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The monographs of N. I. Muskhelishvili ([1], pp. 416—446) and N. P. Vekua ([2], pp. 11—59) contain
the linear conjugation problem for several unknown functions. The problem is to find a piecewise
holomorphic vector ®(z) = (@1, P9, ..., P,) with a jump line L and having a finite order at infinity by
the boundary condition

() =Gt)d(t) +g(t), t €L, (1)

where G(t) is a matrix of class H defined on L and is not singular anywhere in L, and g(t) is a vector of
class H on L. We construct and study the canonical system of solutions to the homogeneous Riemann
problem. We also give the solution to homogeneous and inhomogeneous Riemann problem (1), and
obtain the conditions for the solvability of the inhomogeneous problem with a negative index.

V. A. Kakichev ([3], pp. 4—56) set and carried out an investigation of the Riemann boundary-value
problem for analytic functions of two complex variables. The two-dimensional Riemann problem is

to find the four functions ®**(z,w) analytic in the domains D** = DljE X Dzi, respectively, by the
boundary condition

A(t,w)®t T (t,w) + B(t,w)® T (t,w)+C(t,w) @™ (t,w) + D(t,w)d ~(t,w) = F(t,w), (2)

q)i:(zl,oo) =0, z1 € ch, @:i(oo,zg) =0, 2 € D;E,

here the variables (t,w) € L? = Ly x Ly, L1 = 0Dy, Ly = D,, and the coefficients A(t,w), B(t,w),
C(t,w), D(t,w), F(t,w) are of class H(L?). In the general case, there is no solution to problem (2).
If A(t,w) = B(t,w),C(t,w) = D(t,w) or A(t,w) =C(t,w)), B(t,w) = D(t,w), then we obtain the
degenerate Riemann problems of the first kind that reduce to Riemann boundary-value problems for
one variable with the second variable as a parameter.

The index x1(A) of a function A(t,w) continuous on L? is defined ([3], pp. 10—11) as a change in
its argument passing along L : x1, = ,%; [ darg A(t,w). Assume the notation x1(A) = x1, (4) and

L

X2 = XL,(A). Itis proved in [4, 5] that if A, B, C, D, F are summable with degree p > 1 on the
skeleton L? formed by simple closed Lyapunov curves, then conditions

1)A#0,B#0,C#0,D #0on L?,
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2) x1(4) = x1(B), x1(C) = x1(D), x2(4) = x2(C), x2(B) = x2(D)
are necessary and sufficient for problem (2) to have a finite index.

In [6] they posed and considered the Riemann boundary-value problem for regular (monogenic) left
functions in the complex Clifford algebra Cy ,, = Ry, ® C. The Riemann problem reduces to a singular
integral equation, which is investigated by the operator method.

In [7—11] the authors study the jump problem for monogenic functions in the set 2 C R™ whose
boundary I" is compact topological surface in the Clifford algebra Ry ,. They found the equivalent
monogeneity conditions from the left (irom the right), the two-sided monogeneity condition for the
function in €. Also we know when the jump problem has a solution. In [6—8], the study is conducted for

the Dirac operator D = ) e; 8?% of an incomplete variable > x;e;.
i=1 i=1

In [12—14] the authors consider the Riemann boundary-value problem for weakly regular left
functions in the Clifford algebras Rg 2, R0, R3 . Clifiord-valued constants there were considered as
coefficients of boundary-value problem (2). The presented problems were reduced to matrix problems
for regular functions of two complex variables, which then split into Riemann boundary-value problems
for analytic functions of one variable.

In this paper we present and study the Riemann boundary-value problem for regular and strongly
regular functions in the Clifford algebras Ry 2, R20, R3o with arbitrary coefficients. We reduce the
problem to a matrix problem for analytic functions of one and two complex variables, and give its
solution. Then we carry out the study of boundary-value problems in special cases and indicate a method
for solving the Riemann boundary-value problem in an arbitrary Clifford algebra.

In contrast with [6—11], we consider the Riemann boundary-value problem for regular functions f(w)

meeting the equation D-f = 0, here D = 21,1 > eq Bga’ and for strongly regular functions.
OCEFTL

1. The Clifford algebra. Detailed information on the structure and properties of the Clifford algebra
can be found in the monograph [15] (pp. 82—150).

Let R,  be a Clifford algebra of dimension m = 2" (n = p+ ¢) with the basis e, =€;, ...¢€;,,
1<y < -+ <ix <n,where the multi-index & = 47 . . . i runs through all subsets in the set {1, ..., n},
whose collection we denote by I',. Let ey = eg = 1,e1,..., e, be the canonical basis, e12, .., = e, and
multiplication in R, 4 be defined by the relation

eie; +eje; = 25@'&,
herefsi:e?:1,i:1,...,p,€i:e?:—1,i:p+1,...,p+q.

The arbitrary and conjugate elements of the Clifford algebra are representable in the form w =
Y Tala, W= D>, TaEqeq. Denoteby f(w) = > fa(w)eq, falw): @ — R afunction with values

acl'y acl'y a€el'y

in the Clifford algebra and defined in the domain Q@ C R™, and by D = 21,1 > eq 82& the differential

OCEFTL
operator. The function f belongs to FZSZ)(Q) if its components £, lie in C*)(Q).
B-set is the set of basis elements B = {e, }acs = {€q;,- - - » €, }, With the following property: For
any eq;,eq; € B, a; # aj, €a; + aa;a;€a; =0, here aq,q; are commutation coefficients defined by
€a;€a; = Gaa;€a;€a;- 1IN [16] the author proved a theorem on the basis R, ; decomposition into B-

sets consisting of two elements. In this case an arbitrary element of the algebra, the Clifford-valued
function, and the differential operator can be represented in the form

w= Y equfy, f(w)= > Gpgea D=21n > eaDpg,

aely_1 a€ly_1 acl'y 1

_ (0% -~ _ [e% D _ a
wpy = Z Tgep, 9By = Z faes = Z €8 gpa-
peBy peBy BeBY B
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38 KUZNETSOV et al.

Note that wps are complex numbers formed on the set By containing eg. In the Clifford algebra, we can
introduce various classes of regular functions. A function f € Fp{q(Q) is called [17—19]) weakly regular

on the left (from the right) in Q € R™ if
D-f=0(f-D=0), QeR™,
is strongly regular on the left (from the right)if forallv € I';,_;
YD-f=0, (f-"D=0), "D =¢,e,De,, QecR™.
In [18] it was proved that the conditions of strong regularity are equivalent to the regularity conditions
by B-sets, consisting of two elements Dpa-f =0, a € I';,—1, which are equivalent to the conditions
Dpg 'ng‘ =0,a,8€l1.

2. Quaternion algebra. Quaternion algebra Ry 9 is a real associative noncommutative algebra of
dimension m = 4 generated by elements ey, ea. The basis of the algebra is formed by the elements

{eo, €1, €2, €12}, here e is the algebra unit, e;o = ejey, and the elements eq, es, e12 meet the relations
2 2

ef =e5= e%z = —ep, ¢i-ej+ej-e;=0,1# j,i, j=1,2,12. These relations define the operation of
multiplication in R 2.
An arbitrary element of the algebra can be represented in real and complex form
W = Tpep + Tr1e1 + Toe + T12€12 = 21€0 + 22€1,

here 21 = xpep + x12€12, 22 = T1€0 + x2e12 are complex numbers (the role of the imaginary unit plays
e12). The conjugate element is w = zgeg — x161 — T2eg — T12€19 = €921 — €129, here 21 = zpeg —

T12€19, 29 = x1€0 — Toe1a. Note that any nonzero element w has the inverse one w=! = ”;"”2

roeom el waram M12€12 'so Ry,2 does not contain zero divisors.
wi+at+ai+at

Denote by f(w) = fo(w)eo + fi(w)er + fa(w)ea + fia(w)ei2 a function with values in algebra Ry o
and defined in the domain Q C R*, and by

D—lea+ea+ea+ea
T4\ Yoz ory | om0
the differential operator. The quaternion-valued function f(w) and the differential operator D can be
represented in the complex form:

f(w) = ®1(21,, 22)e0 + Pa(21,22)e1, here ®1(z1,22) = foeo + fize12, Pa2(z1,22) = fieo + fae12;

D—lea+ea herea—lea—i—ea 8_168_68
2 0821 182'2 ’ 0z, 2 Oam 1283:12 " Ozy 2 083;1 128m2 '

Let 12D = }(eo,2 —e1,2,) be the differential operator. The function f(w) € Fyo(€) is called [19]
strongly regular on the left if
D-f=0,2D-f=0, QcR*.
The strong regularity conditions [ 18] are equivalent to the equalities
00 _ 001 _ 0Py _ 0P _0
0z 0z Oz 0z ’
which mean that the functions ®1(z1, 22), ®2(21, 22) are analytic in the variables 21, zo.

2.1. First we consider the case of the function f(w) dependent only on one complex variable z:

f(w) = ®1(2x)e0 + Pa(zr)e1, Pi(zr) = foeo + fize12, Pa(zx) = fieo + faer2,

‘Z‘Z 0, ‘3‘32 = 0. The latter equalities mean that the functions ®4(zx), ®2(2x) are analytic in the
variable z.
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ON RIEMANN BOUNDARY-VALUE PROBLEM FOR REGULAR FUNCTIONS 39

Let L be a simple smooth closed contour bounding in the plane of the complex variable the domain
D,‘: C C, D, completes D,‘: \J L to the extended complex plane C'.

Statement of the Riemann problem: Find the regular function f(w) = ®1(zx)eg + P2(zx)e1 by the
conditions

FrOAQR) + f()C() = F(t), t € Ly, (3)

f7(00) =0,

here the coefficients A(t), C(t), F'(t) are quaternion-valued functions that do not vanish on L, and the
components of which belong to the class H(Ly,). The functions A(t), C(t), F'(t) are representable in the
COI’I’lpleX form: A(t) = A (t)e() + Ay (t)el, C(t) =4 (t)eo + Cy (t)el, F(t) =N (t)e() + F5 (t)el.

By the equalities Axeq = e1 Ay, Crer = e1C, boundary condition (3) takes the form
T (1) A1 (t) — ©F (1) A2(t) + @7 (1)C1 () — D5 (1)Ca(t) = Fi(t),

O (1) Ag(t) — ®F (1) A1 (t) + @1 (£)Ca(t) — @5 (£)C1(t) = Fa(t), (4)

P; (00) = B (00) = 0.
We represent boundary conditions (4) in the matrix form

R(H)®T(t) + G(t)® (t) = F(t), t € Ly, (5)

R(t) = Ai(t) —Aa(t) L Gl) = Ci(t) —Ca(t) 7
Ag(t)  As(t) Ca(t) Ci(D)

®7 (00) = B (c0) = 0.

Note that the determinants of the matrices det R(t) = |A;(t)|* 4 |A2(t)[%, det G(t) = |C1(t)|* +

|C(t)|? are non-zero and are real functions. Multiplying equality (5) by the inverse matrix R™1(t),
we obtain the inhomogeneous Riemann boundary-value problem for a vector-valued function

OH(E) — Gy (1D (1) = F*(1), tE Ly, (6)
¢~ (00) =0,

here the matrix G1(t) = —R™1(t)G(t) is of class H and det G1(t) = 322%23 #0 on Li, F*(t)=

R™L(t)F(t). Since the determinant of the matrix det G (¢) is a real function x = Ind det G4 (¢) = 0.

Let XB(z) = (X?(zk), Xg(zk)), B = 1,2, be the canonical system of solutions of the homogeneous
problem, and X(z,) is the corresponding canonical matrix ([1], pp. 427—430):

ﬁuwXﬂ%v_

X(2k) = X2 (z)l = ( ) 2
Xo(zk) X5(2k)

The canonical system has the following properties:

1) The canonical matrix is normal, i.e., its determinant A(zx) = det X(zx) does not vanish anywhere
in the finite part of the plane;
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40 KUZNETSOV et al.

2) let (—xp) be the solution XP () order at infinity, then the determinant A%(z;) = det ||z,§ﬁX§(zk) I =

+x2
TN

f (zx) is non-zero for zj = oo;

3) XT(t) = G1 ()X (¢).

Putting G1(t) into (6) we obtain
(XT(@)] et (1) = X ()] 7'e (1) + [XF (0] E (1)

Since the index of the problem x = 0, the solution to the problem under consideration exists and is given
by formula

P —1

N 27‘(’612 t— Zk

2.2. The spatial Riemann boundary-value problem in Ry . Let L? = Ly x Ly denote the common
frame of four regions D** = D x D¥, and H(L?) be the set of continuous functions on L? subject to
Hélder condition. A function ®(¢,w) € H(L?), if there exist constants M}, and powers oy, (0 < ay < 1),
k = 1,2, such that for any pair of points (¢,w), (t!,w?!) from L? we have the inequality

|(I)(t7w) - q)(t17w1)| < M1|t - ZL/1|o£1 + M2|w - wl‘a2'

Statement of the Riemann problem: Find a strongly regular function f(z1,22) = ®1(21, 22)eo +
®y(21, 22)eq by conditions

It wAft,w) + T ({t,w)BEt,w) + T (tw)C(t,w) + f (t,w)D(t,w) = F(t,w), (8)

fi:(zl,oo) =0, z1 € Df,f:i(oo,zg) =0, 2o € Déc, (9)

here the variables (t,w) € L? = Ly x Ly, Ly = 0Dy, Ly = ODs, and the coefficients A(t,w), B(t,w),
C(t,w), D(t,w) are non-zero on L? quaternion-valued functions whose components belong to the class
H(L?), F(t,w) € H(L?).

We consider the degenerate case of problem (8), (9), for A(t,w) = B(t,w), C(t,w) = D(t,w). We
introduce the notation

(L w) + @7 (L w) = ¢y (w), P3T(Lw) + Dy T (tw) = ¢ (w),
O (tw) + @] (tw) = o, (w), ®F (tw) + D5 (tw) = ¢y (w), (10)
here t € L1 is the parameter and w € Ls is the variable. Equalities (9) yield
<I>,;+(oo,z2) =0, ¢, (00,22) =0, 20 € D;E, @:_(zl,oo) =0, ®, (21,00) =0, 21 € ch.

Let us represent the functions A(t,w), C(t,w), F(t,w) in complex form: A(t,w) = Ai(t,w)eq +
Ay (t,w)er, Ct,w) = Ci(t,w)eg + Cao(t,w)er, F(t,w) = Fi(t,w)eg + F(t,w)e;. By the equalities
Are; = e1 Ay, Creqr = e1C), we can rewrite boundary equations (8), (9) as

A1 (W) A1 (t,w) — d3y(w) Aa(t, w) + b1y (W)C1 (L, w) — doy (W)Ca(t, w) = Fi(t,w),
A1 (w) Az (t,w) + Py (W) A1 (L, w) + b1y (W)Ca(t, w) + doy (W)C1 (L, w) = Fy(t,w), (11)

¢14(00) = 0, @y (00) = 0.
We represent the boundary conditions (11) in the matrix form

R(t,w)¢f () + Gt w)ey (w) = F(t,w), (12)
¢; (00) =0,
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here

AQ(t,w) Al(t,w) OQ(t,w) Cl(t,w)

+(w 1w w
H) = (%( >)7 ) (%( >)7 Pl <F1<t, >)7
85() 6l) Fi(t,w)
61 (%) = (63(0), 93(00))

Let us find the solution to problem (12). Since det R(t,w) = | A1 (t,w)|* + |Aa(t, w)|* # 0, multiplication
of (12) with the inverse matrix R~!(¢,w) provides us with inhomogeneous Riemann boundary-value
problem for a vector-valued function

R(t.w) = (Al(t,w) A2(t,w)) G(tw) = (C’l(t,w) CQ(t,w)) |

o (w) — G1(t,w)d; (w) = F*(t,w), w € Ly, (13)
on (00) =0,
here the matrix Gy (t,w) = —R7(t,w)G(t,w) is of class H and det Gy (t,w) = jiggig #0 on Ly,

F*(t,w) = R7Y(t,w)F(t,w). Since the determinant det G (t,w) # 0 and is a real function for any
values ¢, w, we have x =InddetG;(¢t,w) =0. Let Xtﬁ(zg) = (X?t(ZQ),th(Zg)), B =1,2, be the

canonical system of the homogeneous problem solutions, and X;(z2) be the corresponding canonical
matrix ([1], pp. 427—430) of type

Xin) = o) = (XM XM) |

Xbi(22) X3;(22)
The canonical system of solutions has the following properties:

1) The canonical matrix is normal, i.e., its determinant A;(z9) = det X;(22) vanishes nowhere in the
finite part of the plane z9;

2) let (—xp) denote the order of the solution Xf(zg) at infinity. Then the determinant A%(zy) =
det Hz;‘BXtﬁa(zg)H = z§1+X2At(zg) is non-zero for zo = o0;

3) X{ (w) = G1(t,w)X; (w).

Put G4 (t,w) into (13) and obtain
X @] (w) = Xy )] ey () + X ()] 7 F (¢, w).

Since the index of the problem x = 0, the solution of the problem under consideration exists and is given
by

+w —1 % Wdw
qbt(zz):};;(;?z) /L X/ ( )]t _FZ2(t, ) "

The solution to problem (8), (9) we derive from (10) by formulas

1 (b—]:t (2’2 )dt

1 (ﬁ&(?:g)dt
271'612 L1 t—Zl '

++
(I)k (Zl,ZQ)
27‘(’612 I t—Zl

+ +

, BFF (21, 22)

(15)

3. Algebra R; o. The algebra Ry is a real associative noncommutative algebra of dimension m = 4,
generated by vectors ej, e5. The basis of the algebra consists of elements ey, €1, e, €12, here e is the
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algebra unity, ejo = ejeg, and the elements eq, es, 12 possess the properties: €2 = €3 = eg, €2, = —eq,
ei-ej+e;-e; =0,i# j. These relations define the multiplication operation in Ry .

An arbitrary element of an algebra can be represented in real and complex form w = xgep + 1€ +
Toeg + T19e12 = gz + e129, here z1 = xpeg + T12e12, 29 = 169 + Toe19 are complex numbers. The
conjugate element w takes the form w = xpeg + x1€1 + w2€9 — T12€12 = 2160 — 2261, here 21 = xpeg —
T12€12, 22 = T1€p — Taeq2. Zero divisors in Ry o are defined either by the relation (see [20]) |zl|2 = |22|2
orby 22 + 2%, = 23 + 3.

Denote by f(w) = fo(w)eo + fi(w)er + fa(w)ea + fi2(w)erz a function with values in algebra Ry g,
defined in the domain Q  R*, and by

D—lea+ea+ea+ea
N 4 OaIL’O 181’1 28%2 12 89512

the differential operator. The function f(w) and the differential operator D can be represented in the com-

plex form: f(w) = ®1(21,, 22)e0 + P2(21, 22)e1, here ®1(21,22) = foeo + fizeiz, P2(21,22) = fieo —

D Ly D 9 9 _1(, 0 oy o _ 1, 8 9 127 _
faeras D= 5(e0,,, +e14,,), here o7 = j(eog0 + €124 ) g2y = 2(€C0gq, +€124,,)- Let D=

3 (€0 821 —e 822) be the differential operator. A function f(w) € Fy () is [19] strongly regular on the
leftif D- f =0,12D - f = 0,9 c R*. Conditions of strong regularity [19] are equivalent to the equalities

0P . 0P . 0P, B 0P, —0
0z N 0z9 N 0z B 0z -
which mean that the functions ®1(z1, 22), ®2(21, 22) are analytic in the variables 21, zo.
3.1. Riemann boundary-value problem (3) for a regular function f(w) = ®1(zx)eq + P2(2)e1 with
Clifford-valued coefficients is studied similarly to the previous situations. We consider the spatial case.

Let L? = L x Ly be the common frame of four domains D** = Df X DQi. Find a strongly regular
function f(zl, 22) = <I>1(z1, Zg)eo + <I>2(z1, Z2)€1 by conditions

W) At,w) + f~T(t,w)B(t,w) + T (tw)C(t,w) + f (t,w)D(t,w) = F(t,w), (16)

fi:(zl,oo) =0, 1 € ch, f::t(OO,ZQ) =0, zn € D;E, (17)

here the variables (t,w) € L? = Ly x Lo, L1 = 0Dy, Ly = ODs, and the coefficients A(t,w), B(t,w),
C(t,w), D(t,w) are Clifford-valued functions that are non-zero on L2, components of which belong to
the class H(L?), F(t,w) € H(L?).

Consider the degenerate case of the problem for A(¢,w) = B(t,w), C(t,w) = D(t,w). Represent the
functions A(t,w), C(t,w), F(t,w) in complex form. By equalities (10) boundary condition (16), (17)
turns into

b1, (W) A1 (t,w) + by (W) Ao (t,w) + T, (W)C1(t, w) + Poy (W) Ca(t, W) = Fi(t,w),
gzbft(w)Ag(t,w) + qﬁ;t(w)Al(t,w) + ¢1,(w)Ca(t,w) + ¢gy (w)Ci (t,w) = Fo(t,w), (18)

¢14(00) = 0, @y (00) = 0.
We represent boundary conditions (18) in the matrix form

R(t,w)¢:r(w) + G(tﬂw)¢;(w) = F(t,w), (19)

¢y (00) =0,

R(t,w) = Ai(t,w) As(t,w) G(t,w) = Ch(t,w) Ca(t,w)
’ A2(tvw) Al(t’w) ’ ’ OQ(t,w) C’l(t,w) ’

here
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tw _ 1 (w Fi(t,w
st@ =) grw) = () pw = (109,
¢ (w) P (w) Fy(t, w)
¢p (00) = (614(00); h3;(20))-
Let us find the solution to problem (19). Determinants of matrices R(¢,w), G(t,w) equal det R(t,w) =
|AL(t,w) |2 — |Aa(t,w)]?, det G(t,w) = |C1(t,w)|* — |Ca(t,w)|?, respectively. Let us consider the case
det R(t,w) # 0, det G(t,w) # 0.

Multiplying (19) by the inverse matrix R~!(t,w) we obtain an inhomogeneous Riemann boundary-
value problem for a vector-valued function

o (w) — G1(t,w)d; (w) = F*(t,w), w € Ly,

¢y (00) =0,

here G1(t,w) = —R71(t,w)G(t,w) is of class H and det G (t,w) = jgtgg:; # 0 on Lo for any value
of the parameter ¢, F*(t,w) = R™(t,w)F(t,w). Since the determinant det G1(¢,w) is a real function
for any values ¢,w, we have y = Ind det G1(t,w) = 0. Degenerate Riemann problem (16), (17) has a

solution given by formulas (14), (15).

3.2. Special partial cases. Consider problem (16), (17) for det R(t,w) = 0, det G(¢,w) = 0. Then
[A1(t, w)| = [A2(t, w)l, [CL(E,w)| = [Ca(t, w)] -

Let A(t,w), C(t,w) be spinors. It is known that the spinor space V' is a left ideal in Ry, i.e.,
multiplying an arbitrary element of the algebra Ry by a spinor, we obtain an element of the space V.
Thus, in order for the boundary-value problem(16), (17) to have a solution, a function F(¢,w) should be
a spinor. The basis of the spinors in Ry ([21], P. 15) is formed by the elements fo = %€, f; = ©7%12.
The coefficients A(t,w), C(t,w), F(t,w) are representable in the form A(t,w) = A;(t,w)(eo + €1),
C(t,w) = C1(t,w)(eg +€1), F(t,w) = Fi(t,w)(ep +e1). Degenerate boundary-value problem (16),
(17)is represented by the equalities

Ol (W) A1 (t,w) + by (W) A1 (1, w) + 633 (W)C1(tw) + Py (W)Ci (Ew) = Fi(t,w), w€ Ly, (20)

¢14(00) = 0, ¢ (00) = 0.
Problem (20) has an infinite set of solutions.

In the general case we have Aj(t,w) = |Ai(t,w)] 2%, As(t,w) = |Ai(t,w)] 2%, Cy(t,w) =
|C1(t,w)| €129 Cy(t,w) = |C1(t,w)] e“12%4. In what follows we assume that 6; = 63, 6y = 6,. Equa-
tions (18) turn into

01—06 01406 0146
At w)| 2 2 (¢ (w)e2 27 4 g (w)em 2 )

+lCu(tw)] e 2 (g7 (w)er
15, 1t

01+

o2 — —e12
27+ Py (w)e

01+09

2 ) = Fl(t,w),

+6 0146
(6, (w)e 2" + g (w)ee2 127
01+6o

09 —0 ] 2]
F1C1(tw)] €272 (or,w)e 5 + pp(w)e 2 22 ) = Fy(t,w)

03—01 01
2

|Ar(t,w)] e

If Fy(t,w) = Fi(t,w)e12(?2=01) then degenerate boundary-value problem (16), (17) is equivalent to the
equalities

P (W) AT (t,w) + ¢3 () A (8, w) + P (W)CT (t,w) + ¢ (w)C (8 w) = FY (t,w), w € Lo,

¢14(00) = 0, ¢ (00) = 0,
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01+062 )

here A%(t,w) = |Ay(tw)]e®2 27, Ci(t,w) = |C1(t,w)] e12
This problem also has an infinite number of solutions.

01+0o

Ff(t,w) = |Fi(t,w)] 2 2

4. The Pauli algebra R3 . The Pauli algebra Rs is a real associative noncommutative algebra of
dimension m = 8, generated by the vectors ey, es, e3. The basis of the algebra is formed by the elements
{ea}tacrs = {eo, €1, €2, €12, €3, €13, €23, €123}, here I's is a collection of subsets of the set {1, 2,3}, eg is
the algebra unity, e;; = e;e;, e123 = erezes, and the elements eq, eg, e3 have the properties

e%ze%ze%zeo, eiej +eje; =0, 1 #£ 74,5 =1,2,3. (21)

Relation (21) yields that €2, = €25 = €35 = €353 = —ep, €123 commutes with all elements of the basis.
The basis of the Pauli algebra can be decomposed into B-sets of two elements [16]: {eq}acrs =
Bo U By U By U B3, By = {eq, e123}, B1 = {e1,ea3}, B2 = {e2, €23}, By = {e3, e12}.

An arbitrary element of an algebra can be represented in real and complex form w = ) x,eq =
a€cl's
Zoeo + z1€12 + 22€13 + 23€23, here 20 = @oeo + T123€123, 21 = T12€0 — T3€123, 22 = T13€0 + T2€123, 23 =
To3€0 — x1e1o3 are complex numbers (ej23 plays the part of the imaginary unit).
Denote by

f(w) = ®o(w)eg + P1(w)erz + Pa(w)erz + P3(w)eas,

Qo(w) = foeo + fiazeies, Pi(w) = fizeo — fze123, Po(w) = fizeo + fae123, P3(w) = fazeo — fie123
a function with values in the algebra R3 , and defined in the domain Q2 C R8, and by
1

D—ea—kea—kea—i-e8
T 4\9z " 0z B0z " 025 )

o _1(, 0 0 o _1f o _ 0
82’0 N 2 OaIL’O 12381’123 ’ 821 N 2 081’12 1238%3 ’

o _1(, 0 . 0 o _1f o 0
82’2 B 2 081’13 123 8952 ’ 82’3 B 2 081’23 123 8953 ’

the differential operator.
A function f(w) € F3(Q) is said to be strongly regular on the left [19] if for all v € T’y
YD-f=0, YD =¢,e,De,.
Conditions of strong regularity [19] are equivalent to the equalities
09, .
=0 =0,1,2,3
82] Y 27 ] Y ) Y )
which mean that ®;(zg, 21, 29, 23) are analytic functions with respect to variables zg, z1, 22, 23.

4.1. The Riemann boundary-value problem in R3,. Consider the case of the Clifford-
valued function f(w) depending only on one complex variable zg, i.e., f(w) = ®o(zr)eo + P1(zx)e12 +
Dy (zx)e13 + P3(zk)eas. Let Ly be a simple smooth closed contour bounding in the complex variable
plane a domain D,j C C, D, completes D,j \J L, to the extended complex plane C.

Statement of the Riemann problem: Find a regular function f(w) by conditions

FrOAR) + f~(0)C(t) = F(t), t € Ly, (22)

f7(o0) =0,
here A(t), C(t), F(t) are Clifford-valued functions that are non-zero on Ly, the components of which
belong to the class H(Ly). The functions A(t), C(t), F(t) are representable in the complex form:

A(t) = Ao(t)eo + A1(t)erz + Az(t)ers + As(t)es, C(t) = Co(t)eo + Ci(t)erz + Ca(t)ers + 03('5)(6322;5
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F(t) = Fo(t)eo + Fl(t)em + Fg(t)elg + F3(t)€23.

Since ej93 commutes with all elements of the Pauli algebra, we rewrite boundary condition (22) in the
matrix form

Rt)®T(t) + G#t)® (t) = F(t), t € Ly, (24)
P~ (c0) =0,
Ag —A1 —As —As Co —C1 —Cy —C3
R(t) = A Ay —As A, G = C:; Cy —Cs (9 7
Ay As Ay —A Cy C3 Cop —Cy
A3 —As A1 Ay Cs —Cy Cp Cy
g (t) D (¢) Fo(t)
ot | TO| oo [BO] gy | PO
@5 (1) ; (1) Fy(1)
@5 (t) O3 (t) F3(t)

We obtain a matrix problem for a vector-valued function. We note that the matrices R(t) and G(t)
are orthogonal, det R(t) = (A3 + A? + A3 + A3%)?, det G(t) = (C3 + C} + C3 + C3%)%. Further on we
assume that det R(t) # 0, det G(t) # 0. Multiplying (24) by the inverse matrix R~!(t) we obtain an
inhomogeneous Riemann boundary-value problem for the vector-function ®(z):

() — GL(t)D(t) = F*(t), t € Ly, (25)
P~ (c0) =0,
here the matrix G1(t) = —R™}(t)G(t) is of class H and det Gy(t) = jiggg #0 on Ly, F*(t) =

R™Y(t)F(t). Denote by x = Inddet Gy (t). Let X5(z) = (X0 (z1), X7 (z1), X5 (z)X5(z)), B =
0,1,2,3 be the canonical system of solutions to the homogeneous problem, and X(zx) be the
corresponding canonical matrix ([1], pp. 427—430) of the form

Xp Xp X§ X3
X7 X} Xt Xj
X3 X5 X3 X3
X§ Xj X5 X3

X(zk) = [1X5 (z) ]| =

The canonical system has the following properties:

1) the canonical matrix is normal, i.e., its determinant A(zy) = det X(zy) does not vanish anywhere
in the finite part of the plane;

2) let (—xg) be the order of the solution X?(z;) at infinity. Then the determinant A%(z;) =
det HszﬁXg(zk)H — 0T A (2 is non-zero Tor 2, = oc;
3) XH(t) = G1 ()X (¢).
Put G1(t) into (25) and obtain
(XT(@)) et (1) = X ()] 7'e (1) + [XF (0] E (1)
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Hence all the solutions to the problem under consideration are given by the formula

- V=1
0(a) = o) [ OO e,

here P(z) = (Po(zk), P1(2k), Pa(2k), P3(zx)) is a vector with arbitrary polynomial coefficients.

If the index x = x0 + Xx1 + X2 + X3 is nonnegative, then ([1], pp. 440—445) the solution vanishes at
infinity if and only if P(zy) is a vector whose components are polynomials of degree at most x — 1, and if
x < 0then P(zx) = 0. Ii x < 0, then the solution vanishes at infinity if we have the solvability conditions

Q)X ()]~ F*(t)dt =0,
Ly

Q(zr) = (Q—yo—1, Q—y1 =1, @—yo—1, @—x3—1), here Qo = Q. (2x) are arbitrary polynomials of degree at
most a, Qq(zx) = 0fora < 0.

4.2. Now consider the case det R(¢t) =0, det G(t) = 0. Then [20] the coefficients A(t), C(t) of
the boundary-value problem (22) are zero divisors in the algebra R3o. We consider a special case
of problem (22), where the coefficients A(¢) and C(t) are spinors. Boundary-value problem (22) has
a solution if the function F'(t) is a spinor. The basis of the spinors ([21], P. 60) in R3¢ is formed by
the elements fo = 05, f1 = 32 fo = 37 f; = <2442 [ the spinor space, the coefficients
A(t), C(t), F(t) can be represented as (23), where the coefficients A (t), Ck(t), Fi(t) are real functions.
Boundary problem (22) can be written in the form of (24), where the matrices R(t), G(t) depend on the
real variables, det R(t) # 0, det G(t) # 0. Multiplying (24) by the inverse matrix R~ (t), we obtain the
inhomogeneous Riemann boundary-value problem (25) for the vector-valued function ®(z). The index
x = Inddet G (t) = 0. The solution to the problem is given by the formula

_ X(zk) [ XTIt
k) = 2mei23 /Lk t— 2k '

4.3. We consider the case of the function f(w) dependent on two complex variables. For definiteness,
we take as variables the variables zg and 2.

Statement of the Riemann problem. Let L? = Ly x L; be the common frame of four do-
mains D** = DF x DF. Find a strongly regular function f(z0,21) = ®o(20, 21)e0 + ®1(20, 21)e12 +
Dy (20, 21)e13 + P3(z0, 21)ea3 by the conditions

fTT(to, t1)A(to, t1) + f~ T (to, t1)B(to, t1) + 1 (to, t1)C(to, t1) + £~ (to,t1)D(to, t1) = F(to,t1),

fi:(zo,oo) =0, z € D(jf, f:i(oo,zl) =0, 1 € ch, (26)

here the variables (t,w) € L? = Ly x Lo, L1 = 0Dy, Lo = 0D5 and the coefficients A(to, t1), B(to, t1),
C(tg,t1), D(to,t1) are Clifford-valued functions that are not zero on L2, with components of the class
H(L?),F(to,t1) € H(L?).

We consider the degenerate case of A(tg,t1) = B(to,t1),C(to,t1) = D(to,t1). Introduce the nota-
tion fT(to, t1) + f = (to, t1) = &7 (t1), F 7 (o, t1) + f~F(to, t1) = 7 (t1), here ty € Lo is the param-
eter, and ¢; is the variable. Boudary conditions (26) take the form

o (t1)A(to, t1) + oy, (t1)C(to, t1) = F(to, t1),

Poo(21) = ¢20(OO) =0.

Represent the functions A(tg,t1), C(to,t1), F(to,t1), qbzg (t1), ¢4, (t1) as (23), and write the boundary
conditions in the matrix form

R(to,t1)¢f (t1) + G(to, t1) ¢y, (t1) = F(to, t1), t1 € L, (27)
¢oo(zl) = ¢zo(oo) =0,
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Ay —A1 —Ay —Aj Cy —C1 —Cy —Cy
A Ay A3 A cCi Cy —-C5 C

Ritg 1) = | A1 A0 3 A2 Gty = | €0 3 G|
A Ay Ay —4 Cy Gy Cy —C
Ay —As A1 Ay Cy —Cy C1 Gy
(¢ = (t Fi(to,t

a0 = | T gnw = | 0O | ey = | 000
by, (t1) Py, (t1) Fy(to,t1)

We then have a matrix problem for the vector function. Note that the matrices R(to, t1) and G(to, t1)
are orthogonal, det R(t) = (A3 + A} + A3 + A3)%, det G(t) = (C2 + C? + C3 + C3)?. Assume further
on that det R(t) # 0, det G(t) # 0. Multiplying (27) by the inverse matrix R=!(tg, t1), we obtain an
inhomogeneous Riemann boundary-value problem for the vector function ¢, (21):

of (t1) — Gi(to, t1)dy, (t1) = F*(to, t1), t1 € L, (28)

Poo(21) = 2 (00) =0,

here the matrix Gy (to,t1) = — R~ (to,t1)G (to, t1) is of the class H and det Gy (tg,t1) = Szzg igx #0
on Ly, F*(to,t1) = R~ !(to,t1)F (to,t1). Denote by y = Inddet Gy (to, t1). Let X (21) = (X, (21),
Xfto (zl),thO (zl)thO(Zﬂ), B =0,1,2,3, be the canonical system of solutions to the homogeneous
problem, and X4, (z1) be the corresponding canonical matrix of the form

X Xor Xty Xitg

XY Xl X% Xy

X9y Xor, X5, X3,

0 1 2 3
X3t0 X3t0 X3t0 X3t0

Xio(21) = Xy, (20)] =

Put G1(to,t1) into (28) and achieve
X5 (1)) o (t1) = [Xgg (01)] ™ oy (81) + [X (80)] T (fo, 1)
Hence all the solutions of the problem under consideration are given by the formula

Xto(zl)/ (X (t0)] 7 F* (to, t1)dt
Ly

X P
Omeis A + Xy (21) Py (21),

Pty (21) =

here Py, (21) = (Poty (1), Pty (21)5 Paty (21), Pst, (21)) is a vector with arbitrary polynomial coefficients
depending on the variable ¢y. The solution to problem (26) we obtain from formulas (15).

Remark. If Inddet G(to,t1) = Ind det R(to,t1) then x = Ind det G(¢o,t1)=0 and degenerate problem
(26) meets the Noether theory.

5. An arbitrary Clifiord algebra R, ;. Let R, ; be an arbitrary Clifford algebra. The commutation
coefficients ang are determined from the equality eqes = aqgegeqn. Note that a,g = 1 if the elements

eq, eg commute with each other, and a,3 = —1 if the elements e,, eg anticommute. In order to split
the basis of the algebra R, 4 into disjoint B-sets of two elements it is necessary to construct the set
By = {eq, er}, where €2 = —1. If ¢ # 0, then we can take e,,e2 = —1, n = p + ¢ as the generating
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element; if ¢ =0, e2 =¢2, . = —1, then the generating element is e,; If ¢ =0, €2 =1, then the
generating element can be taken as e, _1 p, 6%—1,71 =-1.

In what follows we consider the Clifford algebra R, 4, ¢ # 0. The basis of the algebra is decomposed

into disjoint B-sets of two elements {eg}ger,, = lr_l B§, where By = {ep, e, }. An arbitrary element,
acl pn—1

a differential operator, and a function with values in the Clifford algebra can be represented in the form

w = Z eaWpg, f(w)= Z eagBy = Z 9Bg€as D=21n Z eaDpg

acl, 1 a€l,—1 a€l,—1 acl'y, 1

WBg = Tala + ZTaneén, 9gBg = faeo + fomen7 Ang = faeo + aomfomena DBg = €0 O + ena .
o on

Let Ly, be a simple smooth closed contour bounding in the complex variable plane the domain D} C C,
D, completes D,‘: \J L, to the extended complex plane C.

Statement of the Riemann problem: Find a regular function f(w) = >  ®pg(zx)eq by the
OéEFn—l

conditions
FH®A@M) + f~(1)C([t) = F(t), t e Ly, (29)

f7(o0) =0,
here A(t), C(t), F(t) are Clifford-valued functions that are non-zero on Ly, the components of which
belong to the class H(Ly). Functions A(t), C(t), F(t) have the form

At)= > App(tea, C(t)= > Cpgltlea, F(t)= Y  Fpg(t)ea.
aely_1 aely_1 acl,_1

Write boundary condition (29) in the matrix form

R(t)®T (1) + G(t)® (t) = F(t), t € Ly,

P~ (c0) =0,

here the matrices R(t), G(t) are determined from the equalities

FFOAD = Y heea 3 Agles= S Bh(t) Y Aga(teacs,
acly 1 acly 1 acly 1 acl’y 1
e = Y Bplea S Cpalles= 3 Bpalt) 3 Cpaltleacs,

aEFn,1 aEFn,1 aEFn,1 aEFn71
where ng (t) = Aﬁeo + aﬁnAgnen, 6Bg (t) = Cﬁ@o + aﬁn05n6n,
O (t) oy (1) Fi(t)
(1) = : , (1) = : , F(t) = :
O34 (t) Don_y (1) Fyn_1(2)

If the determinants of the matrices det R(¢) and det G(t) are non-zero, then repeating verbatim the
arguments of I[tem 1.4 we find the solution to the problem (29) by the formula

. NS o
D(zg) = )2(72612) /L X (tz]_i (t)dt + X(zx)P(2x),
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here X (z;,) is the canonical matrix, F*(t) = R~ (t)F(t), P(z) = (Po(z1), ..., Pan_1(23)) is a vector
with arbitrary polynomial coefficients.

I[ftheindex x = > xa is nonnegative, then by [1] (pp. 440-445) the solution vanishes at infinity

a€cl,—1

if and only if P(zy) is a vector whose components are polynomials of degree at most x — 1, and if x < 0,
then P(z) = 0. IT x < 0, then the solution vanishes at infinity if it meets the solvability conditions

QM)XF ()] FH(t)dt =0,
Ly

Q(zk) = (Q—xo—1s--»Q—yon_,—1), here Qo = Qu(z) are arbitrary polynomials of degree at most «,
Qa(zr) =0fora < 0.

—_—
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