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Abstract—We study the generalized Korteweg–de Vries (KdV) equation and the Korteweg–
de Vries–Burgers (KdVB) equation with periodic in the spatial variable boundary conditions. For
various values of parameters, in a sufficiently small neighborhood of the zero equilibrium state we
construct asymptotics of periodic solutions and invariant tori. Separately we consider the case when
the stability spectrum of the zero solution contains a countable number of roots of the characteristic
equation. In this case we state a special nonlinear boundary-value problem which plays the role of a
normal form and determines the dynamics of the initial problem.
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INTRODUCTION

Consider the equation

ut + uxxx + Φ(u)ux = γuxx + F (u) (γ > 0) (1)

with periodic boundary value conditions

u(t, x + T ) = u(t, x). (2)

Assume that

Φ(u) = δ + αu + βu2 + O(|u|3), F (u) = au + bu2 + cu3 + O(|u|4).

Let us study the behavior of all solutions to the boundary-value problem (1), (2) with sufficiently small
(in the norm of W 2

3 ) periodic in the spatial variable initial conditions. An important role is played here by
the location of roots of the characteristic (wave) equation

λk = ik3 + a. (3)

In view of formula (2) the variable k in (3) takes on only a countable number of values k = 2πn/T
(n ∈ Z). With a < 0 it holds that Reλk = a < 0, therefore all solutions to (1), (2), that are located in
some sufficiently small neighborhood of the zero equilibrium state, tend to zero as t −→ ∞. But if a > 0,
then Re λk > 0 and the problem is nonlocal. Here we assume that parameters a and γ are sufficiently
small, i.e.,

a = εa0, γ = εγ0, 0 < ε � 1. (4)
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50 KASHCHENKO, PREOBRAZHENSKAYA

Note also that we can exclude the term δux in (1), performing the replacement x −→ x − δt, therefore
in what follows we put δ = 0. With the zero right-hand side in (1) and with Φ(u) = αu we get the
classic Korteweg–de Vries equation [1], and with Φ(u) = αu + βu2 we do the so-called [2] modified
Korteweg–de Vries equation, and if, in addition, γ �= 0, then we get the Korteweg–de Vries–Burgers
equation [2–4].

Let us first put γ = 0 and study the question of the construction of periodic solutions and invariant
tori of various dimensions in some sufficiently small neighborhood of the zero equilibrium state. Condi-
tion (4) of smallness of a allows us to use methods of bifurcation analysis [5–7]. With ε → 0 infinitely
many roots of the characteristic equation (3) tend to the imaginary axis, and in the problem of the stability
of the zero solution to (1), (2) we get the critical case of infinite dimension. Recall that one can study
the local dynamics of equations in a finite-dimensional critical case by well-known methods of local
invariant integral manifolds (e.g., [8–10] and methods of normal forms [11, 12]. These methods allow
one to study the equation by reducing it to a specific finite-dimensional nonlinear system of ordinary
differential equations (ODE). Though it is impossible to reduce the boundary-value problem (1), (2)
(subject to (4)) to a finite-dimensional system of ODE, in what follows we prove the existence (in a
small neighborhood of zero) of periodic solutions and invariant tori of various dimensions by applying
the formalism of the method of normal forms.

In Sections 1 and 2 we consider the simplest case, when b = 0 and the function u satisfies the
condition

M(u) = 0, (5)

where

M(u) =
1
T

∫ T

0
u(t, x)dx. (6)

Note that in Section 1 we consider periodic solutions, and in Section 2 we construct an asymptotic for
tori. In Section 3 we disclaim the condition that the mean value of the function u should equal zero,
and in Section 4 we consider a general case when b �= 0. In Section 5 we consider the Korteweg–
de Vries–Burgers equation, namely, the case when γ �= 0 and the function u has the zero mean value,
i.e., correlation (5) is valid.

1. CONSTRUCTION OF ASYMPTOTICALLY PERIODIC SOLUTIONS TO THE
BOUNDARY-VALUE PROBLEM (1), (2) UNDER CONDITIONS (4) AND γ = b = 0

Fix arbitrary natural n0 �= 0 and put k0 = 2πn0/T . Then the linear boundary-value problem

ut + uxxx = 0, u(t, x + T ) = u(t, x) (7)

has the following periodic solution:

u = ξ exp(ik0x + ik3
0t) + ξ exp(−ik0x − ik3

0t),

where the symbol ξ stands for an arbitrary complex-valued constant.
Consider the simplest case. Assume, in addition, that solutions to (1), (2) satisfy condition (5).
We seek for periodic solutions to the nonlinear boundary value problem (1), (2), (5) in the form of the

formal series

u =
√

ε
(
ξ(τ) exp(ik0x + ik3

0t) + ξ(τ) exp(−ik0x − ik3
0t)

)
+εu2(t, x, τ) + ε3/2u3(t, x, τ) + · · · , (8)

where τ = εt is a slow time, while functions uj(t, x, τ) are periodic in the first two arguments.
Substitute (8) in (1) and equate coefficients at the same degrees of ε. Then on the second step for
the function u2(t, x, τ) we get the equality

u2(t, x, τ) = u20(τ) exp(ik0x + ik3
0t) + cc,

where u20(τ) = ξ2(τ)α/6k2
0 . Here and below, we denote by cc the term which is complex conjugate to

the previous one.
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BIFURCATIONS IN THE GENERALIZED KORTEWEG–DE VRIES EQUATION 51

Furthermore, collecting coefficients at ε3/2, we get an equation with respect to u3. Since by condition
it is solvable in the mentioned function class, we get the following equation with respect to the unknown
amplitude ξ = ξ(τ):

dξ

dτ
= a0ξ + Δξ|ξ|2, (9)

where Δ = 3c − iβk0 − iα2/6k0. Note that Re Δ = 3c.
Equation (9) describes the behavior of solutions to the boundary-value problem (1), (2), (5) in a

sufficiently small neighborhood of the solution u ≡ 0. For example, under the condition

a0Re Δ < 0 (10)

Eq. (9) has the periodic solution ξ∗(τ) = ρ∗ exp(iϕ∗τ), where ρ∗ =
√
−a/Re Δ; ϕ∗ = Im Δ. This

solution for (9) is stable with a0 > 0 and nonstable with a0 < 0.
One can prove the following assertion by standard considerations.

Theorem 1. Under conditions b = 0 and (10) Eq. (1) has the following asymptotically orbitally
stable periodic solution:

u∗(t, x, ε) =
√

ερ∗ exp
(
ik0x + i

(
k3
0 + εϕ∗ + o(ε)

)
t
)

+ cc + O(ε3/2). (11)

One can prove this assertion in two ways. The first one is based on the following scheme. Firstly,
one linearizes the initial boundary-value problem (1), (2) subject to (4), (5) on the approximate periodic
solution (11); then one performs certain smooth periodic replacements in the obtained linear boundary
value problem so as to fulfill the well-known averaging principle. The second approach is connected
with the reduction of the problem under consideration to a third-order ODE and the use of well-known
Andronov–Hopf bifurcation method under condition (5).

2. TORI IN EQUATION (1) UNDER CONDITIONS (4) AND γ = b = 0

Let us generalize the above formalism for constructing periodic solutions in a more difficult case.

2.1. Construction of the asymptotic of two-dimensional tori. Fix arbitrarily two natural numbers n1

and n2 (n1 �= n2) and put k1 = 2πn1/T , k2 = 2πn2/T . Introduce the formal series

u(t, x, ε) =
√

ε
( 2∑

j=1

ξj(τ) exp(ikjx + ik3
j t) +

2∑
j=1

ξj(τ) exp(−ikjx − ik3
j t)

)

+ εu2(t, x, τ) + ε3/2u3(t, x, τ) + · · · . (12)

Here τ = εt, ξ1,2(τ) are (unknown) complex-valued “amplitudes”, functions uj(t, x, τ) (j = 2, 3, . . . )
are trigonometric polynomials in first two arguments, and

M(uj) = 0, j = 2, 3, . . . , (13)

where

M(u) = lim
T→∞

1
T

∫ T

0
u(t, x, τ)dx.

Substitute (12) in (1). By standard considerations we first find

u2(t, x, τ) =
2∑

j=1

(
u2jξ

2
j exp(2ikjx + 2ik3

j t) + cc
)

+u23ξ1ξ2 exp
(
i(k1 + k2)x + i(k3

1 + k3
2)t

)
+ cc

+u24ξ1ξ2 exp
(
i(k1 − k2)x + i(k3

1 − k3
2)t

)
+ cc. (14)
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For u2j (j = 1, . . . , 4) we get

u2j = α/(6k2
j ), j = 1, 2; u23 = u24 = α/(3k1k2).

Then, collecting coefficients at ε3/2, from the condition of the solvability (in the indicated function
class) of the obtained equation with respect to u3 we get the following equations with respect to ξ1,2(τ):

dξ1/dτ = a0ξ1 + ξ1

(
Δ1|ξ1|2 + |Δ2|ξ2|2

)
,

dξ2/dτ = a0ξ2 + ξ2

(
Δ3|ξ1|2 + Δ4|ξ2|2

)
.

(15)

For Δj (j = 1, . . . , 4) we get equalities

Δ1 = 3c − (αk1u21 + βk1)i, Δ2 = 6c − 2(αk1u23 + βk1)i,

Δ3 = 6c − 2(αk2u23 + βk2)i, Δ4 = 3c − (αk2u22 + βk2)i.

The answer to the question of the existence of the simplest two-dimensional invariant torus in Eq. (1)
is connected with the question of the existence of a solution to system (15) in the form ξj = ρj exp(iϕjτ)
(τ > 0). Then from (15) we get the following system of two real equations with respect to nonzero ρ1

and ρ2:

a0 + 3cρ2
1 + 6cρ2

2 = 0, a0 + 6cρ2
1 + 3cρ2

1 = 0. (16)

Hence we find the solution

ρ1∗ = ρ2∗ =
1
3

√
−a0

c
. (17)

Then for ϕj we get

ϕ1∗ = ρ2
1∗(Im Δ1 + ImΔ2), ϕ2∗ = ρ2

2∗(Im Δ3 + Im Δ4),

whence

ϕ1∗ =
a0k1

9c
(αu21 + 2αu23 + β), ϕ2∗ =

a0k2

9c
(αu22 + 2αu23 + β). (18)

Theorem 2. Let ρ1∗ and ρ2∗ be real-valued simple roots of system (16). Then with all sufficiently
small ε, Eq. (1) has a two-dimensional invariant torus, namely,

u0(t, x, τ) =
√

ερ1∗ exp
(
ik1x + i

(
k3
1 + εϕ1∗ + o(ε)

)
t
)

+ cc

+
√

ερ2∗ exp
(
ik2x + i

(
k3
2 + εϕ2∗ + o(ε)

)
t
)

+ cc + εu2 + O(ε3/2),

where ρj∗, ϕj∗ (j = 1, 2) obey equalities (17) and (18), while the function u2 does (14).

Certainly, one can study the expansion of tori into asymptotic series with respect to degrees of
√

ε
with any order of accuracy.

2.2. Construction of families of multidimensional tori. Fix arbitrarily a natural number N (N > 2)
and a collection of various natural numbers n1, . . . , nN and put k1 = 2πn1/T, . . . , kN = 2πnN/T .
Introduce the following formal series:

u(t, x, ε) =
√

ε

N∑
j=1

(
ξi(τ) exp(ikjx + ik3

j t) + cc
)
+εu2(t, x, τ) + ε3/2u3(t, x, τ) + · · · , (19)

where τ = εt, while functions uj(t, x, τ) are trigonometric polynomials in first two arguments, and in
view of (13) conditions M

(
uj(t, x, τ)

)
= 0 are fulfilled. Substituting (19) in (1), applying standard

techniques, we first find
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u2(t, x, τ) =
N∑

j,s=1

(
u1jsξjξs exp

(
i(kj + ks)x + i(k3

j + k3
s)t

)
+ cc

)

+
N∑

j,s=1, j �=s

(
u2jsξjξs exp

(
i(kj − ks)x + i(k3

j − k3
s)t

)
+ cc

)
. (20)

Then on the next step, we get the following system of equations with respect to ξj(τ):

dξi

dτ
= a0ξj + ξj

N∑
s=1

Δjs|ξs|2, j = 1, . . . , N. (21)

We omit explicit formulas for u1jm, u2jm, and Δjm, because they are rather cumbersome. One can
prove the next theorem analogously to Theorem 2.

Theorem 3. Let system (21) have a solution in the form ξj∗ = ρj∗ exp(iεϕj∗t) (j = 1, . . . , N) and
ρj∗ > 0. Then with all sufficiently small ε, Eq. (1) has an N-dimensional invariant torus with the
asymptotic

u(t, x, ε) =
√

ε

N∑
j=1

(
ξj∗ exp(ikjx + ik3

j t) + cc
)

+ εu2 + O(ε3/2)

with indicated ξj∗, and the function u2 obeys equality (20).

Note that the question of the existence of solutions to system (21) in the form ξj = ρj exp(iϕjτ) is
equivalent to the question of the solvability in the class of positive solutions of the system of equations

ρj(a0 +
N∑

s=1

Re Δjsρ
2
s) = 0, j = 1, . . . , N.

It is important to note that system (21) has a relatively simple form due to the absence of basic
resonant correlations, i.e., two systems of equations

(1) kj1 + kj2 = kj3, k3
j1 + k3

j2 = k3
j3;

(2) kj1 + kj2 + kj3 = kj4, k3
j1 + k3

j2 + k3
j3 = k3

j4

are not solvable in the class of nontrivial solutions (with kj �= ks for j �= s).

3. CONSTRUCTION OF PERIODIC SOLUTIONS AND INVARIANT TORI OF EQUATION
(1) UNDER THE CONDITION γ = b = 0 AND WITHOUT CONDITION (13)

In Item 3.1 we first give some general well-known results, and then in Items 3.2, 3.3 and in Section 4
we apply these results for studying the boundary value problem (1), (2).

3.1. The normal form for the critical case of one zero and two purely imaginary roots of the
characteristic equation. Let us recall some well-known results on the local dynamics (in a small
neighborhood of the zero equilibrium state) of the following system of nonlinear equations:

ẇ = (A + εB)w + Φ(w). (22)

Here w ∈ Rn, A and B are square n× n-matrices, 0 < ε � 1 is a small parameter, Φ(w) is a sufficiently
smooth nonlinear vector function whose order of smallness at zero is greater than one. Assume that
the matrix A has the zero eigenvalue (Ag0 = 0, g0 �= 0) and two purely imaginary ones (Ag1 = iωg1,
ω > 0). All the rest eigenvalues of this matrix have negative real parts. Then [12] with all sufficiently
small ε, system (22) has a 3-dimensional stable local invariant integral manifold such that the behavior
of solutions on it defines the behavior of all solutions to system (22) near the zero solution. One can
write system (22) on this manifold (accurate to terms of a higher order of smallness) as a specific system
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54 KASHCHENKO, PREOBRAZHENSKAYA

of three ordinary differential equations, i.e., in the normal form [12]. It is convenient to write it for a real
variable η and a complex one ξ, namely,

η̇ = α1εη + α2η
2 + α3|ξ|2 + α4η

3 + α5η|ξ|2, ξ̇ = β1εξ + β2ηξ + ξ(β3|ξ|2 + β4η
2). (23)

Solutions to systems (22) and (23) are connected by the correlation

w = η(t, ε)g0 + ξ(t, ε)g1 exp(iωt) + cc + · · · , (24)

where the symbol . . . denotes a formal series in degrees of ε, η, and ξ, starting with quadratic terms, with
the (2π/ω)-periodic dependence on t. One can find all coefficients αi and βi by substituting (24) in (22)
and by equating coefficients at the same degrees of ε, η, and ξ.

3.2. Construction of periodic solutions to Eq. (1) subject to γ = b = 0 without condition (13).
The absence of boundary conditions (13) makes the structure of periodic solutions to (1) much more
complex than that considered in Section 1. Fix, as above, an arbitrary natural number n0 �= 0 and put
k0 = 2πn0/T . Note that the characteristic equation of the boundary-value problem (7) has the zero root
and two purely imaginary ones ±ik3

0. In particular, Eq. (7) has the following (2π/k0)-periodic solution:

u = η + ξ exp(ik0x + ik3
0t) + cc.

Formally we do not take into account other periodic solutions to Eq. (7).
Consider the formal series

u = η(t, ε) + ξ(t, ε) exp(ik0x + ik3
0t) + cc + u2(η, ξ, x, t) + u3(η, ξ, x, t) + · · · , (25)

where u2 contains quadratic (with respect to ξ, η) terms, u3 does cubic ones, etc., and the dependence
of the function uj(η, ξ, x, t) on x and t is periodic.

Let us mention the main properties of functions η = η(t, ε) and ξ = ξ(t, ε). First, η and ξ are
sufficiently small, therefore, one can consider series with respect to their degrees. Second, in accordance
with (23), their derivatives in t are also small and one can express them in terms of small values η, ξ,
and ε.

Let us replace u in formula (1) with expression (25). In the resulted formal identity we replace η̇ and ξ̇
in accordance with system (23) with unknown coefficients αj and βj . Then we collect coefficients at the
same degrees of ε, η, and ξ and, as a result, obtain

α1 = β1 = a0, α2 = α3 = 0, α4 = c, α5 = 6c,

β2 = −iαk0, β3 = 3c − i
(
α2/(6k0) + βk0

)
, β4 = 3c − iβk0.

(26)

Substituting ξ = ρ exp(iϕ) in (23) for determining periodic solutions and taking into account the
calculated values of coefficients (26), we get the following amplitude system split off from (23):

η̇ = η(a0ε + cη2 + 6cρ2), ρ̇ = ρ(a0ε + 3cρ2 + 3cη2). (27)

Here ϕ is connected with ρ and η by the formula

ϕ̇ = −αk0η +
(
α2/(6k0) + βk0

)
ρ2 − βk0η

2.

We are interested in equilibrium states of system (27). Therefore, we can refine the dependence of
desired ρ and η on ε with the help of the system

η(a0ε + cη2 + 6cρ2) = 0, ρ(a0ε + 3cρ2 + 3cη2) = 0. (28)

Hence we get the following four variants of solutions:

η
(1)
∗ = 0, ρ

(1)
∗ =

√
ε

√
−a0

3c
;

η
(2)
± = ±

√
ε

√
−a0

5c
, ρ

(2)
∗ =

√
ε

√
−2a0

15c
;

η
(3)
∗ = 0, ρ

(3)
∗ = 0;
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η
(4)
± = ±

√
ε

√
−a0

c
, ρ

(4)
∗ = 0.

Note that with a0 > 0 and c < 0 equilibrium states (η(1)
∗ , ρ

(1)
∗ ) and (η(4)

∗ , ρ
(4)
∗ ) are stable, while (η(2)

∗ , ρ
(2)
∗ )

and (η(3)
∗ , ρ

(3)
∗ ) are nonstable.

Therefore, with a0 > 0 and c < 0 we get the following three distinct periodic solutions to system (23):

1) η∗(t, ε) ≡ 0, ξ∗(t, ε) = ρ
(1)
∗ exp(iϕ∗t), where ϕ∗ = ε

(
α2

6k0
+ βk0

)
a0
3c ;

2), 3) η±(t, ε) = η
(2)
± , ξ±(t, ε) = ρ

(2)
∗ exp(iϕ±t), where ϕ± = ∓

√
εαk0

√
−a0

5c + O(ε).

Then for Eq. (1) we get the asymptotic of two more periodic solutions u±(t, x, ε) different from
solutions to (11), namely,

u±(t, x, ε) = η±(t, ε) + ξ±(t, ε) exp(ik0x + ik3
0t) + cc + O(ε).

Therefore, the rejection of boundary conditions (13) can lead to the appearance of two new periodic
solutions.

3.3. Tori for Eq. (1) under the condition γ = b = 0 and without condition (13). We study the
construction of nondegenerate tori for Eq. (1) as the formal series

u = η(t, ε) +
N∑

j=1

(
ξj(t, ε) exp(ikjx + ik3

j t) + cc
)

+ · · · , (29)

where kj �= 0 and kj �= ks with j �= s, the symbol . . . stands for quadratic, cubic, etc. terms with respect
to ε, η, and ξj that are trigonometric polynomials in t and x. The corresponding normal form (analogous
to (23)) is

η̇ = α1εη + α2η
2 +

N∑
s=1

α3s|ξs|2 + α4η
3 + η

N∑
s=1

α5s|ξs|2,

ξ̇j = β1jεξj + β2jηξj + ξj

( N∑
s=1

β3js|ξs|2 + β4jη
2

)
, j = 1, . . . , N.

(30)

Substituting (29) in (1) and performing some standard calculations, we sequentially find all coeffi-
cients of system (30). As a result, we get equalities (j = 1, . . . , N)

α1 = β1j = a0, α2 = α3j = 0, α4 = c, α5j = 6c, β2j = −iαkj ,

β3js = 6c − 2iβkj with s �= j, β3jj = 3c − i
(
α2/(6kj) + βkj

)
, β4j = 3c − iβkj .

Thus, the question of the existence of solutions to system (30) in the form ξj = ρj exp(iϕjt) is
equivalent to the question of the existence and solvability of the system of equations

η
(
a0ε + 6c

N∑
s=1

ρ2
s + cη2

)
= 0,

ρj

(
a0ε + 6c

N∑
s=1

ρ2
s − 3cρ2

j + 3cη2
)

= 0, j = 1, . . . , N.

(31)

Hence, assuming that ρj > 0, for system (30) with a0 > 0 and c < 0 we find three periodic solutions:

1) η∗(t, ε) ≡ 0, ξj∗(t, ε) = ρj∗ exp(iϕj∗t), where

ρj∗ =
√

ε

√
− a0

3(2N − 1)c
, ϕj∗ = ε

(
α2

6kj
+ (2N − 1)βkj

)
a0

3(2N − 1)c
;
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2), 3) η±(t, ε) = ±
√
− a0

(4N+1)c , ξj±(t, ε) = ρj∗
√

ε exp(iϕj±t), where

ρj∗ =
√

ε

√
− 2a0

3(4N + 1)c
, ϕj± = ∓

√
εαkj

√
− a0

(4N + 1)c
+ O(ε).

In particular, with N = 2 we get

η
(
a0ε + 6c(ρ2

1 + ρ2
2) + cη2

)
= 0,

ρ1(a0ε + 3cρ2
1 + 6cρ2

2 + 3cη2) = 0,

ρ2(a0ε + 6cρ2
1 + 3cρ2

2 + 3cη2) = 0.

(32)

With η = 0 we get ρj = ρj0
√

ε, where ρj0 coincides with the solution to system (16). With η �= 0 we get

η = ±
√

ε
√

−a0
9c , ρ1 = ρ2 =

√
ε
√
−2a0

27c . The number of solutions of (32) exceeds that of system (16),

which means that the number of two-dimensional tori in (1) can be much greater.
We understand a rough solution (satisfying the non-degeneracy condition) as a simple solution of the

system for finding amplitudes.

Theorem 4. Let b = 0 and let system (31) have a rough solution η∗, ρj∗ (ρj∗ > 0, j = 1, . . . , N).
Then with all sufficiently small ε, Eq. (1) has a residual asymptotic N-dimensional invariant
torus

u∗ = η∗ +
N∑

j=1

(
ρj∗ exp

(
ikjx + i(k3

j + ϕj∗)t
)

+ cc
)

+ O(ε).

4. CONSTRUCTION OF PERIODIC SOLUTIONS AND INVARIANT TORI OF EQUATION
(1) SUBJECT TO γ = 0 AND b �= 0 BUT WITHOUT CONDITION (13)

4.1. The asymptotic behavior of periodic solutions to Eq. (1) with γ = 0 and b �= 0. Let us pay a
special attention to the fact that the role of parameters α and β in the question of the existence of periodic
solutions and tori consists only in the presence of the product αβ in the coefficient at cubic terms. Below
we prove that the role of the term bu2 is more important.

Substitute the formal series (25) in (1) and equate coefficients at the same degrees of η, ξ, and ε. As
a result, we get the following formulas for coefficients of the normal form (23):

α1 = β1 = a0, α2 = b, α3 = 2b, α4 = c, α5 = 6c,

β2 = 2b − iαk0, β3 = 3c +
αb

2k2
0

+ i
( b2

3k3
0

− α2

6k0
− k0β

)
, β4 = 3c − iβk0.

As above, in the obtained normal form we proceed to polar coordinates in the variable ξ = ρ exp(iϕt).
Therefore, we proceed to the following system for finding amplitudes which is analogous to (28):

η̇ = a0εη + bη2 + 2bρ2 + cη3 + 6cηρ2,

ρ̇ = ρ
(
a0ε + 2bη + ρ2

(
3c + αb/(2k2

0)
)

+ 3cη2
)
,

(33)

whence with a0 > 0 we get the rough solution

ρ∗ =
a0ε

2
√

2|b|
+ O(ε2), η∗ = −a0ε

2b
+ O(ε2). (34)

In addition, for ϕ∗ we get

ϕ∗ =
αk0a0ε

2b
+ O(ε2).
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Theorem 5. Let system (33) have the rough solution (34). Then with all sufficiently small ε, Eq. (1)
has the following residual asymptotically periodic solution

u = η∗ + ρ∗ exp
(
ik0x + i(k3

0 + ϕ∗)t
)

+ cc + O(ε2).

Note that dynamic properties of system (23) were studied by many authors. See [12] for most
complete results on this theme.

4.2. The asymptotic of invariant tori of Eq. (1) with γ = 0 and b �= 0. Analogously to Item 3.3,
for a fixed collection of positive pairwise distinct numbers k1 = 2πn1/T, . . . , kN = 2πnN/T (n1, . . . , nN

are distinct natural numbers) we consider series (29). Substitute it in Eq. (1), assuming that b �= 0, by
standard calculations we find coefficients of the corresponding normal form (30):

α1 = β1j = a0, α2 = b, α3j = 2b, α4 = c, α5j = 6c,

β2j = 2b − iαkj , β3jj = 3c +
αb

2k2
j

+ i
( b2

3k3
j

− α2

6kj
− βkj

)
,

β3js = 6c − 4bα
3(k2

j − k2
s)

+ i
( 8b2

3kj(k2
j − k2

s)
− 2βkj

)
with s �= j, β4j = 3c − iβkj .

Therefore, the question of the existence of solutions to system (30) in the form ξj = ρj exp(iϕjt) is
reduced to the question of the solvability of the system of equations

a0εη + 2b
N∑

s=1

ρ2
s + bη2 + cη3 + 6cη

N∑
s=1

ρ2
s = 0,

ρj

(
a0ε + 2bη +

N∑
s=1

Reβ3jsρ
2
s + 3cη2

)
= 0, j = 1, . . . , N.

(35)

In particular, with N = 2 we get the system

a0εη + 2b(ρ2
1 + ρ2

2) + bη2 + cη3 + 6cη(ρ2
1 + ρ2

2) = 0,

ρ1

(
a0ε + 2bη + Reβ311ρ

2
1 + Re β312ρ

2
2 + 3cη2

)
= 0,

ρ2

(
a0ε + 2bη + Reβ321ρ

2
1 + Re β322ρ

2
2 + 3cη2

)
= 0.

(36)

Note that when η and ρj have the order ε, for solving this system we get equalities

η∗ = −a0

2b
ε + O(ε2), ρ1∗ = ρ12∗ε + O(ε2), ρ2∗ = ρ21∗ε + O(ε2), (37)

where

ρjs∗ =
a0

2
√

2|b|

√√√√3c − 4αb/
(
3(k2

j − k2
s)

)
− αb/(2k2

s )

6c − αb/(2k2
j ) − αb/(2k2

s )
.

For ϕj we get asymptotic equalities

ϕ1∗ =
αk1a0ε

2b
+ O(ε2), ϕ2∗ =

αk2a0ε

2b
+ O(ε2).

Theorem 6. Let system (36) have the rough solution (37). Then with all sufficiently small ε, Eq. (1)
has a residual asymptotic accurate to O(ε2) two-dimensional invariant torus, namely,

u∗ = η∗ +
2∑

j=1

(
ρj∗ exp

(
ikjx + i(k3

j + ϕj∗)t
)

+ cc
)
.
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The dynamics of system (30) can be much more complex even with N = 2 [12]. Such solutions to
system (30) allow one to write residual asymptotic solutions to the initial boundary value problem.

5. THE NORMAL FORM OF THE KORTEWEG–DE VRIES–BURGERS EQUATION
(γ �= 0)

The case, when solutions to (1), (2) contain no zero harmonic (in the expansion into the Fourier series
in the spatial variable), is most interesting and important for applications. In this case it is necessary that
in place of degrees uj (j = 2, 3) for F (u) there should be differences

(
uj − M(uj)

)
. Here M(u), i.e., the

mean value of the function u(t, x) in the spatial variable, obeys equality (6).

It is convenient to perform normalizations x 
→ T
2π x, t 
→

(
T
2π

)3
t and to introduce new denotations

for proceeding from the T -periodic boundary-value problem to the following 2π-periodic one:

u(t, x + 2π) ≡ u(t, x). (38)

Thus, in what follows, we study a local in some sufficiently small (and independent of ε) neighborhood
of the zero equilibrium state dynamic of the equation

ut + uxxx +
(
αu + βu2 + O(|u|3)

)
ux = ε(γ0uxx + a0u)

+ b
(
u2 − M(u2)

)
+ c

(
u3 − M(u3)

)
+ O(|u|4). (39)

Here, naturally, we need to study Eq. (39) subject to the boundary condition (38) and condition (5) for
the zero mean value of the function u.

An important role in the study of solutions located in a small neighborhood of zero is played by the
behavior of solutions to the linear boundary-value problem

ut + uxxx = 0, u(t, x + 2π) ≡ u(t, x), M(u) = 0. (40)

Solutions to problem (40) take the form

u(t, x) =
∞∑

k=−∞,k �=0

Vk exp(ikx + ik3t), V−k = V k, k = ±1,±2, . . . . (41)

Thus, in the problem on the local dynamic of (38)–(40) we get the case which is close (provided that
0 < ε � 1) to the critical case of infinite dimension. Roots λk of the corresponding characteristic
equation satisfy the equality λk = ik3. Eigenfunctions equal exp(ikx). Hence, we conclude that minor
resonances 1:1, 1:2, and 1:3 are absent.

Note that modified Korteweg–de Vries and Korteweg–de Vries–Burgers equations were studied by
many authors [1, 2, 4, 13, 14]. In particular, they considered questions of integrability and construction
(with certain values of coefficients) of exact solutions. Here we use the research technique proposed in
[5, 15–18] for studying the local dynamics for infinite-dimensional critical cases. The corresponding
formalism is based on the representation of the “main” part of solutions to (38)–(40) in the form (41),
where Vk = Vk(τ) and τ = εt is a “slow” time. Thus, we are interested in constructing the first
approximation equations for defining slow amplitudes. Note also that the transfer from the initial
equation (39) to equations for Vk(τ) is called the normalization, and the resulting equations for Vk(τ) are
said to have the normal form (or the truncated normal form). Using well-known methods (e.g., [8, 10])
one can easily obtain the normal form, i.e., an infinite system of ordinary differential equations for Vk(τ).
The main goal of this paper is to construct the normal form for the boundary-value problem (38)–(40)
as one partial differential evolution equation.

Consider the formal series

u(t, x, ε) =
√

εu1(t, x, τ) + εu2(t, x, τ) + ε3/2u3(t, x, τ) + · · · , (42)

where τ = εt,

u1(t, x, τ) =
∞∑

k=−∞, k �=0

Vk(τ) exp(ikx + ik3t). (43)
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Functions u2, u3, . . . are 2π-periodic in t and x. Substitute (42) in (39). In the obtained formal
identity we equate coefficients at the same degrees of ε. Thus, collecting coefficients at the first degree
of ε, we get correlations

∂u2

∂t
+

∂3u2

∂x3
=

(
b − α

2
∂

∂x

)(
u2

1 − M(u2
1)

)
.

Hence we find

u2 =
∞∑

k=−∞, k �=0,
p=−∞, p �=0,−k

u2kp exp
(
i(k + p)x + i(k3 + p3)t

)
,

where

u2kp =
ib

3
VkVp

kp(k + p)
+

α

6
VkVp

kp
with p, k �= 0, p �= −k.

Introduce some denotations. Let

V =
∞∑

k=−∞, k �=0

Vk exp(ikx).

Denote by J the “integration” operator

J(V ) =
∞∑

k=−∞, k �=0

Vk

ik
exp(ikx).

Using this operator, we write the expression for u2(0, x, τ) in the compact form

u2(0, τ, x) =
b

3
J
(
J2(V ) − M

(
J2(V )

))
− α

6

(
J2(V ) − M

(
J2(V )

))
.

On the next step we collect coefficients at ε3/2 and, as a result, obtain the equation

∂u3

∂t
+

∂3u3

∂x3
= −∂u1

∂τ
+ γ0

∂2u1

∂x2
+ a0u1 +

(
2b − α

∂

∂x

)
(u1u2) +

(
c − β

3
∂

∂x

)
u3

1. (44)

This equation is solvable with respect to u3 in the mentioned function class, provided that coefficients at
all harmonics in the form exp(ikx + ik3t) in the right-hand side of (44) are equal zero. Hence we obtain
the following infinite system of ordinary differential equations with respect to all Fourier coefficients Vk(τ)
of the function u1(t, x, τ):

∂Vk

∂τ
= (−γ0k

2 + a0)Vk + ψk(V ), k = ±1,±2, . . . , (45)

where

ψk(V ) =
1
2π

∫ 2π

0

((
2b − α

∂

∂x

)(
u1u2 − M(u1u2)

)
+

(
c − β

3
∂

∂x

)(
u3

1 − M(u3
1)

))
exp(−ikx)dx.

As appeared, one can write system (45) as one (scalar) equation. To this end, we introduce one more
operator R1(W ) by the following rule: For the function

W (x) =
∞∑

k=−∞, k �=0

Wk exp(ikx)dx

we put

R1(W ) =
(
. . . , W−1 exp(−ix), 0, W1 exp(ix), W2 exp(2ix), . . .

)
.
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Consider the boundary-value problem

∂W

∂τ
= γ0

∂2W

∂x2
+ R(W ), W (τ, x + 2π) ≡ W (τ, x); M(W ) = 0, (46)

where

R(W ) = a0W + α2A(W ) + αbB(W ) + b2C(W ) + βG(W ) + cH(W ).

Here we use the following denotations (the vector multiplication below is coordinate-wise):

A(W ) = −1
3

(
R1(W )J(W ) − M

(
R1(W )J(W )

)
, R1

(
J(W )

))
,

B(W ) = −1
3

(
J
(
R1(W )

)
J(W ) − M

(
J
(
R1(W )

)
J(W )

)
, R1(W )

)

+
1
3

(
J
(
R1(W )W − M

(
R1(W )W

))
, R1

(
J(W )

))
,

C(W ) = −2
3

(
J
(
R1(W )J(W ) − M

(
R1(W )J(W )

))
, R1

(
J(W )

))
,

G(W ) = −∂W

∂x
M(W 2), H(W ) = 3WM(W 2).

For stating the main result, in formula (46) we put

W (τ, x) =
∞∑

k=−∞, k �=0

Wk(τ) exp(ikx)dx

and collect coefficients at the same functions exp(ikx).

As a result, we get the following countable system of ordinary differential equations with respect to
all Wk(τ):

Ẇk = Pk(W±1,W±2, . . . ), k = ±1,±2, . . . (47)

Theorem 7. The system of equations (47) coincides with system (45).

Therefore, we conclude that the boundary-value problem (46) plays the role of the normal form
for the initial boundary-value problem (38)–(40). Fourier coefficients of solution (46) which are slow
with respect to time t are also Fourier coefficients of residual asymptotic solutions to (38)–(40). In
particular, u(0, x, τ) =

√
εW (τ, x) + O(ε). Hence and from (42), (43) we get the asymptotic of the

function u(t, x, τ). Note that the boundary-value problem (46) can have a rather rich dynamics.

In the case of the modified Korteweg–de Vries equation we proceed from (46) to the boundary-value
problem

∂W

∂τ
= α2A(W ) + βG(W ), W (τ, x + 2π) = W (τ, x), M(W ) = 0. (48)

All solutions to (48) are non-rough tori with time-constant amplitudes in the form W (τ, x) =
W (0, x) exp(iψ(τ, x)). Performing some simple transformations, we reduce (48) to the following
completely split infinite system of first-order equations:

Ẇk = −ik−1Wk|Wk|2(α2/3 − β), k = ±1, ±2, . . .
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6. CONCLUSION

We study the local dynamics of the generalized Korteweg–de Vries equation. Using the classical
methods of bifurcation analysis, we study the question of the existence, asymptotic behavior, and
stability of periodic solutions and tori. We prove that if values of diffusion coefficients γ are close
to zero, then in the question of the stability of the equilibrium state there occurs a critical case of
infinite dimension. Using the idea of the normalization method, we have succeeded to reduce the initial
boundary-value problem to a much simpler one, namely, to a specific nonlinear boundary value problem
that defines dynamic properties of the initial generalized Korteweg–de Vries equation.
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