1≤i,j≤k, i<j

(ui − uj) ˜F (u1, u2, . . . , uk),

where ˜F is a function symmetric with respect to all arguments.

3. Definition 1. A k-web given by Eqs. (2) will be called symmetric and denoted by SW (k) if, for some
choice of the parameters of the families, all functions Fi are symmetric.

The parameters for which the symmetry condition holds will be called adapted parameters of a
symmetric k-web. Obviously, adapted parameters are defined up to an isomorphism.

Example 1. A three-web is called parallel if it is formed by three families of parallel straight lines. A
three-web is called parallelizable or regular if is equivalent to a parallel three-web. Each regular three-
web is symmetric since its equation can be reduced to the form u1 + u2 + u3 = 0.

Example 2. Consider in the space of parameters the symmetric 4-web ˜SW given by the equations

u1 + u2 + u3 + u4 = 0, (u1)2 + (u2)2 + (u3)2 + (u4)2 = 1.

On the plane of the variables u3, u4, this web is formed by the coordinate net u3 = const, u4 = const
and the level lines of the functions

u1 = 2−1
(

−u3 − u4 +
√

−3(u3)2 − 3(u4)2 − 2u3u4 + 2
)

,

u2 = 2−1
(

−u3 − u4 −
√

−3(u3)2 − 3(u4)2 − 2u3u4 + 2
)

.

Eliminating irrationalities, in each case we arrive at the equation

(u3)2 + (u4)2 + u3u4 + cu3 + cu4 + c2 = 1/2,

which defines a quadratic family of equal ellipses with centers on the straight line u3 = u4 symmetric
with respect to this straight line. Through each point of the domain, there pass two ellipses whose parts
are lines u1 = const and u2 = const of a 4-web ˜SW .
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Proposition 3. If the functions Fi are skew-symmetric, then the corresponding k-web is symmet-
ric.

Proof. By Corollary to Proposition 2, we have

Fi(u1, u2, . . . , uk) =
∏

1≤i,j≤k, i<j

(ui − uj) ˜Fi(u1, u2, . . . , uk),

where the functions ˜Fi are symmetric. The domains ui − uj = 0 are not contained in the domain of the
web since in these domains the rank of system (2) becomes lower. Outside these domains, system (2) is
equivalent to the system ˜Fi(u1, u2, . . . , uk) = 0.

Let Eqs. (2) be symmetric. Then the variables uα, uβ , uγ can always be placed onto the first three
places and in any order. Therefore all functions Fα,β,γ (see (3)) are solutions to the same system of
equations and are symmetric. The same can be said about the functions f3, f4, . . . , fk.

Consider first a symmetric three-web SW (3) ≡ SW with Eq. (6). Its symmetry means in particular
that if there exists a line from one of the families with adapted parameter u, then the other families also
have a line with identical adapted parameter. Therefore, there is a local bijective correspondence
between the families of lines of symmetric three-web under which lines with equal adapted
parameters correspond to each other. In the domain of a web, there arise three special curves ui = uj

along which lines from different families with equal parameters meet. These lines (not necessarily real)
will be called equilibrium lines. Obviously, if two equilibrium lines meet at a real point, then through
it there passes the third equilibrium line. Such points will be called umbilical points of a symmetric
three-web.

Theorem 1. If a configuration T of a symmetric three-web SW contains two corresponding lines
from some two families, then the other two pairs of lines of the same families contained in T are
also in correspondence, and the figure T is closed. On each symmetric three-web SW , there are
at least three three-parameter families of closed (sufficiently small) configurations T containing
three pairs of corresponding lines from two families.

Fig. 1.

Proof. A closed Thomsen configuration (or T ) formed by lines of a three-web is shown on Fig. 1. Here
lines of the first, second, and third families of a web are depicted by vertical, horizontal, and oblique lines,
respectively. The vertical lines are marked by the parameters xα, the horizontal lines by the parameters
yα, and the oblique lines by the parameters zα. The figure T is constructed, for example, as follows. We
take two arbitrary lines x1 and y1 from the first and the second families, then sufficiently close to the point
of their intersection we draw oblique lines z1 and z2. Through the obtained points of intersection we draw
vertical and horizontal lines x2 and y2, x3 and y3, as is shown on Fig. 1. Then we obtain points A and B.
The configuration obtained is called the Thomsen figure or figure T . If the points A and B belong to a
line from the third family, one says that the figure T is closed.

If we start the construction with the lines z1 and y3, then the closure condition for the same figure T is
the existence of a line x3. Similarly, if we start the construction with the lines from the first and the third
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families, then the closure condition is the existence of a line from the second family. In this connection,
one differs the closure conditions T (1, 2), T (2, 3), T (3, 1).

Generally speaking, Thomsen figures need not to be closed on an arbitrary three-web. If on a three-
web all sufficiently small figures T are closed, one says that closure condition T holds. Such webs are
called hexagonal. Every regular three-web is hexagonal and vice versa: every hexagonal three-web is
regular ([3], P. 37).

The condition for three lines with parameters x1, y2, z1 to pass through one point is written, in
accordance with the definition of equation of a web, as F (x1, y2, z1) = 0. Therefore, the closure condition
T (1, 2) for the figure T , depicted on Fig. 1, is written in the form of so-called conditional identity: The
relations

F (x1, y2, z1) = 0, F (x2, y1, z1) = 0,
F (x1, y3, z2) = 0, F (x3, y1, z2) = 0

(8)

must imply existence of z3 such that

F (x2, y3, z3) = 0, F (x3, y2, z3) = 0. (9)

Note that, in all, on a three-web there is a four-parameter family of (nonclosed) Thomsen configurations,
and the variables x1, y1, z1, and z2 can be taken as parameters. Locally, system (8), (9) has, generally
speaking, a finite number of solutions, i.e., on an arbitrary three-web, there are only finite number of
(locally isolated) closed configurations T .

Let, for a symmetric three-web SW , lines x1 and y1 be in correspondence, i.e., x1 = y1. Consider the
figure T , depicted on Fig. 1. From equalities (8) by virtue of symmetry of F , we obtain

F (x1, y2, z1) = 0, F (x1, x2, z1) = 0,
F (x1, y3, z2) = 0, F (x1, x3, z2) = 0.

Since the lines z1 and z2 from the third family are close to the intersection point of the lines x1 and y1,
from the first two equations, by virtue of the above indicated local uniqueness, we obtain x2 = y2, and
from the second two equations we obtain x3 = y3, i.e., the two other pairs of lines from the first and the
second families in the figure T are in correspondence. Then, by virtue of symmetry of F , equalities (9)
hold, i.e., the figure T is closed.

We arrive at a similar result if we assume that x2 = y2 or x3 = y3. We have proved the following: If
the Thomsen figure T of a symmetric three-web contains two corresponding lines from the first
and the second families, then the other two pairs of lines from the same families in the figure T
are also corresponding, and the figure T is closed (the closure condition T (1, 2) holds for these lines).
Such a figure is defined by a choice of three pairs of corresponding lines, therefore, they all form a three-
parameter family.

In a similar way we can consider a figure T which has two corresponding lines from the second and
the third families, for example, z1 = y3. Then we arrive at the closure condition T (2, 3), and all three
pairs of lines from the second and the third families in this figure T will be corresponding. Such figures
also form a three-parameter family. Finally, there are as many closed figures T which contain three pairs
corresponding lines from the first and the third families.

Remark 1. As we have already mention, all configurations T are closed on a regular three-web. Thus, a
web SW in question is close in this sense to a regular web, but, generally speaking, is not a regular web
(since Thomsen figures built on non-corresponding lines, generally speaking, are not closed).

Remark 2. Theorem 1 shows that the symmetry condition for the function of a web has invariant
geometric sense: A great number of Thomsen configurations are closed. This property of a web remains
valid under local diffeomorphisms, i.e., it holds for all equivalent webs. Hence it follows that the definition
of a symmetric three-web is correct though it uses some distinguished parameters. As has already been
shown, symmetric Eq. (6) remains symmetric under isotopic transformations (7) for which the functions
ũα(uα), α = 1, 2, 3, coincide, i.e., an isotopy is an isomorphism.

The obtained result can be formulated as follows.
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Theorem 2. Using change of variables (7), one cannot, generally speaking, make an arbitrary
function F (u1, u2, u3) into a symmetric one.

Remark 3. As one can see from Fig. 1, the corresponding lines with parameters x2 = y2 in a closed fig-
ure T meet at a point which, by definition, belongs to the corresponding equilibrium line. Consequently,
in a neighborhood of this point, the equilibrium line is real. Since the figure T is small, the other two
lines of intersection of corresponding lines contained in this figure T , x1 = y1 and x3 = y3, also belong
to the same equilibrium line. Thus, all closed Thomsen figures on a symmetric three-web “are attached”
to equilibrium lines.

Remark 4. For a symmetric k-web, a similar result takes place. In fact, in case of symmetry, each
of Eqs. (3) is an equation of some symmetric three-subweb W (α, β, γ) formed by lines from families
with corresponding numbers. By Theorem 1, on each of these three-subwebs, there are 3 · ∞3 closed
configurations T formed by the pairs of corresponding lines from some two families.

4. It turns out that the converse of Theorem 1 is true. Preliminarily, we give the following definition.

Definition 2. Let between two families λα and λβ of lines of a three-web W a local bijective correspon-
dence ϕγ : λα → λβ be established, where α, β, γ are all different and form an even permutation of 1,
2, 3. We say that a figure T belongs to ϕγ if it contains three lines from the family λα and the three
corresponding lines from the family λβ .

For example, the figure on Fig. 1 belongs to the mapping ϕ3 : λ1 → λ2 if yα = ϕ3(xα).

Theorem 3 (the converse of Theorem 1). Let, on a three-web W formed by families λα, there exist
three local bijections

ϕ3 : λ1 → λ2, ϕ1 : λ2 → λ3, ϕ2 : λ3 → λ1

such that figures T belonging to them are closed. Then the three-web W is symmetric.

Proof. Let �0 be an arbitrary line from the family λ1 of a three-web W . We ascribe to the lines �0, ϕ3(�0),
and ϕ1(ϕ3(�0)) equal parameter u0. Then the families can be parameterized in a neighborhood of the
point u0 in such a way that the corresponding lines � ∈ λ1, ϕ3(�), and ϕ1(ϕ3(�)) have equal parameter
u.

Consider on W an arbitrary figure T depicted on Fig. 1, and let the lines of the first and the second
families of this figure be corresponding, i.e., x1 = y1, x2 = y2, and x3 = y3. By the assumptions of the
theorem, this figure must be closed, and for it conventional identity (5), (6) must hold. In the case in
question, the corresponding equalities take the form

F (x1, x2, z1) = 0, F (x2, x1, z1) = 0,
F (x1, x3, z2) = 0, F (x3, x1, z2) = 0,
F (x2, x3, z3) = 0, F (x3, x2, z3) = 0.

Each pair of these equalities means that the function u3 = f(u1, u2) such that

F (u1, u2, f(u1, u2)) ≡ 0

is symmetric. Hence it follows that the function F (u1, u2, u3) is symmetric with respect to the first two
arguments.

Considering, for the figure T , the closure conditions T (2, 3) and T (3, 1), we arrive at the conclusion
that the function F (u1, u2, u3) is symmetric with respect to the other pairs of arguments.

5. Definition 3. A three-web whose Eq. (6), for some choice of family parameters, is symmetric with
respect to some two variables will be called semisymmetric and denoted by SSW (3) or briefly SSW .

Let Eq. (6) be symmetric with respect to the first two variables. Repeating the arguments from
Theorem 1, we arrive at the conclusion that on the corresponding three-web SSW there is a three-
parameter family of figures T which contain three pairs of corresponding lines from one and two families.

RUSSIAN MATHEMATICS Vol. 62 No. 6 2018



62 SHELEKHOV

As is known ([3], P. 45), the closure condition for figures T has an algebraic analog. Solving Eq. (6) of
a three-web SSW with respect to u3 in the form u3 = f(u1, u2), we obtain the equation of the coordinate
quasigroup q12 of this web. By virtue of symmetry, this quasigroup is commutative. In particular, if a
three-web SSW is symmetric, then all six its coordinate quasigroups q12, q21, q23, q32, q31, q13 are
commutative.

6. It is convenient to consider rectilinear three-webs on the projective plane. We write the equations
of the families of straight lines forming a rectilinear three-web LW in the form

λα : aα(uα)x1 + bα(uα)x2 + cα(uα)x3 = 0, α = 1, 2, 3, (10)

where x1, x2, x3 are projective coordinates. Eliminating them from Eqs. (10), we obtain the following
equation of a three-web LW

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1(u1) b1(u1) c1(u1)

a2(u2) b2(u2) c2(u2)

a3(u3) b3(u3) c3(u3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (11)

Note that all minors of second order in this determinant differ from zero. In fact, let, for example,
a1b2 − a2b1 = 0, then Eq. (11) falls into two equations, one of which contains only the variables u1

and u2, and the other one only the variables u2 amd u3. Therefore, none of them can be an equation of a
web.

Assume that all aα in Eqs. (10) are different from zero, i.e., consider a domain in which there are
no horizontal straight lines belonging to the three-web in question. Let us introduce new parameters
vα = bα/aα, then Eq. (11) takes the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 v1 p1(v1)

1 v2 p2(v2)

1 v3 p3(v3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0

or

p1(v1)(v3 − v2) + p2(v2)(v1 − v3) + p3(v3)(v2 − v1) = 0. (12)

The parameters vα will be called canonical parameters of a rectilinear three-web LW , and Eq. (12)
the canonical equation of this web.

Consider the excluded case: Let, for example, a3 = 0, then the third family is the pencil with vertex
(0, 0, 1). (In this case, the functions a1 and a2 must be nonzero, otherwise two families or all three
families are the same pencil, i.e., there is no three-web.) Denote a three-web in question by LW0 and
introduce on it canonical parameters v1 = −b1/a1, v2 = −b2/a2, v3 = c3/b3. Then Eqs. (10) of the
families of a three-web take the form

x1 + v1x2 + p1(v1)x3 = 0, x1 + v2x2 + p2(v2)x3 = 0, x2 = −v3x3.

Eliminating the coordinates, we obtain the canonical equation of a three-web LW0:

v3 =
p1(v1) − p2(v2)

v1 − v2
. (13)

7. Theorem 4. Equation (11) is symmetric with respect to the variables u1 and u2 if and only
if (a1, b1, c1) = (a2, b2, c2), i.e., lines from the first two families of a three-web LW belong to the
same family.

Proof. Sufficiency is obvious: If (a1, b1, c1) = (a2, b2, c2), then Eq. (11) is not changed under the
change u1 ↔ u2. Conversely, let Eq. (11) be symmetric with respect to u1 and u2, i.e., together with
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Eq. (11) the following equation holds
∣

∣

∣

∣

∣

∣

∣

∣

∣

a1(u2) b1(u2) c1(u2)

a2(u1) b2(u1) c2(u1)

a3(u3) b3(u3) c3(u3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

Comparing in these equations the coefficients of the variables (a3, b3, c3), we arrive at the proportionality
of the two vector products: (a1(u1), b1(u1), c1(u1))×(a2(u2), b2(u2), c2(u2)) and (a1(u2), b1(u2),
c1(u2))×(a2(u1), b2(u1), c2(u1)). This is possible only on condition that all four vectors belong
to a plane, which in particular implies that (a1(u2), b1(u2), c1(u2)) = p(a1(u1), b1(u1), c1(u1)) +
q(a2(u2), b2(u2), c2(u2)). Since the latter equality must hold for any u1 and u2, we have p = 0,
(a1(u2), b1(u2), c1(u2)) = q(a2(u2), b2(u2), c2(u2)). Consequently, (a1, b1, c1) = q(a2, b2, c2). One can
let q = 1 because the coefficients in an equation of a straight line are defined up to a factor.

Corollary 1. A three-web LW is symmetric if and only if, for any α = 1, 2, 3, we have aα = a, bα = b,
cα = c. Denote such three-webs by SLW . All three families of straight lines of a web SLW belong to
one family

a(u)x + b(u)y + c(u)z = 0, (14)

and Eq. (11) for them takes the form
∣

∣

∣

∣

∣

∣

∣

∣

∣

a(u1) b(u1) c(u1)

a(u2) b(u2) c(u2)

a(u3) b(u3) c(u3)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (15)

In terms of the canonical parameters, Eq. (14) takes the form

x + vy + p(v)z = 0, (16)

and the equation of a web SLW takes the form

F (v1, v2, v3) ≡ p(v1)(v2 − v3) + p(v2)(v3 − v1) + p(v3)(v1 − v2) = 0. (17)

The function F (v1, v2, v3) in the left-hand side of Eq. (17) is skew-symmetric. Consequently, in
accordance with Proposition 3, it can be written in the form F = (v1 − v2)(v2 − v3)(v3 − v1) ˜F , where
F̃ is a symmetric function. Substituting the Taylor series

p(v) = a0 + a1v + a2v
2 + · · · , ak ∈ R, (18)

into (17), after not difficult transformations, we obtain

˜F ≡ a2 + a3(v1 + v2 + v3) + a4h2(v1, v2, v3) + a5h3(v1, v2, v3) + . . . = 0, (19)

where

hm(v1, v2, v3) ≡
i+j+k=2m−1

∑

0≤i,j,k≤2m−1

vi
1v

j
2v

k
3 (20)

is the complete symmetric polynomial of degree m in variables v1, v2, v3. In particular, if p(v) is a
polynomial of degree three, then, by the Graf–Sauer theorem, a rectilinear three-web SLW is regular.
In fact, p(v) = a0 + a1v + a2v

2 + a3v
3, and Eq. (20) becomes linear.

Note that, for a web SLW , its canonical coordinates are also adapted coordinates.

Corollary 2. A three-web LW0 defined by Eq. (13) is semisymmetric if and only if in this equation
p1 = p2 and, therefore, it is of the form

v3 =
p(v1) − p(v2)

v1 − v2
≡ f(v1, v2). (21)
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We will denote such three-webs by SLW0.

If the function p(v) is not linear, then, on the plane of parameters v1 and v2, Eq. (21) defines a

rectifiable three-web S̃LW 0 equivalent to a three-web SLW0 and formed by the Cartesian net v1 =
const, v2 = const and the level lines of the function f , which are symmetric with respect to straight lines
v1 + v2 = 0 and v1 − v2 = 0.

8. Rectilinear symmetric three-webs SLW can be classified by the form of the function p(v).

Theorem 5. A three-web SLW whose lines belong to family (16) exists if and only if the function
u = p(v) has an inflection point.

Proof. A symmetric three-web SLW exists in a domain D if through each point of D there pass three
straight lines belonging to family (16). The parameters of the lines through a point M(x, y, z) are found
from Eq. (16). But the roots of Eq. (16) are points of intersection of the graph of u = p(v) and the
straight line x1 + vx2 + ux3 = 0 in the plane of variables u, v. If u = p(v) has a point of inflection, then,
in a neighborhood of this point, there exists a straight line m which intersects the graph at three points
and conversely. Then, by continuity, all straight lines sufficiently close to m (for different values of the
parameters x1, x2, x3) also intersect the graph at three points. Consequently, a symmetric three-web
SLW exists.

For example, if, in Eq. (16), we have p(v) = v2m, m ∈ N, then there is no three-web SLW because
the function p(v) has no inflection points in a neighborhood of (0, 0). In this case, Eq. (17) takes the
form

v2m+1
1 (v3 − v2) + v2m+1

2 (v1 − v3) + v2m+1
3 (v2 − v1) = 0.

Cancelling out the factors v1 − v2, v2 − v3, v3 − v1, we obtain the equation h2m−1(v1, v2, v3) = 0.

9. Theorem 6. A rectifiable three-web S̃LW 0 given by Eq. (21) is regular if and only if p(v) is a
polynomial of the second degree.

Proof. If the function p(v) is a polynomial of the second degree, then the right-hand side is linear,

consequently, the three-web S̃LW 0 if regular. Conversely, let a web S̃LW 0 defined by Eq. (21) be
regular. Then, by the Graf–Sauer theorem, all three families of the web must belong to one cubic family,
and the third family is linear, a pencil. Therefore, the other two families, the first and the second, must
belong to a quadratic family. This means (16) that the function p(v) must be a polynomial of the second
degree.

In particular, if, in Eq. (21), p(v) = vm+1, m ∈ N, then

f = (v1)m + (v1)m−1v2 + (v1)m−2(v2)2 + · · · + (v2)m ≡ hm(v1, v2)

is the complete symmetric polynomial. In the general case, if p(v) is a real analytic function of the form
(19), then

f = a1 +
∑

k=2,3,...

akhk−1(v1, v2).

10. The notions introduced are generalized for rectilinear k-webs LW (k) formed by k families of
straight lines.

Consider the general situation when in the domain of a web LW (k) there are no horizontal lines.
Then the equations of the families can be written in the form (16)

x + vαy + pα(vα) = 0, (22)

and here and in what follows α, β, γ, . . . = 1, 2, . . . , k.
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Eliminating from each triple of equations the variables x and y, we obtain the equations of a web
LW (k) in the form (17)

pα(vα)(vγ − vβ) + pβ(vβ)(vα − vγ) + pγ(vγ)(vβ − vα) = 0. (23)

Among these equations there are (k − 2) independent, for example,

p1(v1)(v3 − v2) + p2(v2)(v1 − v3) + p3(v3)(v1 − v2) = 0,
p1(v1)(v4 − v2) + p2(v2)(v1 − v4) + p4(v4)(v1 − v2) = 0,

. . .

p1(v1)(vk − v2) + p2(v2)(v1 − vk) + pk(vk)(v1 − v2) = 0.

Then, as above (Theorem 4), we require that the functions in the left-hand sides of the latter equations
be symmetric. As a result, we find that all functions pα are the same, pα = p, i.e., all families (23) belong
to one family (16). Such rectilinear k-webs will be called symmetric and denoted by SLW (k).

In a similar way to Theorem 5, we prove the following theorem.

Theorem 7. A symmetric k-web SLW (k) all of whose families of straight lines belong to family
(16) exists if and only if there exists a straight line intersecting the graph of the function p(v) at
least at k points.

Equations (24) for a symmetric k-web take the form

p(vα)(vγ − vβ) + p(vβ)(vα − vγ) + p(vγ)(vβ − vα) = 0. (24)

Cancelling out the factors indicated in brackets, we obtain the equation

f2(vα, vβ, vγ) ≡ a2 + a3(vα + vβ + vγ) + a4h2(vα, vβ , vγ) + · · · = 0, (25)

where hm, as above (20), are the complete symmetric polynomials. Independent Eqs. in (25) and (24)
are obtained, for example, when α = 1, β = 2, γ = 3, 4, . . . , k,

f2(v1, v2, v3) = 0, f2(v1, v2, v4) = 0, . . . , f2(v1, v2, vk) = 0. (26)

Equations (26) will be called the first system of equations of a symmetric k-web SLW (k). We denote
this system by Σ1.

11. The indicated collection of independent equations of a symmetric three-web LW (k) is not
unique. Denote by hm(v1, v2, . . . , vn) the complete symmetric polynomial of degree m in the variables
v1, v2, . . . , vn. The following properties of the polynomials hm can be proved either by means of
immediate calculations or by induction:

1. hm(v1, v2, . . . , vi−1, 0, vi+1, . . . , vn) = hm(v1, v2, . . . vi−1, vi+1, . . . , vn),
2. hm(v1, v2, . . . , vn, u1) = hm(v1, . . . , vn) + u1hm−1(v1, . . . , vn)

+(u1)2hm−2(v1, . . . , vn) + · · · + (u1)m−1h1(v1, . . . , vn) + (u1)m,
3. hm(v1, v2, . . . , vn, u1, u2) = hm(v1, v2, . . . , vn)

+h1(u1, u2)hm−1(v1, . . . , vn) + h2(u1, u2)hm−2(v1, . . . , vn) + · · ·
+hm−1(u1, u2)h1(v1, . . . , vn) + hm(u1, u2).

Consider the fraction

f2(v1, v2, v3) − f2(v1, v2, v4)
v3 − v4

.

Let us substitute into it expansions (25) and make use of property 2 for each hk appearing in these
expansions. Cancelling out by v3 − v4, we obtain the equality

a3 + a4(h1(v1, v2) + h1(v3, v4))
+ a5(h2(v1, v2) + h1(v1, v2)h1(v3, v4) + h2(v3, v4)) + a6(h3(v1, v2)

+ h2(v1, v2)h1(v3, v4) + h1(v1, v2)h2(v3, v4) + h3(v3, v4)) + · · · = 0,
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which, by property 3, is equivalent to the relation

f3(v1, v2, v3, v4) ≡ a3 + a4h1(v1, v2, v3, v4) + a5h2(v1, v2, v3, v4) + · · · = 0. (27)

Consider then the expression

f3(v1, v2, v3, v4) − f3(v1, v2, v3, v5)
v4 − v5

.

Repeating reasoning, we obtain

f4(v1, v2, v3, v4, v5) ≡ a4 + a5h1(v1, v2, v3, v4, v5)
+ a6h2(v1, v2, v3, v4, v5) + a7h3(v1, v2, v3, v4, v5) + · · · = 0. (28)

Continuing calculations, we obtain

fk−1(v1, v2, . . . , vk) ≡ ak−1 + akh1(v1, v2, . . . , vk) + ak+1h2(v1, v2, . . . , vk) + · · · = 0. (29)

Denote by Σ2 the system of (k − 2) equations which includes the first Eq. of (26) and Eqs. (27)–(29).
The system Σ2 is equivalent to the system Σ1. In fact, from the equations Σ2 one can get the

equations Σ1. Consider one of the equalities leading to Eq. (29),

fk−1(v1, v2, . . . , vk) =
fk−2(v1, v2, . . . , vk−1) − fk−2(v1, v2, . . . , vξ−1, vξ+1, . . . , vk−1, vk)

vξ − vk
.

If the functions of the form Σ2 are given, then from the latter equality we find the functions
fk−2(v1, v2, . . . , vξ−1, vξ+1, . . . , vk−1, vk). Then in terms of these functions we, in a similar way, express
all the functions fk−3 depending on (k − 2) arguments, and so on until we find all the functions f2.

Thus, the following theorem holds.

Theorem 8. The equations Σ2 are equations of a symmetric rectilinear k-web SLW (k).

Finally, let us present one more collection of equations of a symmetric k-web SLW (k) (denote it by
Σ3): take the sum of all equations of the form f2(vα, vβ , vγ) = 0, the sum of all equations of the form
f3(vα, vβ , vγ , vδ) = 0 and so on. One can show that

1) the left-hand sides of the equations obtained are expressed only in terms of the basis symmetric
polynomials in all variables v1, v2, . . . , vk;

2) these equations are functionally independent.

12. A rectilinear k-web LW is called algebraic if it is formed by straight lines belonging to a curve
of class k, a so-called set of straight lines ax + by + cz = 0 of the projective plane whose tangential
coordinates a, b, c are connected by a homogeneous algebraic equation S(a, b, c) = 0 of degree k.
Assume that the curve defined by the equation S(a, b, c) = 0 is unicursal (of genus 0), i.e., admits a
rational parameterization: a = a(u), b = b(u), c = c(u). Then without loss of generality we can assume
that, in equations of family of lines (14), the coefficients a(u), b(u), c(u) are polynomials of the same
degree, say m.

Show that such a web LW is symmetric. Fix in the domain of LW a point (x, y, z), then the
parameters of straight lines from family (14) passing trough it are the roots u1, u2, . . . , um of Eq. (14). By
the Vieta theorem, the basic symmetric polynomials σ1, σ2, . . . , σm in the variables u1, u2, . . . , um are
expressed in terms of the coefficients of Eq. (14), which are linear functions of (x, y, z). To get equations
of a web LW , we need to eliminate from these equations the variables (x, y, z). Obviously, the equations
obtained are symmetric with respect to the variables u1, u2, . . . , um, i.e., the web LW in question is
symmetric. In addition, one can show that, in this case, the algebraic equation S(a, b, c) = 0 defining
LW also has degree m: eliminating from the equations a = a(u), b = b(u), c = c(u) the parameter u,
we arrive at a homogeneous equation of degree m.

We have proved the following theorem.

Theorem 9. An algebraic k-web LW defined by an algebraic curve of genus zero is a symmetric
web.
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In particular, let an algebraic k-web be given by Eq. (16), where p(v) is a polynomial of degree k. Then
the left-hand side of Eq. (16) is also a polynomial of degree k, and its coefficients of powers v2, . . . , vk are
constant. Therefore, the symmetric polynomials σ1, σ2, . . . , σk−2 in the roots v1, v2, . . . , vk of Eq. (16)
are also constant, σi = ci, i = 1, 2, . . . , k− 2. These are equations of the corresponding k-web SLW (k).

13. Consider some differential-geometric aspects of the theory of symmetric webs. Recall that all
functions under consideration are real analytic.

One can easily prove the following proposition.

Proposition 4. A real analytic function f(x, y) is symmetric if and only if its first partial
derivatives are connected by the relation

∂f

∂x
(x, y) =

∂f

∂y
(y, x).

In addition, for a symmetric real analytic function, the following equalities hold:

∂2f

∂x2
(x, y) =

∂2f

∂y2
(y, x),

∂2f

∂x∂y
(x, y) =

∂2f

∂x∂y
(y, x),

∂3f

∂x2∂y
(x, y) =

∂3f

∂x∂y2
(y, x), . . . .

Corollary. In the expansion of f(x, y) in Taylor series the coefficients of monomials xnym and xmyn

are equal. Thus, each of the polynomials of degree n of this expansion is a symmetric polynomial and,
therefore, is expressed in terms of the basic symmetric polynomials σ1 = x + y and σ2 = xy.

The basic relative differential invariants of a three-web are its curvature and covariant derivatives of
the curvature with respect to the canonical torsion-free connection Γ (the Chern connection). Relative
differential invariants of a k-web are relative differential invariants of its three-subwebs and anharmonic
relations of quadruples of directions of the lines forming the web.

Let a three-web be given, as above, by the equation

u3 = f(u1, u2).

We let, as in [3] (P. 64),

ω1 = f1du1, ω2 = f2du2, ω = − f12

f1f2
(ω1 + ω2).

Then the exterior differentials of the forms ω1, ω2, and ω have the form dω1 = ω1 ∧ ω, dω2 = ω2 ∧ ω, and
dω = bω1 ∧ ω2, where

b = − 1
f1f2

∂2

∂u1∂u2
ln

f1

f2
. (30)

The quantity b is called the curvature of a three-web and is the basic relative invariant of a three-web.
As a consequence of Proposition 4 and formula (30), we conclude that for a semisymmetric three-web

SSW defined by equation (14) the following relation holds: b(u1, u2) = −b(u2, u1), i.e., the following
theorem holds.

Theorem 10. The curvature of a semisymmetric three-web is a skew-symmetric function of
adapted parameters.

From (30) it follows that

b(u1, u1) = 0. (31)

Recall that, in Item 3, the lines ui = uj were called equilibrium lines. Therefore, equality (31) means
that along an equilibrium line, the curvature of a semisymmetric three-web equals zero.

In conclusion, we formulate some problems.
1. To classify symmetric three-webs by their equilibrium lines and by types of umbilic points (see

Item 3).
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2. To characterize the class of symmetric three-webs in terms of differential invariants. In particular,
to clear up the question whether the statement converse to Theorem 10 is true.

3. To generalize the theory developed to the case of (n + 1)-webs in the sense of V. V. Goldberg
formed by n + 1 hypersubmanifolds of an n-dimensional manifold.
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