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Abstract—We generalize the Lomov’s regularization method to partial integro-differential equa-
tions. It turns out that the procedure for regularization and the construction of a regularized
asymptotic solution essentially depend on the type of the integral operator. The most difficult is
the case, when the upper limit of the integral is not a variable of differentiation. In this paper,
we consider its scalar option. For the integral operator with the upper limit coinciding with the
variable of differentiation, we investigate the vector case. In both cases, we develop an algorithm for
constructing a regularized asymptotic solution and carry out its full substantiation. Based on the
analysis of the principal term of the asymptotic solution, we study the limit in solution of the original
problem (with the small parameter tending to zero) and solve the so-called initialization problem
about allocation of a class of input data, in which the passage to the limit takes place on the whole
considered period of time, including the area of boundary layer.
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The Lomov regularization method ([1], pp. 126–129) was mainly applied for ordinary singularly dis-
turbed integro-differential equations (see the detailed bibliography in [2, 3]). The systematic elaboration
of this method for systems of integro-differential equations with partial derivatives has not been carried
out earlier. In the present paper, such an attempt is made for the first time. The type of the integral
operator plays an important role in the propagation of the regularization method to partial differential
equations. It is necessary to distinguish two fundamentally different cases:

ε
∂y (t, x, ε)

∂t
= A (t, x) y (t, x, ε) +

∫ t

0
K (t, x, s) y (s, x, ε) ds + h (t, x) ,

y (0, x, ε) = y0 (x) , (t, x) ∈ [0, T ] × [0,X] ,
(1)

ε
∂y (t, x, ε)

∂t
= A (t, x) y (t, x, ε) +

∫ x

0
K (t, x, s) y (s, x, ε) ds + h (t, x) ,

y (0, x, ε) = y0 (x) , (t, x) ∈ [0, T ] × [0,X] .
(2)

First we consider the first case. In the second case, there arises the problem of describing the space of
solutions of iterative problems and the conditions for their solvability in the indicated space. The second
part of our work is devoted to solving this problem. We now turn to the presentation of the results for
problem (1).

1. Regularization of problem (1). Without loss of generality, we can assume that T = X = 1 and,
since the dependence of the matrix A on x does not have a significant effect on the algorithm developed
below, we consider the case A = A (t). Assume that
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A GENERALIZATION OF THE REGULARIZATION METHOD 7

1) functions A (t) ∈ C∞([0, 1] , Cn2
), h (t, x) ∈ C∞([0, 1] × [0, 1], C

n), the kernel

K (t, x, s) ∈ C∞ (0 ≤ t ≤ 1, 0 ≤ s ≤ t ≤ 1, C
n2

);

2) the spectrum σ (A (t)) = {λj (t)} of the matrix A (t) satisfies the following requirements:

a) λi (t) �= λj (t), i �= j, i, j = 1, n, ∀t ∈ [0, 1],
b) Re λj (t) ≤ 0, λj (t) �= 0 ∀t ∈ [0, 1].
We introduce the regularizing variables

τj =
1
ε

∫ t

0
λj (s) ds =

ψj (t)
ε

, j = 1, n,

τ = (τ1, . . . , τn) , ψ (t) = (ψ1 (t) , . . . , ψn (t)) ,

(3)

and for the function ỹ (t, x, τ, ε) we formulate the problem

ε
∂ỹ

∂t
+

n∑
j=1

λj (t)
∂ỹ

∂τj
− A (t) ỹ −

∫ t

0
K (t, x, s) ỹ

(
s, x,

ψ (s)
ε

mε

)
ds

= h (t, x) , ỹ (0, x, 0, ε) = y0 (x) . (4)

Therefore, in problem (1) the spectrum of matrix A(t) can contain purely imagine values λj(t) ≡
±iωj(t), ωj(t) > 0, which were not possible in earlier considered papers (for example, [4], where the
ordinary nonlinear integro-differential equation of the Volterra type was investigated).

The connection of problem (4) with initial problem (1) is the following: If ỹ = ỹ (t, x, τ, ε) is a

solution to problem (4), then its narrowing y (t, x, ε) ≡ ỹ
(
t, x, ψ(t)

ε

)
on regularizing functions (3) will

be, evidently, the solution to initial problem (1). However, one cannot treat problem (4) as completely
regularized, because in it the integral operator

Jỹ =
∫ t

0
K (t, x, s) ỹ

(
s, x,

ψ (s)
ε

)
ds

is not regularized. For its regularization it is necessary to introduce ([1], P. 62) the space Mε, which is
asymptotically invariant with respect to the operator J . It is constructed as follows. One introduces the
class U of anticipated solutions to iterative problems (see below):

U =
{

y : y (t, x, τ) =
n∑

j=1

yj (t, x) eτj + y0 (t, x) , yj (t, x) ∈ C∞ ([0, 1] × [0, 1] , Cn) , j = 0, n
}

,

and then one takes a narrowing of this class with τ = ψ (t) /ε. It is a space Mε. To substantiate this fact,
it is necessary to show that the image Jy (t, x, τ) of the integral operator J on the element y (t, x, τ) of
the space U can be presented in the form of power series

∞∑
k=0

εk

( n∑
j=1

y
(k)
j (t, x) e

ψj(t)

ε + y
(k)
0 (t, x)

)
,

which converges asymptotically with ε → +0 (uniformly with respect to (t, x)∈ [0, 1] × [0, 1]). Let us
consider this question. We have

Jy (t, x, τ) ≡
n∑

j=1

∫ t

0
K (t, x, s) yj (s, x) e

ψj (s)

ε ds +
∫ t

0
K (t, x, s) y0 (s, x) dx.

Let us integrate by parts:
∫ t

0
K (t, x, s) yj (s, x) e

1
ε

∫ s
0

λj(θ)dθds = ε

∫ t

0

K (t, x, s) yj (s, x)
λj (s)

ds

(
e

1
ε

∫ s
0

λj(θ)dθ
)
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8 BOBODZHANOV, SAFONOV

= ε

[
K (t, x, s) yj (s, x)

λj (s)
e

1
ε

∫ s
0

λj(θ)dθ
∣∣∣s=t

s=0
−

∫ t

0

∂

∂s

(
K (t, x, s) yj (s, x)

λj (s)

)
e

1
ε

∫ s
0

λj(θ)dθds

]

= ε
[ (

I0
j (K (t, x, s) yj (s, x))

)
s=t

e
1
ε

∫ t
0 λj(θ)dθ −

(
I0
j (K (t, x, s) yj (s, x))

)
s=0

]

−ε

∫ t

0

∂

∂s

(
I0
j (K (t, x, s) yj (s, x))

)
e

1
ε

∫ s
0 λj(θ)dθds,

where I0
j (K (t, x, s) yj (s, x)) ≡ K(t,x,s)yj(s,x)

λj(s)
, j = 1, n. Continuing this process, we obtain the series

∫ t

0
K (t, x, s) yj (s, x) e

1
ε

∫ s
0

λj(θ)dθd =

=
∞∑

k=0

(−1)k εk+1
n∑

j=1

[(
Ik
j (K (t, x, s) yj (s, x))

)
s=t

× eτ −
(
Ik
j (K (t, x, s) yj (s, x))

)
s=0

]
, (5)

in which operators Ik
j have the form

I0
j (K (t, x, s) yj (s, x)) ≡ K (t, x, s) yj (s, x)

λj (s)
,

I1
j (K (t, x, s) yj (s, x)) =

1
λj (s)

∂

∂s
I0
j (K (t, x, s) yj (s, x)) , . . . , (6)

Im
j (K (t, x, s) yj (s, x)) =

1
λj (s)

Im−1
j (K (t, x, s) yj (s, x)) , m ≥ 1.

The asymptotic convergence of series (5) can be proved by the same way as the analogous assertion
in [2] (Chap. 8).

2. Construction of a regularized asymptotic solution to problem (1). Let ỹ (x, t, τ, ε) be
an arbitrary function, which is continuous with respect to (t, x, τ) ∈ [0, 1] × [0, 1] × {τ : Re τj ≤ 0,
j = 1, n} and has the asymptotic decomposition

ỹ (t, x, τ, ε) =
∞∑

k=0

εkyk (t, x, τ) , yk (t, x, τ) ∈ U, (7)

converging as ε → +0 (uniformly with respect to (t, x, τ) ∈ [0, 1]× [0, 1]×{τ : Re τj≤0, j = 1, n}). Let
us introduce operators Rm : U → U , acting on each element y (t, x, τ) of the space U by the rule

R0y (t, x, τ) ≡ R0

( n∑
j=1

yj (t, x) eτj + y0 (t, x)
)

=
∫ t

0
K (t, x, s) y0 (s, x) ds,

Rk+1y (x, t, τ) = (−1)k
n∑

j=1

[(
Ik
j (K (t, x, s) y1 (s, x))

)
s=t

eτj

−
(
Ik
j (K (t, x, s) y1 (s, x))

)
s=0

]
, (8)

where operators Ik
j have the form (6), k ≥ 0. Operators Rm are said to be operators of order (by ε),

because being applied to the function y (t, x, τ) they generate members of order εm. An extended
operator for the integral operator J can be naturally defined as follows.

Definition. A formal extension of the operator J is an operator J̃ , which acts on each function
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A GENERALIZATION OF THE REGULARIZATION METHOD 9

ỹ (t, x, τ, ε) of form (7) by the rule

J̃ ỹ ≡ J̃

( ∞∑
k=0

εkyk (t, x, τ)
)

def=
∞∑

r=0

εr

( r∑
k=0

Rr−kyk (t, x, τ)
)

.

Now we can write the completely regularized (with respect to the initial problem (1)) the problem

Lεỹ (t, x, τ, ε) ≡ ε
∂ỹ

∂t
+

n∑
j=1

λj (t)
∂ỹ

∂τj
− A (t) ỹ − J̃ ỹ = h (t, x) ,

ỹ (0, x, 0, ε) = y0 (x) ,

(9)

where ỹ (t, x, τ, ε) is series (7). Substituting this series into (9) and equating coefficients at the same
powers of ε, we obtain the following iterative problems:

L y0 ≡
n∑

j=1

λj (t)
∂y0

∂τj
− A (t) y0 − R0y0 = h (t, x) , y0 (0, x, 0) = y0 (x) ; (90)

L y1 = −∂y0

∂t
+ R1y0, y1 (0, x, 0) = 0; (91)

. . .

L yk = −∂yk−1

∂t
+ R1yk−1 + · · · + Rky0, yk (0, x, 0) = 0, k ≥ 1. (9k)

Each of iterative problems (9k) has the form

L y (t, x, τ) ≡
n∑

j=1

λj (t)
∂y

∂τj
− A (t) y − R0y = H (t, x, τ) ,

y (0, x, 0) = y∗ (x) ,

(10)

where H (t, x, τ) =
n∑

j=1
Hj (t, x) eτj + H0 (t, x) ∈ U , y∗ (x) ∈ C∞ [0, 1] are known functions, and

R0y (x, t, τ) ≡ R0

( n∑
j=1

yj (t, x) eτj + y0 (t, x)
)

=
∫ t

0
K (t, x, s) y0 (s, x) ds

is an operator. Let us try to solve problem (10). Substituting the element y =
n∑

j=1
yj (t, x) eτj + y0 (t, x)

of the space U into (10), we have

n∑
j=1

λj (t) yj (t, x) eτj −
n∑

j=1

A (t) yj (t, x) eτj − A (t) y0 (t, x)

−
∫ t

0
K (t, x, s) y0 (s, x) ds=

n∑
j=1

Hj (t, x) eτj + H0 (t, x) .

Equating here separately the free members and coefficients with different exponents, we obtain the
systems of equations

[λj (t) I − A (t)] yj (t, x) = Hj (t, x) , j = 1, n,

y0 (t, x) =
∫ t

0

(
−A−1 (t) K (t, x, s)

)
y0 (s, x) ds − A−1 (t) H0 (t, x) .

(11)

RUSSIAN MATHEMATICS Vol. 62 No. 3 2018



10 BOBODZHANOV, SAFONOV

For resolving the first n systems of Eqs. (11) in the space C∞ ([0, 1] × [0, 1] , Cn), it is necessary and
sufficient that [2]

(Hj (t, x) , χj (t)) ≡ 0, j = 1, n, ∀ (x, t) ∈ [0, 1] × [0, 1] ,

where χj (t) − λj (t) is the proper vector of the matrix A∗ (t), ( , ) is the scalar product in the
space C

n. The last equation in (11) is the Volterra equation of the second kind with the smooth kernel
G (t, x, s) = − A−1 (t)K (t, x, s) (the variable x plays the role of a parameter), therefore it has a unique
solution in the class C∞ ([0, 1] × [0, 1] , Cn). If in the space U we introduce the scalar (with each
(t, x) ∈ [0, 1]× [0, 1]) product

〈y (t, x, τ) , z (t, x, τ)〉 ≡
〈 n∑

j=1

yj (t, x) eτj + y0 (t, x) ,

n∑
j=1

zj (t, x) eτj + z0 (t, x)
〉

def=
n∑

j=0

(yj (t, x) , zj (t, x)) ,

and denote by ϕj (t)− λj (t) the proper vectors of matrix A (t), where (ϕj (t) , χi(t) ≡ δji, then from the
previous reasoning the next theorem follows.

Theorem 1. Let in system (10) the right-hand side H (t, x, τ) ∈ U and conditions 1) and 2) be
fulfilled. Then for the resolvability of system (10) in the space U it is necessary and sufficient that

〈H (t, x, τ) , χj (t) eτj 〉 ≡ 0, j = 1, n, ∀ (t, x) ∈ [0, 1] × [0, 1] . (12)

Providing this condition, system (10) in the space U has the solution

y (t, x, τ) =
n∑

j=1

αj (t, x) ϕj (t) eτj +
n∑

j=1

( n∑
s=1,s �=j

Hj (t, x) , χs (t)
λj (t) − λs (t)

ϕs (t)
)

eτj

−
∫ t

0
R (t, x, s)A−1 (s)H0 (s, x) ds − A−1 (t) H0 (t, x) , (13)

where R (t, x, s) is the resolvent of the kernel G (t, x, s) = −A−1 (t)K (t, x, s), αj (t, x) are arbitrary
functions of the class C∞ (

[0, 1] × [0, 1] , C1
)
, j = 0, n.

Proof. We subdue the solution to (13) to the initial condition y (0, x, 0) = y∗ (x):
n∑

j=1

αj (0, x) ϕj (0) +
n∑

j=1

( n∑
s=1,s �=j

Hj (0, x) , χs (0)
λj (0) − λs (0)

ϕs (0)
)

= y∗ (x) + A−1 (0) H0 (0, x) .

By scalar multiplying this equality by χk (0) and taking into account the bi-orthonormality condition of
systems of proper vectors {ϕj (t)} and {χk (t)}, we obtain equalities

αk(0, x) +
n∑

j=1

n∑
s �=j, s=1

(Hj(0, x), χs(0))
λj(0) − λs(0)

δsk = (y∗ (x) + A−1H(0, x), χk(0)),

hence we find values

αk(0, x) = (y∗ (x) + A−1H(0, x), χk(0)) +
n∑

j=1, j �=k

(Hj(0, x), χk(0))
λj(0) − λk(0)

, k = 1, n. (14)

However, the functions αj (t, x) were not completely found. An additional requirement on the
solution to problem (10) is necessary. Such a requirement is dictated by iterative problems (9k), from
which one can see that the natural additional constraint is the condition〈

− ∂y

∂t
+ R1y + P (t, x, τ) , χj (t) eτj

〉
≡ 0, j = 1, n, ∀ (t, x) ∈ [0, 1] × [0, 1] , (15)
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A GENERALIZATION OF THE REGULARIZATION METHOD 11

where P (t, x, τ) =
n∑

j=1
Pj (t, x) eτj + P0 (t, x) ∈ U is a known function. Let us show that under condi-

tion (15) problem (10) has a unique solution in the space U .

Theorem 2. Let conditions 1), 2) be fulfilled and the right-hand side of H=H (t, x, τ) ≡
n∑

j=1
Hj (t, x)eτj ∈ U satisfy the condition of orthogonality of (12). Then problem (10) under

additional condition (15) is uniquely resolvable in the space U .

Proof. In order to use condition (15), we calculate the expression −∂y
∂t + R1y + P (t, x, τ). By denoting

Hjs(t, x) ≡ (λj(t) − λs(t))−1(Hj(t, x), χs(t)),

y0 (x, t) ≡
∫ t

0
R (t, x, s) A−1 (s)H0 (s, x) ds − A−1 (t)H0 (t, x) ,

we have

−∂y

∂t
+ R1y + Q(t, τ) = −

n∑
j=1

(
∂αj

∂t
ϕj + αjϕ̇j

)
eτj −

n∑
j=1

n∑
s �=j, s=1

(
∂Hjs

∂t
ϕs

+Hjsϕ̇s

)
eτj − ∂y0(t, x)

∂t
+

n∑
j=1

[
K(t, t)ϕj(t)

λj(t)
αj(t)eτj − K(t, 0)ϕj(0)

λj(0)
αj(0)

]

+
n∑

j=0

[
K(t, t)
λj(t)

n∑
s �=j, s=1

Hjs(t, x)ϕs(t)eτj − K(t, 0)
λj(0)

n∑
s �=j, s=1

Hjs(0, x)ϕs (0)
]

+
n∑

j=1

Pj(t, x)eτj + P0(t, x).

Here we used (see (8)) the expression

R1y ≡ R1

( n∑
j=1

yj (t, x) eτj + y0 (t, x)
)

=
n∑

j=1

(
K(t, t)yj(t, x)

λj(t)
eτj − K(t, 0)yj(0, x)

λj(0)

)
,

yj(t, x) = αj(t, x)ϕj(t) +
n∑

s �=j,s=1

Hjs(t, x)ϕs(t), j = 1, n.

Now conditions (15) can be written in the form

− ∂αj

∂t
− (ϕ̇j(t), χj(t))αj −

n∑
s �=j, s=1

Hjs(t, x)(ϕ̇s(t), χj(t)) +
(

K(t, t)
λj(t)

ϕj(t), χj(t)
)

αj

+
n∑

s �=j, s=1

Hjs(t, x)
λj(t)

(K(t, t)ϕs(t), χj(t)) + (Pj(t, x), χj(t)) = 0

or

∂αj

∂t
=

(
K(t, t)ϕj(t)

λj(t)
− ϕ̇j(t), χj(t)

)
αj + lj(t, x), j = 1, n,

where by lj (t, x) we denoted the known function in the previous equality, independent of αj . Combining

RUSSIAN MATHEMATICS Vol. 62 No. 3 2018



12 BOBODZHANOV, SAFONOV

these equations and initial conditions (14), we find

αj(t, x) = e
∫ t
0 pj(θ)dθ

(
αj (0, x) +

∫ t

0
e−

∫ s
0 pj(θ)dθlj(s, x)ds

)
,

pj(t) ≡ (λ−1
j (t)K(t, t)ϕj(t) − ϕ̇j(t), χj(t)), j = 1, n.

(16)

Therefore solution (13) to problem (10) is uniquely defined in the space U .

Applying Theorems 1 and 2 to iterative problems (9k), we construct a series (7) with coefficients

from the class U . Let yεN (t, x) be a narrowing of the N th partial sum of this series with τ = ψ(t)
ε :

yεN =
N∑

k=0

εkyk

(
t, x, ψ(t)

ε

)
. As in [2] (Chap. 8), it is not difficult to prove the following theorem.

Theorem 3. Let conditions 1), 2) be fulfilled. Then with ε∈ (0, ε0], where ε0 > 0 is sufficiently small,
problem (1) has a unique solution y (t, x, ε) in the class C1 ([0, 1] × [0, 1] , Cn). Here the vector-
function yεN (t, x) satisfies the estimate

‖y (t, x, ε) − yεN (t, x)‖C([0,1]×[0,1]) ≤ CNεN+1, N = 0, 1, 2, . . . ,

where the constant CN > 0 is independent of ε ∈ (0, ε0].

3. Solution to the first iterative problem. Since in system (90) the vector-function H(t, x, τ) ≡
h(t, x) is independent of τ , conditions (12) are automatically fulfilled for it. Therefore in the space U the
system (90) has a solution, which can be written in the form (see (13))

y0(t, x, τ) =
n∑

j=1

α
(0)
j (t, x)ϕj(t)eτj + y

(0)
0 (t, x), (17)

where y
(0)
0 (t, x) = −A−1(t)h(t, x)−

t∫
0

R(t, s)A−1(s)h(s, x)ds, and α
(0)
j (t, x) ∈ C∞([0, 1] × [0, 1] , C1),

j = 1, n, are arbitrary functions. For calculating these functions we write the right-hand side of the
following iterative system (91):

H (t, x, τ) ≡
n∑

j=1

[
∂α

(0)
j (t, x)
∂t

ϕj (t) + α
(0)
j (t, x) ϕ̇j (t)

]
eτj − ∂y

(0)
0 (t, x)

∂t

+
n∑

j=1

(
K(t, t)ϕj(t)

λj(t)
α

(0)
j (t, x)eτj − K(t, 0)ϕj(0)

λj(0)
α

(0)
j (0, x)

)
.

Subordinating H (t, x, τ) to the condition of orthogonality (12), we have

−
∂α

(0)
j

∂t
− (ϕ̇j(t), χj(t))α

(0)
j +

(K(t, t)ϕj(t), χj(t))
λj(t)

α
(0)
j = 0, j = 1, n. (18)

We find initial conditions for the functions α
(0)
j (t, x) from the equality y0(0, x, 0)=y0 (x):

n∑
j=1

α
(0)
j (0, x) ϕj (0)−A−1(0)h(0, x)=y0 (x) ⇔

n∑
j=1

α
(0)
j (0, x) ϕj(0) = y0 (x) + A−1(0)h(0, x).

Multiplying this equality by χk(0), we obtain

α
(0)
k (0, x) = (y0 (x) + A−1(0)h(0, x), χk(0)) =(y0 (x) , χk(0))

RUSSIAN MATHEMATICS Vol. 62 No. 3 2018



A GENERALIZATION OF THE REGULARIZATION METHOD 13

+ (h(0, x), A−1∗(0)χk(0)) = (y0 (x) , χk(0)) +
1

λk(0)
(h(0, x), χk(0)), k = 1, n. (19)

System (18) is homogeneous, therefore, taking into account initial conditions (19), it has a solution

α
(0)
j (t, x) = e

∫ t
0

pj(θ)dθ

(
y0 (x) +

h(0, x)
λj(0)

, χj(0)
)

, j = 1, n, (20)

where pj(t) is the function, written in formula (16). Therefore, solution (17) to problem (90) is uniquely
found in the space U . This solution is used further for the investigation of the limit proceeding in
system (1) (as ε → +0).

4. Limit transition in problem (1). Problem of initialization and its solution. Let
Re λj (t) < 0, j = 1, n, ∀t ∈ [0, 1]. Then by Theorem 3 we have

‖y(t, x, ε) − yε0(t, x)‖C([0,1]×[0,1]) ≤ c0ε

⇔
∥∥∥∥y(t, ε) −

( n∑
j=1

α
(0)
j (t, x)ϕj(t)e

1
ε

∫ t
0

λjdθ + y
(0)
0 (t, x)

)∥∥∥∥
C([0,1]×[0,1])

≤ c0ε.

So, with any δ ∈ (0, 1] we obtain

c0ε ≥
∥∥∥∥y(t, x, ε) −

n∑
j=1

α
(0)
j (t, x)ϕj(t)e

1
ε

∫ t
0 λj(θ)dθ − y

(0)
0 (t, x)

∥∥∥∥
C([0,1]×[0,1])

≥
∥∥∥∥y(t, x, ε) −

n∑
j=1

α
(0)
j (t, x)ϕj(t)e

1
ε

∫ t
0 λj(θ)dθ − y

(0)
0 (t, x)

∥∥∥∥
C([δ,1]×[0,1])

≥
∥∥y(t, x, ε) − y

(0)
0 (t, x)

∥∥
C([δ,1]×[0,1])

−
∥∥∥∥

n∑
j=1

α
(0)
j (t, x)ϕj(t)e

1
ε

∫ t
0 λj(θ)dθ

∥∥∥∥
C([δ,1]×[0,1])

,

hence we deduce

‖y(t, x, ε) − y
(0)
0 (t, x)‖C([δ,1]×[0,1]) ≤ c0ε

+
∥∥∥∥

n∑
j=1

α
(0)
j (t, x)ϕj(t)e

1
ε

∫ t
0 λj(θ)dθ

∥∥∥∥
C([δ,1]×[0,1])

≤ c0ε +
n∑

j=1

||α(0)
j (t, x)ϕj(t)||C([δ,1]×[0,1])e

−κjδ

ε ,

where κj = min
t∈[0,T ]

(−Re λj(t)) > 0. Therefore,

‖y(t, x, ε) − y
(0)
0 (t, x)‖C([δ,1]×[0,1]) → 0, ε → +0. (21)

Theorem 4. If conditions 1) and 2) are fulfilled, and Reλj(t) < 0, j = 1, n, ∀t ∈ [0, 1], then the
limit transition (21) takes place, where y = y(t, x, ε) is the exact solution to problem (1), and the

function y
(0)
0 (t, x) is a solution to the integral system

−A(t)y(0)
0 (t, x) =

∫ t

0
K(t, x, s)y(0)

0 (s, x)ds + h(t, x).

This system is degenerate with respect to the initial system (1).

However, in our case purely imagine proper values λj (t) are allowed, therefore the limit transition in
the metric of space C ([0, 1] × [0, 1]) becomes impossible. In this connection, the following initializa-
tion problem arises: What should be the initial data of problem (1) so that the uniform limit transition
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y (t, x, ε) → y
(0)
0 (t, x) (as ε → +0) was possible on the set [0, 1] × [0, 1], including the boundary layer

zone with respect to t? Initial data of problem (1), which satisfy this requirement, form the class of
initialization.

Let, for example, proper values λj (t) be such that

3) Reλj1 (t) ≡ Re λj2 (t) ≡ · · · ≡ Re λjk
(t) ≡ 0, Reλj (t) < 0, j = 1, n, j �= js, s = 1, k (k ≤ n).

In this case in the sum
n∑

j=1
α

(0)
j (t, x)ϕj(t)e

1
ε

t∫
0

λjdθ
+ y

(0)
0 (t, x) addends with numbers j = js, s = 1, k,

rapidly oscillate and prevent the existence of a limit transition y (t, x, ε) → y
(0)
0 (t, x) on the set [0, 1] ×

[0, 1], therefore it is necessary to delete them, i.e., to set α
(0)
js

(t, x) ≡ 0
(
s = 1, k, (t, x) ∈ [0, 1] × [0, 1]

)
.

Since (see (20))

α
(0)
j (t, x) = e

∫ t
0 pj(θ)dθ

(
y0 (x) +

h(0, x)
λj(0)

, χj(0)
)

, j = 1, n,

we have

α
(0)
js

(t, x) ≡ 0 ⇔
(

y0 (x) +
h(0, x)
λjs(0)

, χjs(0)
)

≡ 0, s = 1, k, x ∈ [0, 1] .

Hence, the class of initialization Σ =
{
h (t, x) , y0 (x) , A (x)

}
is independent of the kernel K (t, x, s) and

has the form

Σ =
{(

h, y0, A
)

:
(

y0 (x) +
h(0, x)
λjs(0)

, χjs(0)
)

≡ 0, s = 1, k, x ∈ [0, 1]
}

.

The following theorem was proved.

Theorem 5. Let for problem (1) conditions 1)–3) be fulfilled. Then for the passage to

the limit ‖y(t, x, ε)−y
(0)
0 (t, x)‖C([0,1]×[0,1]) → 0 (ε → +0), it is necessary and sufficient that(

h (t, x) , y0 (x) , A (x)
)
∈ Σ.

5. The case of integral operator with upper limit, independent of differentiation variable.
We now turn to the presentation of the results for the singularly perturbed integro-differential equation:

ε
∂y (t, x, ε)

∂t
= a (x) y (t, x, ε) +

∫ x

0
K (t, x, s) y (s, x, ε) ds + h (t, x) ,

y (0, x, ε) = y0 (x) , (t, x) ∈ [0, T ] × [0,X] .
(22)

Recall that earlier we considered the case, when these variables coincide. Such a seemingly small
modification of the problem leads to the fact that in the neighborhood of the point t = 0 the boundary
layer will depend not only on t, but also on x. For the sake of simplicity we will consider the scalar
case. As earlier, without loss of generality, we can assume that T = 1. We assume that the following
conditions are fulfilled:
1∗) functions a (x) ∈ C∞([0, 1] , C), h (t, x) ∈ C∞ ([0, 1] × [0, 1] , C), the kernel

K (t, x, s) ∈ C∞ ({0 ≤ t, x ≤ 1, 0 ≤ s ≤ x ≤ 1}, C);

2∗) Re a (x) ≤ 0, a (x) �= 0, ∀x ∈ [0, 1].
As in the case of ordinary differential operator, we introduce the regularizing variable

τ =
1
ε

∫ t

0
a (x) ds =

a (x) t

ε
≡ ψ (t, x)

ε
.

Here elements of the space of solutions V to the below arising iterative problems will depend on

the variable σ ≡ σ (x) = e
a(x)x

ε as a parameter. This case is typical for singularly disturbed integro-
differential equations of the Fredholm type with one independent variable (for example, [2]). For the
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extension ỹ = ỹ (t, x, τ, σ, ε) of solution y (t, x, ε) to problem (22) we obtain the partially regularized
problem

ε
∂ỹ

∂t
+ a (x)

∂ỹ

∂τ
− a (x) ỹ −

∫ x

0
K (t, x, s) ỹ

(
s, x,

ψ (s, x)
ε

, σ, ε

)
ds

= h (t, x) , ỹ (0, x, 0, σ, ε) = y0 (x) .

For the complete regularization it is necessary to introduce the space of solutions to iterative
problems:

V = {y (t, x, τ, σ) : y = y1 (t, x, σ) eτ + y0 (t, x, σ)} ,

where coefficients yj (t, x, σ) are polynomials with respect to σ:

yj (t, x, σ) =
Nj∑
k=0

y
(k)
j (t, x) σk, Nj < ∞, j = 1, 2,

with coefficients y
(k)
j (t, x) ∈ C∞ ([0, 1] × [0, 1]), k = 0, N j , j = 1, 2, and realize the regularization of

the integral

Jy (t, x, τ, ε) =
∫ x

0
K (t, x, s) y

(
s, x,

ψ (s, x)
ε

, ε

)
ds.

As in the previous case, applying the integration by parts, we construct the problem

ε
∂ỹ

∂t
+ a (x)

∂ỹ

∂τ
− a (x) ỹ − J̃ ỹ = h (t, x) , ỹ (0, x, 0, σ, ε) = y0 (x) , (23)

which is completely regularized with respect to the initial problem (22). Here operators of order have the
form

R0y (t, x, τ, σ) ≡ R0 (y1 (t, x, σ) eτ + y0 (t, x, σ)) =
∫ x

0
K (t, x, s) y0 (s, x, σ)ds,

Rk+1y (x, t, τ, σ) = (−1)k
[
(Iν

x(K (t, x, s) y1 (s, x, σ))s=x

× σ − Iν
x (K (t, x, s) y1 (s, x, σ))s=0)

]
, k ≥ 0,

where

I0
x (K (t, x, s) q (s, x, σ)) ≡ K (t, x, s) q (s, x, σ)

a (x)
, . . . ,

Iν
x (K (t, x, s) q (s, x, σ)) =

1
a (x)

∂

∂s
Iν−1
x (K (t, x, s) q (s, x, σ)) , ν ≥ 1,

and the extension J̃ of integral operator is

J̃ ỹ ≡ J̃

( ∞∑
k=0

εkyk (t, x, τ, σ)
)

�
∞∑

r=0

εr

(
r∑

k=0

Rr−kyk (t, x, τ, σ)

)
.

Substituting the series

ỹ (t, x, τ, ε) =
∞∑

k=0

εkyk (t, x, τ, σ) , yk (t, x, τ, σ) ∈ V, (24)

in (23) and equating coefficients at the same powers ε, we obtain the following iterative problems:

A y0 ≡ a (x)
∂y0

∂τ
− a (x) y0 − R0y0 = h (t, x) , y0 (t, x, τ, σ) |t=τ=0 = y0 (x) ;
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A y1 = −∂y0

∂t
+ R1y0, y1 (0, x, 0, σ) = 0;

. . .

A yk = −∂yk−1

∂t
+ R1yk−1 + · · · + Rky0, yk (0, x, 0, σ) = 0, k ≥ 1. (25)

Each of the iterative problems (25) has the form

A y (t, x, τ, σ) ≡ a (x)
∂y

∂τ
− a (x) y − R0y0 = h (t, x, τ, σ) ,

y (0, x, 0, σ) = y∗ (x, σ) ,
(26)

where y∗ (x, σ) ∈ C∞ [0, 1] × [0, 1], h (t, x, τ, σ) ∈ V are known functions,

R0y ≡ R0 (y1 (t, x, σ) eτ + y0 (t, x, σ)) =
∫ x

0
K (t, x, s) y0 (s, x, σ) ds.

Let h (t, x, τ, σ) = h1 (t, x, σ) eτ + h0 (t, x, σ). Defining the solution to problem (26) in the form of
the function

y (t, x, τ, σ) = y1 (t, x, σ) eτ + y0 (t, x, σ) ,

we obtain equations

0 · y1 (t, x, σ) = h1 (t, x, σ) ,

−a (x) y0 (t, x, σ) −
∫ x

0
K (t, x, s) y0 (s, x, σ) ds = h0 (t, x, σ) .

(27)

The first of these equations is resolvable if and only if

h1 (t, x, σ) ≡ 0 ⇔< h (t, x, τ, σ) , eτ >≡ 0

(here we introduced the ordinary scalar product with each (t, x, σ) in V , see [2]). The second equation in
(27) with each fixed x∈ [0, 1] is the Fredholm equation of the second kind. Let us consider the simplest
case

3∗) with x ∈ [0, 1] the unity is not a characteristic value of the kernel K(t,x,s)
−a(x) of integral operator.

This condition means that the homogeneous equation

−a (x) y0 (t, x, σ) −
∫ x

0
K (t, x, s) y0 (s, x, σ) ds = 0

has trivial solution y0 (t, x, σ) ≡ 0 only. In this case, heterogeneous equation (27) will have the unique
solution in the form

y0 (t, x, σ) =
h0 (t, x, σ)
−a (x)

+
∫ x

0
R (t, x, s)

h0 (s, x, σ)
−a (x)

ds,

where R (t, x, s) is the resolvent of kernel K(t,x,s)
−a(x) , and Eq. (26) in the space V has the family of solutions

y (t, x, τ, σ) = y0 (t, x, σ) +α (t, x) eτ , where α (t, x)∈C∞ (
[0, 1] × [0, 1] , C1

)
is an arbitrary function.

The initial condition y (0, x, 0, σ) = y∗ (x, σ) allows one to find the function

α (0, x) = y∗ (x, σ) +
h0 (0, x, σ)

a (x)
+

∫ x

0
R (0, x, s)

h0 (s, x, σ)
a (x)

ds. (28)

For complete calculation of the function α (t, x) it is necessary to define an additional condition. Taking
into account the structure of iterative problems (25), we conclude that a natural additional condition for
Eq. (26) is the requirement

〈
− ∂y

∂t
+ R1y, eτ

〉
≡ 0 ∀ (t, x, σ) ∈ [0, 1] × [0, 1] × [0, 1] . (29)
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Since in R1 (y) there is no exponent, subordinating the solution y (t, x, τ, σ) =y0 (t, x, σ) + α (t, x) eτ

to condition (29), we will have ∂α(t,x)
∂t ≡0, hence we deduce α (t, x) ≡ α (0, x), where α (0, x) is function

(28). Therefore, the solution to problem (27) with the additional condition (29) is uniquely defined in the
space V :

y (t, x, τ, σ) =
(

y∗ (x, σ) +
h0 (0, x, σ)

a (x)
+

∫ x

0
R (0, x, s)

h0 (s, x, σ)
a (x)

ds

)
eτ

+
h0 (t, x, σ)
−a (x)

+
∫ x

0
R (t, x, s)

h0 (s, x, σ)
−a (x)

ds.

By applying the obtained result to iterative problems (25), we construct series (24) an by the method
of differential inequalities (for example, [5]) we prove that the solution y (t, x, ε) to problem (22) uniquely
exists and for all N = 0, 1, 2, . . . the estimate holds

∥∥∥∥y (t, x, ε) −
N∑

k=0

εkyk

(
t, x, ε−1ψ (t, x)

)∥∥∥∥
C([0,1]×[0,1]×[0,1])

≤ CNεN+1,

where the constant CN > 0 is independent of ε if ε ∈ (0, ε0], ε0 > 0 and is sufficiently small. The case,
when condition 3∗) is not fulfilled, is more difficult to investigate. Here different cases are possible.
However, the case when the unity for all x ∈ [0, 1] presents a characteristic value of rank r < ∞ of

the kernel K(t,x,s)
−a(x) of the integral operator, can be completely studied with the help of the above stated

technique.
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