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We study linear integral equation of the third kind with fixed singularities in its kernel (E3KFS)

Ax ≡ x(t)
l∏

j=1

(t − tj)mj +
∫ 1

−1
K(t, s)[(s + 1)p1(1 − s)p2]−1x(s)ds = y(t), (1)

where t ∈ I ≡ [−1, 1], tj ∈ (−1, 1), mj ∈ N (j = 1, l); p1, p2 ∈ R
+, K and y are known continuous

functions with certain pointwise “smoothness” properties, x(t) is the desired function, and integral is
understood as the Hadamard finite part ([1], pp. 144–150). Equations (1) have extensive applications
both in theory and in practice. A number of important problems of elasticity theory, transfer of neutrons,
particle scattering (see [2, 3] and references in [3, 4]), and theory of differential equations of mixed type
[5] reduces to that equations. As a rule, intrinsic classes of solutions of equations of the third kind are
special spaces of distributions (SD) of type D or V . The space of type D (or V ) is SD built on the base
of the Dirak delta-function (correspondingly, on the base of the Hadamard finite part of integral). The
equations under consideration can be solved explicitly only in rare cases. Therefore, the development
of effective and theoretically based methods of their approximate solving in SD is an actual subject of
mathematical analysis and computational mathematics. A number of results on this subject is obtained
in works [6–9], where the direct special methods for solving of E3KFS (1) in a space of type D are
proposed and substantiated. The first results on approximate solutions of E3KFS in certain SD X of
type V are obtained in works [10, 11], where the authors develop polynomial for solving Eq. (1) in a
space X.

In the present paper we use considerations and results of works [8–10], and propose a special version
of the collocation method on the base of Hermite interpolation polynomials. This method is well-adapted
for approximate solving Eq. (1) in class X. The main attention is paid to the substantiation of the method
under consideration in the sense of book [12] (Chap. 1). Namely, we prove theorem on existence and
uniqueness of solution to the corresponding equation, find bounds for errors of the approximate solution,
and prove the convergence of sequence of approximate solutions to exact one in SD X. We consider also
the questions of stability and conditionality of the approximating equations.
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SPECIAL VERSION OF COLLOCATION METHOD 17

1. Main spaces. Let C ≡ C(I) be a space of continuous on I functions with customary max-norm

and m ∈ N. According to [13], we say that a function f ∈ C belongs to class C{m; 0} ≡ C
{m}
0 (I) if it

has Taylor’s derivative f{m}(0) of order m at the point t = 0 (we put C{0; 0} ≡ C). In the norm

‖f‖C{m;0} ≡ ‖Tf‖C +
m−1∑

i=0

|f{i}(0)|,

where

Tf ≡
[
f(t) −

m−1∑

i=0

f{i}(0)ti/i!

]
1
tm

≡ F (t) ∈ C (F (0) ≡ lim
t→0

F (t)),

the space C{m; 0} is complete and normally embedded into C (see, e.g., [14], P. 14).

Furthermore, let p ∈ R
+ and g ∈ C. According to [13], we denote g ∈ C{p; 1} ≡ C

{p}
1 (I) if there

exist left Taylor derivatives g{j}(1) (j = 1, [p]) at the point t = 1, and for p �= [p] ([·] stands for entire
part) there exists the limit

lim
t→1−

{[
g(t) −

[p]∑

j=0

g{j}(1)
(t − 1)j

j!

]
(1 − t)−p

}
.

We equip vector space C{p; 1} by the norm

‖g‖{p} ≡ ‖g‖C{p;1} ≡ ‖Sg‖C +
λ∑

i=0

|g{i}(1)|, (2)

where

Sg ≡
[
g(t) −

λ∑

i=0

g{i}(1)
(t − 1)i

i!

]
(1 − t)−p ≡ G(t) ∈ C, (3)

λ = λ(p) ≡ [p] − (1 + sign([p] − p)), G(1) ≡ lim
t→1−

G(t). Note that the space C{p; 1} consists of func-

tions representable as

g(t) = (1 − t)pG(t) +
λ∑

i=0

bi(t − 1)i, (4)

where G = Sg ∈ C, bi = g{i}(1)/i! (i = 0, λ). Obviously, C{p; 1} with norm (2) is complete, and
embedded into C.

The following space is main for our studies:

Y ≡ C
{m};{p}
0;1 ≡ C

{m};{p}
0;1 (I) ≡ {y ∈ C{m; 0}|Ty ∈ C{p; 1}} .

We equip it by the norm

‖y‖Y ≡ ‖Ty‖{p} +
m−1∑

i=0

|y{i}(0)|, y ∈ Y. (5)

Lemma 1 ([6]). (i) There is valid the relation

ϕ ∈ Y ⇔ ϕ(t) = (UV Φ) (t) + tm
λ∑

j=0

dj(t − 1)j +
m−1∑

i=0

eit
i, (6)

where Φ = STϕ ∈ C, ϕ{i}(0) = eii! (i = 0,m − 1), (Tϕ){j}(1) = djj! (j = 0, λ); Uf = tmf(t), V f ≡
(1 − t)pf(t);
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18 GABBASOV, GALIMOVA

(ii) the space Y in norm (5) is complete and embedded into C{m; 0}.

Let υ ∈ C(I2) and for arbitrarily fixed s ∈ I the function υ(t, s) belongs to C{p; 1}. We say that

υ ∈ C
{p}
t (I2), if Stυ ∈ C, where St is operator (3) applied in argument t. Definition of class C

{p}
s (I2) is

analogous. Then

C
{p}
1 (I2) ≡ C

{p}
t (I2) ∩ C{p}

s (I2).

On the main space Y we consider the family X ≡ V {p}{m; 0} of distributions x(t) of the form

x(t) ≡ z(t) +
m−1∑

i=0

γi P. F. t−i−1,

where t ∈ I, z ∈ C{p; 1}, γi ∈ R are arbitrary constants, and P. F. t−k are distributions defined on
space Y by the rule

(P. F. t−k, y) ≡ P. F.
∫ 1

−1
y(t)t−kdt, y ∈ Y, k = 1,m.

The symbol P. F. means here the Hadamard’s finite part of integral ([1], pp. 144–150) (in what follows we
omit this symbol for brevity). Clearly, the vector space X is the Banach space with regard to the norm

‖x‖X ≡ ‖z‖{p} +
m−1∑

i=0

|γi|.

2. An approximating “polynomial” operator. Denote by ΠST
4n+m+λ ≡ UV (Π4n−1) ⊕ Πm+λ

(4n + m + λ + 1)-dimensional subspace of space Y, where Πl ≡ span{ti}l
0 is the class of all algebraic

polynomials of degree no higher than l. Let Γn ≡ Γ4n+m+λ : Y → ΠST
4n+m+λ be operator mapping any

function g ∈ Y on element of Γng, uniquely determined by the conditions

(STΓng − STg)(νj) = 0, (STΓng)(k)(νj) = 0, k = 1, 3, j = 1, n,

(TΓng − Tg){j}(1) = 0, j = 0, λ, (Γng − g){i}(0) = 0, i = 0,m − 1,
(7)

where {νj}n
1 is the system of Chebyshev nodes of the first kind.

Lemma 2. The operator Γn acts by the rule

Γng ≡ Γ4n+m+λ(g; t) = (UV ΦnSTg)(t) +
λ∑

j=0

(Tg){j}(1)
tm(t − 1)j

j!
+

m−1∑

i=0

g{i}(0)
ti

i!
, (8)

where Φn ≡ Φ4n−1 : C → Π4n−1 is interpolation operator, which maps any function f ∈ C on
polynomial Φnf ∈ Π4n−1, uniquely determined by 4n equalities

(Φnf)(νj) = f(νj), (Φnf)(k)(νj) = 0, k = 1, 3, j = 1, n. (9)

Proof. The desired element Γng ∈ ΠST
4n+m+λ is representable as

Γng ≡ tm(1 − t)p
4n−1∑

i=0

αit
i +

m+λ∑

i=0

βit
i =

m−1∑

i=0

βit
i + tm

[
(1 − t)p

4n−1∑

i=0

αit
i +

λ∑

j=0

βm+jt
j

]

=
m−1∑

i=0

βit
i + tm

[
(1 − t)p

4n−1∑

i=0

αit
i +

λ∑

j=0

ρj(t − 1)j
]
≡

m−1∑

i=0

βit
i + tmP (t). (10)
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SPECIAL VERSION OF COLLOCATION METHOD 19

According to (4), we have

(1 − t)p
4n−1∑

i=0

αit
i = (V SP )(t), ρj =

1
j!

P {j}(1), j = 0, λ. (11)

By means of representation (10) and known structure of elements of space C{m; 0} (see, e.g., [14],
P. 12) we obtain

P (t) = (TΓng)(t), βi =
1
i!

(Γng){i}(0), i = 0,m − 1, (12)

and by virtue of equalities (9) and (7)

STΓng = ΦnSTg. (13)

Then representation (10) by means of equalities (11)–(13) and (7) implies relation (8).

The following lemma describes an approximative properties of operator Γn in the space Y .

Lemma 3. Any function y ∈ Y satisfies the estimate

‖y − Γny‖Y � d1ω(STy;Δn); (14)

here and below di, i = 1, 2, are certain constants independent on natural parameter n, ω(f ;Δn) is
continuity module of the function f ∈ C with step Δn ≡ (ln n)/n, n = 2, 3, . . .

Lemma 3 follows immediately from relations (6), (8), (5), (2) and bound [15]

‖f − Φnf‖C � d1ω(f ;Δn), f ∈ C. (15)

Let us introduce the set

R4n+m+λ ≡
{
yn ∈ ΠST

4n+m+λ | (STyn)(k)(νj) = 0, k = 1, 3, j = 1, n
}

.

Lemma 4. Operator Γn : Y → R4n+m+λ is a projection.

Proof. Let yn ∈ R4n+m+λ be an arbitrary element, and Hji(t), i = 0, 3, j = 1, n, be fundamental
Hermite polynomials of degree 4n − 1 on nodes {νj}n

1 (see, e.g., [16], P. 63). Then, obviously,

(STyn)(t) =
n∑

j=1

3∑

i=0

(STyn)(i)(νj)Hji(t) =
n∑

j=1

(STyn)(νj)Hj0(t) ≡ (ΦnSTyn)(t). (16)

From relations (8), (16) and (6) we obtain Γnyn = yn.

3. Collocation method using Hermite interpolation polynomials. Let E3KFS (1) be given. For
simplification of calculations and formulations we put l = 1, t1 = 0, p1 = 0, i.e., we consider the equation

Ax ≡ (Ux)(t) + (Kx)(t) = y(t), t ∈ I, (17)

Kx ≡
∫ 1

−1
K(t, s)(1 − s)−px(s)ds,

where m ∈ N, p ∈ R
+; y ∈ Y , K is a given function satisfying the conditions

K ∈ C{p}
s (I2), ψi(t) ≡ K{i}

s (t, 1) ∈ Y, i = 0, λ,

u ≡ SsK ∈ C
{m}
t (I2), θi(s) ≡ u

{i}
t (0, s) ∈ C{m; 0}, i = 0,m − 1; (18)

υ ≡ Ttu ∈ C
{p}
t (I2), ϕi(s) ≡ υ

{i}
t (1, s) ∈ C{m; 0}, i = 0, λ,
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20 GABBASOV, GALIMOVA

h ≡ Stv ∈ C{m}
s (I2),

and x ∈ X is the desired distribution. The Fredholm properties and sufficient conditions for continuous
reversibility of the operator A : X → Y are proved in [10]; a method for evaluation of the exact solution
of E3KFS (1) in the class X is described in the same paper.

An approximate solution of Eq. (17) is the element

xn ≡ xn(t; {ci}) ≡ gn(t) +
m−1∑

i=0

ci+λ+4n+1t
−i−1, (19)

gn(t) ≡ (V zn)(t) +
λ∑

i=0

ci+4n(t − 1)i, zn(t) ≡
4n−1∑

i=0

cit
i, n = 2, 3, . . . . (20)

We find the unknown parameters ci = c
(n)
i , i = 0,m + λ + 4n, from the system of linear algebraic

equations (SLAE)

(STAxn − STy)(νj) = 0, (STUxn)(k)(νj) = 0 (k = 1, 3, j = 1, n),

(TAxn − Ty){j}(1) = 0, j = 0, λ, (21)

(Axn − y){i}(0) = 0, i = 0,m − 1,

where {νj}n
1 is the used above system of nodes.

The following theorem describes properties of the computational algorithm (17)–(21).

Theorem 1. If homogeneous E3KFS Ax = 0 has only null solution in X (for instance, under
assumptions of theorem 2 from [10]), then for any n ∈ N, n ≥ n0, SLAE (21) has a unique solution
{c∗j}, and the sequence of approximate solutions x∗

n ≡ xn(t, {c∗j}) converges to the exact solution
x∗ = A−1y in norm of space X with the rate

‖x∗
n − x∗‖ = O

{
ωt(h;Δn) +

λ∑

j=0

ω(αj ;Δn) +
m−1∑

i=0

ω(βi;Δn) + ω(STy;Δn)
}

, (22)

where ωt(h;Δ) is partial module of continuity of the function h(t, s) in variable t, h ≡ Stυ,

αj ≡ STψj , j = 0, λ, βi ≡ STΦi, i = 0,m − 1, and

Φi(t) ≡
∫ 1

−1
K(t, s)(1 − s)−ps−i−1ds ∈ Y, i = 0,m − 1.

Proof. We consider E3KFS (17) as linear operator equation of the form

Ax ≡ Ux + Kx = y, x ∈ X ≡ V {p}{m; 0}, y ∈ Y ≡ C
{m};{p}
0;1 , (23)

where operator A : X → Y is continuously reversible.
Let Xn ⊂ X stand for (4n + m + λ + 1)-dimensional subspace of elements (19) such that

(STUxn)(k)(νj) = 0, k = 1, 3, j = 1, n, and Yn ⊂ Y stand for the class R4n+m+λ.

We show first that system (19)–(21) is equivalent to linear functional equation

Anxn ≡ ΓnAxn = Γny, xn ∈ Xn, Γny ∈ Yn. (24)

Let x∗
n ≡ xn(t; {c∗i }) ∈ X be solution to Eq. (24), i.e., Γn(Ax∗

n − y) = 0, what by virtue of (8) and (6)
means validity of relations

(Φn(STAx∗
n − STy))(t) ≡ 0,

(TAx∗
n − Ty){j}(1) = 0, j = 0, λ, (25)
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SPECIAL VERSION OF COLLOCATION METHOD 21

(Ax∗
n − y){i}(0) = 0, i = 0,m − 1.

Equality (9) implies that the first identity is equivalent to the system

(STAx∗
n − STy)(νj) = 0, (ΦnSTAx∗

n − ΦnSTy)(k)(νj) = 0, k = 1, 3, j = 1, n. (26)

Then by means of (17), (19) and (20) we obtain the relations

STAx∗
n = z∗n + STKx∗

n, z∗n = STUx∗
n ∈ R4n−1, Φnz∗n = z∗n.

Consequently, the conformity of meanings of derivatives at the nodes in system (26) means that
(z∗n)(k)(νj) = (STUx∗

n)(k)(νj) = 0, k = 1, 3, j = 1, n. It follows from these relations and from (25) and
(26) that SLAE (21) has the solution ci = c∗i , i = 0,m + λ + 4n, i.e., the solution to Eq. (24) is solution
to system (19)–(21). The converse is obvious.

It remains to prove existence, uniqueness, and convergence of solutions to Eqs. (24).

Let us research now the question on closeness of the operators A and An on subspace Xn. We apply
formulas (23), (19), (24), projection property of the operator Γn : Y → Yn, (6), relations (8), (5) and (2),
and sequentially find for arbitrary xn ∈ Xn

‖Axn − Anxn‖Y = ‖Kxn − ΓnKxn‖Y = ‖STKxn − ΦnSTKxn‖C . (27)

As is known [10],

STKxn =
∫ 1

−1
h(t, s)gn(s)ds +

λ∑

j=0

λj(gn)αj(t) +
m−1∑

i=0

ci+λ+4n+1βi(t), (28)

where

λj(g) ≡
∫ 1

−1
(Sg)(s)(s − 1)j

1
j!

ds +
λ∑

k=0

g{k}(1)βjk, βjk ≡
∫ 1

−1
(s − 1)j+k 1

j!k!
(1 − s)−pds, j, k = 0, λ.

By virtue of relations (28) and (15) we sequentially obtain

‖STKxn − ΦnSTKxn‖C

= max
t∈I

∣∣∣∣
∫ 1

−1
(h − Φt

nh)(t, s)gn(s)ds +
∑

j

λj(gn)(αj − Φnαj)(t) +
∑

i

ci+λ+4n+1(βi − Φnβi)(t)
∣∣∣∣

� 2d1‖gn‖Cωt(h;Δn) + d1

∑

j

|λj(gn)|ω(αj ;Δn) + d1

∑

i

|ci+λ+4n+1|ω(βi;Δn)

� 2p+1d1‖gn‖{p}ωt(h;Δn) + d1‖gn‖{p}(2λ+1 + β)
∑

j

ω(αj ;Δn) + d1‖xn‖X

∑

i

ω(βi;Δn)

� d1‖xn‖
{

2p+1ωt(h;Δn) + (2p+1 + β)
∑

j

ω(αj ;Δn) +
∑

i

ω(βi;Δn)
}

� d2

{
ωt(h;Δn) +

∑

j

ω(αj ;Δn) +
∑

i

ω(βi;Δn)
}
‖xn‖. (29)

We use here notation β ≡ max
0�j,k�λ

|βjk|, d2 ≡ d1(2p+1 + β). Consequently, relations (27) and (29) yield

the bounds

εn ≡ ‖A − An‖Xn→Y � d2

{
ωt(h;Δn) +

∑

j

ω(αj ;Δn) +
∑

i

ω(βi;Δn)
}

. (30)

Then inequalities (14) and (30) allow us to conclude by means of theorem 7 from [12] (P. 19) that the
theorem under consideration is valid with estimate (22).

RUSSIAN MATHEMATICS Vol. 62 No. 5 2018



22 GABBASOV, GALIMOVA

Corollary 1. If h ( invariable t), αj, βi, STy ∈ C(1), then under assumptions of Theorem 1 we have
‖x∗

n − x∗‖ = O(Δn).

Under assumptions of Theorem 1 the corresponding approximating operators An (n ≥ n1) are
continuously reversible, and the inverse operators are bounded in norm in the aggregate: ‖A−1

n ‖ = O(1)
(A−1

n : Yn → Xn). Consequently, by virtue of the results of [12] (pp. 23–24) there is valid

Theorem 2. Under assumptions of Theorem 1 there are valid assertions:
i) the direct method (19)–(21) for E3KFS (17) is stable with respect to small perturbations of

elements of SLAE (21);
ii) if E3KFS (17) is well-conditioned, then SLAE (21) is well-conditioned, too.

Remark 1. By definition of the norm in X ≡ V {p}{m; 0} the convergence of sequence (x∗
n) to x∗ =

A−1y in metrics of X implies customary convergence in the space of of generalized functions, i.e., weak
convergence.

Remark 2. Approximation of solution to operator equations Ax = y implies intrinsic question on the
rate of convergence of discrepancy ρA

n (t) ≡ (Ax∗
n − y)(t) of the method under consideration. One of

results of this kind follows easily from the main Theorem 1; namely, it yields the following simple

Corollary 2. If initial data (h, αj , βi, STy) of Eq. (17) belong to class C(1), then under assumptions of
Theorem 1 there is valid the bound ‖ρA

n ‖Y = O(Δn).
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