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The monographs of N. I. Muskhelishvili ([1], pp. 416–446) and N. P. Vekua ([2], pp. 11–59) contain
the linear conjugation problem for several unknown functions. The problem is to find a piecewise
holomorphic vector Φ(z) = (Φ1,Φ2, . . . ,Φn) with a jump line L and having a finite order at infinity by
the boundary condition

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ L, (1)

where G(t) is a matrix of class H defined on L and is not singular anywhere in L, and g(t) is a vector of
class H on L. We construct and study the canonical system of solutions to the homogeneous Riemann
problem. We also give the solution to homogeneous and inhomogeneous Riemann problem (1), and
obtain the conditions for the solvability of the inhomogeneous problem with a negative index.

V. A. Kakichev ([3], pp. 4–56) set and carried out an investigation of the Riemann boundary-value
problem for analytic functions of two complex variables. The two-dimensional Riemann problem is
to find the four functions Φ±±(z,w) analytic in the domains D±± = D±

1 × D±
2 , respectively, by the

boundary condition

A(t, ω)Φ++(t, ω) + B(t, ω)Φ−+(t, ω)+C(t, ω)Φ+−(t, ω) + D(t, ω)Φ−−(t, ω) = F (t, ω), (2)

Φ±=(z1,∞) = 0, z1 ∈ D±
1 , Φ=±(∞, z2) = 0, z2 ∈ D±

2 ,

here the variables (t, ω) ∈ L2 = L1 × L2, L1 = ∂D1, L2 = ∂D2, and the coefficients A(t, ω), B(t, ω),
C(t, ω), D(t, ω), F (t, ω) are of class H(L2). In the general case, there is no solution to problem (2).
If A(t, ω) = B(t, ω), C(t, ω) = D(t, ω) or A(t, ω) = C(t, ω)), B(t, ω) = D(t, ω), then we obtain the
degenerate Riemann problems of the first kind that reduce to Riemann boundary-value problems for
one variable with the second variable as a parameter.

The index χL(A) of a function A(t, ω) continuous on L2 is defined ([3], pp. 10–11) as a change in
its argument passing along L : χL = 1

2πi

∫

L

d arg A(t, ω). Assume the notation χ1(A) = χL1(A) and

χ2 = χL2(A). It is proved in [4, 5] that if A, B, C, D, F are summable with degree p > 1 on the
skeleton L2 formed by simple closed Lyapunov curves, then conditions

1) A �= 0, B �= 0, C �= 0, D �= 0 on L2,
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2) χ1(A) = χ1(B), χ1(C) = χ1(D), χ2(A) = χ2(C), χ2(B) = χ2(D)
are necessary and sufficient for problem (2) to have a finite index.

In [6] they posed and considered the Riemann boundary-value problem for regular (monogenic) left
functions in the complex Clifford algebra C0,n = R0,n ⊕ C. The Riemann problem reduces to a singular
integral equation, which is investigated by the operator method.

In [7–11] the authors study the jump problem for monogenic functions in the set Ω ⊂ R
m whose

boundary Γ is compact topological surface in the Clifford algebra R0,n. They found the equivalent
monogeneity conditions from the left (from the right), the two-sided monogeneity condition for the
function in Ω. Also we know when the jump problem has a solution. In [6–8], the study is conducted for

the Dirac operator D =
n∑

i=1
ei

∂
∂xi

of an incomplete variable
n∑

i=1
xiei.

In [12–14] the authors consider the Riemann boundary-value problem for weakly regular left
functions in the Clifford algebras R0,2, R2,0, R3,0. Clifford-valued constants there were considered as
coefficients of boundary-value problem (2). The presented problems were reduced to matrix problems
for regular functions of two complex variables, which then split into Riemann boundary-value problems
for analytic functions of one variable.

In this paper we present and study the Riemann boundary-value problem for regular and strongly
regular functions in the Clifford algebras R0,2, R2,0, R3,0 with arbitrary coefficients. We reduce the
problem to a matrix problem for analytic functions of one and two complex variables, and give its
solution. Then we carry out the study of boundary-value problems in special cases and indicate a method
for solving the Riemann boundary-value problem in an arbitrary Clifford algebra.

In contrast with [6–11], we consider the Riemann boundary-value problem for regular functions f(w)
meeting the equation D·f = 0, here D = 1

2n

∑

α∈Γn

eα
∂

∂xα
, and for strongly regular functions.

1. The Clifford algebra. Detailed information on the structure and properties of the Clifford algebra
can be found in the monograph [15] (pp. 82–150).

Let Rp,q be a Clifford algebra of dimension m = 2n (n = p + q) with the basis eα = ei1 . . . eik ,
1 ≤ i1 < · · · < ik ≤ n, where the multi-index α = i1 . . . ik runs through all subsets in the set {1, . . . , n},
whose collection we denote by Γn. Let eφ = e0 = 1, e1, . . . , en be the canonical basis, e12,...,n = eτ and
multiplication in Rp,q be defined by the relation

eiej + ejei = 2δijεi,

here εi = e2
i = 1, i = 1, . . . , p, εi = e2

i = −1, i = p + 1, . . . , p + q.

The arbitrary and conjugate elements of the Clifford algebra are representable in the form w =∑

α∈Γn

xαeα, w =
∑

α∈Γn

xαεαeα. Denote by f(w) =
∑

α∈Γn

fα(w)eα, fα(w) : Ω → R a function with values

in the Clifford algebra and defined in the domain Ω ⊂ R
m, and by D = 1

2n

∑

α∈Γn

eα
∂

∂xα
the differential

operator. The function f belongs to F
(k)
p,q (Ω) if its components fα lie in C(k)(Ω).

B-set is the set of basis elements B = {eα}α∈B = {eαi , . . . , eαk
}, with the following property: For

any eαi , eαj ∈ B, αi �= αj , εαi + aαiαjεαj = 0, here aαiαj are commutation coefficients defined by
eαieαj = aαiαjeαjeαi . In [16] the author proved a theorem on the basis Rp,q decomposition into B-
sets consisting of two elements. In this case an arbitrary element of the algebra, the Clifford-valued
function, and the differential operator can be represented in the form

w =
∑

α∈Γn−1

eαuα
B0

, f(w) =
∑

α∈Γn−1

g̃Bα
0
eα, D =

1
2n

∑

α∈Γn−1

eαDBα
0
,

wBα
0

=
∑

β∈Bα
0

xα
βeβ , g̃Bα

0
=

∑

β∈Bα
0

fα
β eβ, D =

∑

β∈Bα
0

eβ
∂

∂xα
β

.
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38 KUZNETSOV et al.

Note that wBα
0

are complex numbers formed on the set B0 containing e0. In the Clifford algebra, we can
introduce various classes of regular functions. A function f ∈ F 1

p,q(Ω) is called [17–19]) weakly regular
on the left (from the right) in Ω ∈ R

m if

D·f = 0 (f · D = 0), Ω ∈ R
m,

is strongly regular on the left (from the right) if for all ν ∈ Γn−1

νD · f = 0, (f · νD = 0), νD = ενeνDeν , Ω ∈ R
m.

In [18] it was proved that the conditions of strong regularity are equivalent to the regularity conditions
by B-sets, consisting of two elements DBα

0
·f = 0, α ∈ Γn−1, which are equivalent to the conditions

DBα
0
·g̃

Bβ
0

= 0, α, β ∈ Γn−1.

2. Quaternion algebra. Quaternion algebra R0,2 is a real associative noncommutative algebra of
dimension m = 4 generated by elements e1, e2. The basis of the algebra is formed by the elements
{e0, e1, e2, e12}, here e0 is the algebra unit, e12 = e1e2, and the elements e1, e2, e12 meet the relations
e2
1 = e2

2 = e2
12 = −e0, ei · ej + ej · ei = 0, i �= j, i, j = 1, 2, 12. These relations define the operation of

multiplication in R0,2.

An arbitrary element of the algebra can be represented in real and complex form

w = x0e0 + x1e1 + x2e2 + x12e12 = z1e0 + z2e1,

here z1 = x0e0 + x12e12, z2 = x1e0 + x2e12 are complex numbers (the role of the imaginary unit plays
e12). The conjugate element is w = x0e0 − x1e1 − x2e2 − x12e12 = e0z1 − e1z2, here z1 = x0e0 −
x12e12, z2 = x1e0 − x2e12. Note that any nonzero element w has the inverse one w−1 = w

‖w‖2 =
x0e0−x1e1−x2e2−x12e12

x2
0+x2

1+x2
2+x2

12
, so R0,2 does not contain zero divisors.

Denote by f(w) = f0(w)e0 + f1(w)e1 + f2(w)e2 + f12(w)e12 a function with values in algebra R0,2

and defined in the domain Ω ⊂ R
4, and by

D =
1
4

(

e0
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e12

∂

∂x12

)

the differential operator. The quaternion-valued function f(w) and the differential operator D can be
represented in the complex form:

f(w) = Φ1(z1,, z2)e0 + Φ2(z1, z2)e1, here Φ1(z1, z2) = f0e0 + f12e12, Φ2(z1, z2) = f1e0 + f2e12;

D =
1
2

(

e0
∂

∂z1
+ e1

∂

∂z2

)

, here
∂

∂z1
=

1
2

(

e0
∂

∂x0
+ e12

∂

∂x12

)

,
∂

∂z2
=

1
2

(

e0
∂

∂x1
− e12

∂

∂x2

)

.

Let 12D = 1
2(e0

∂
∂z1

− e1
∂

∂z2
) be the differential operator. The function f(w) ∈ F 1

0,2(Ω) is called [19]
strongly regular on the left if

D · f = 0, 12D · f = 0, Ω ⊂ R
4.

The strong regularity conditions [18] are equivalent to the equalities

∂Φ1

∂z1
=

∂Φ1

∂z2
=

∂Φ2

∂z1
=

∂Φ2

∂z2
= 0,

which mean that the functions Φ1(z1, z2), Φ2(z1, z2) are analytic in the variables z1, z2.

2.1. First we consider the case of the function f(w) dependent only on one complex variable zk:

f(w) = Φ1(zk)e0 + Φ2(zk)e1, Φ1(zk) = f0e0 + f12e12, Φ2(zk) = f1e0 + f2e12,

∂Φ1
∂zk

= 0, ∂Φ2
∂zk

= 0. The latter equalities mean that the functions Φ1(zk), Φ2(zk) are analytic in the
variable zk.
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Let Lk be a simple smooth closed contour bounding in the plane of the complex variable the domain
D+

k ⊂ C, D−
k completes D+

k

⋃
Lk to the extended complex plane C.

Statement of the Riemann problem: Find the regular function f(w) = Φ1(zk)e0 + Φ2(zk)e1 by the
conditions

f+(t)A(t) + f−(t)C(t) = F (t), t ∈ Lk, (3)

f−(∞) = 0,

here the coefficients A(t), C(t), F (t) are quaternion-valued functions that do not vanish on Lk, and the
components of which belong to the class H(Lk). The functions A(t), C(t), F (t) are representable in the
complex form: A(t) = A1(t)e0 + A2(t)e1, C(t) = C1(t)e0 + C2(t)e1, F (t) = F1(t)e0 + F2(t)e1.

By the equalities Ake1 = e1Ak, Cke1 = e1Ck boundary condition (3) takes the form

Φ+
1 (t)A1(t) − Φ+

2 (t)A2(t) + Φ−
1 (t)C1(t) − Φ−

2 (t)C2(t) = F1(t),

Φ+
1 (t)A2(t) − Φ+

2 (t)A1(t) + Φ−
1 (t)C2(t) − Φ−

2 (t)C1(t) = F2(t), (4)

Φ−
1 (∞) = Φ−

2 (∞) = 0.

We represent boundary conditions (4) in the matrix form

R(t)Φ+(t) + G(t)Φ−(t) = F (t), t ∈ Lk, (5)

R(t) =

⎛

⎝A1(t) −A2(t)

A2(t) A1(t)

⎞

⎠ , G(t) =

⎛

⎝C1(t) −C2(t)

C2(t) C1(t)

⎞

⎠ ,

Φ+(t) =

⎛

⎝Φ+
1 (t)

Φ+
2 (t)

⎞

⎠ , Φ−(t) =

⎛

⎝Φ−
1 (t)

Φ−
2 (t)

⎞

⎠ , F (t) =

⎛

⎝F1(t)

F2(t)

⎞

⎠ ,

Φ−
1 (∞) = Φ−

2 (∞) = 0.

Note that the determinants of the matrices det R(t) = |A1(t)|2 + |A2(t)|2, det G(t) = |C1(t)|2 +
|C2(t)|2 are non-zero and are real functions. Multiplying equality (5) by the inverse matrix R−1(t),
we obtain the inhomogeneous Riemann boundary-value problem for a vector-valued function

Φ+(t) − G1(t)Φ−(t) = F ∗(t), t ∈ Lk, (6)

Φ−(∞) = 0,

here the matrix G1(t) = −R−1(t)G(t) is of class H and det G1(t) = det G(t)
det R(t) �= 0 on Lk, F ∗(t) =

R−1(t)F (t). Since the determinant of the matrix detG1(t) is a real function χ = Inddet G1(t) = 0.

Let Xβ(zk) = (Xβ
1 (zk),X

β
2 (zk)), β = 1, 2, be the canonical system of solutions of the homogeneous

problem, and X(zk) is the corresponding canonical matrix ([1], pp. 427–430):

X(zk) = ‖Xβ
α(zk)‖ =

⎛

⎝X1
1(zk) X2

1(zk)

X1
2(zk) X2

2(zk)

⎞

⎠ .

The canonical system has the following properties:

1) The canonical matrix is normal, i.e., its determinant Δ(zk) = det X(zk) does not vanish anywhere
in the finite part of the plane;
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2) let (−χβ) be the solution Xβ(zk) order at infinity, then the determinant Δ0(zk) = det ‖zχβ

k Xβ
α(zk)‖ =

z
χ1+χ2

k Δ(zk) is non-zero for zk = ∞;

3) X+(t) = G1(t)X−(t).

Putting G1(t) into (6) we obtain

[X+(t)]−1Φ+(t) = [X−(t)]−1Φ−(t) + [X+(t)]−1F ∗(t).

Since the index of the problem χ = 0, the solution to the problem under consideration exists and is given
by formula

Φ(zk) =
X(zk)
2πe12

∫

Lk

[X+(t)]−1F ∗(t)dt

t − zk
. (7)

2.2. The spatial Riemann boundary-value problem in R0,2. Let L2 = L1 ×L2 denote the common
frame of four regions D±± = D±

1 × D±
2 , and H(L2) be the set of continuous functions on L2 subject to

Hölder condition. A function Φ(t, ω) ∈ H(L2), if there exist constants Mk and powers αk (0 < αk < 1),
k = 1, 2, such that for any pair of points (t, ω), (t1, ω1) from L2 we have the inequality

|Φ(t, ω) − Φ(t1, ω1)| ≤ M1|t − t1|α1 + M2|ω − ω1|α2 .

Statement of the Riemann problem: Find a strongly regular function f(z1, z2) = Φ1(z1, z2)e0 +
Φ2(z1, z2)e1 by conditions

f++(t, ω)A(t, ω) + f−+(t, ω)B(t, ω) + f+−(t, ω)C(t, ω) + f−−(t, ω)D(t, ω) = F (t, ω), (8)

f±=(z1,∞) = 0, z1 ∈ D±
1 , f=±(∞, z2) = 0, z2 ∈ D±

2 , (9)

here the variables (t, ω) ∈ L2 = L1 × L2, L1 = ∂D1, L2 = ∂D2, and the coefficients A(t, ω), B(t, ω),
C(t, ω), D(t, ω) are non-zero on L2 quaternion-valued functions whose components belong to the class
H(L2), F (t, ω) ∈ H(L2).

We consider the degenerate case of problem (8), (9), for A(t, ω) = B(t, ω), C(t, ω) = D(t, ω). We
introduce the notation

Φ++
1 (t, ω) + Φ−+

1 (t, ω) = φ+
1t(ω), Φ++

2 (t, ω) + Φ−+
2 (t, ω) = φ+

2t(ω),

Φ+−
1 (t, ω) + Φ−−

1 (t, ω) = φ−
1t(ω), Φ+−

2 (t, ω) + Φ−−
2 (t, ω) = φ−

2t(ω), (10)

here t ∈ L1 is the parameter and ω ∈ L2 is the variable. Equalities (9) yield

Φ−+
k (∞, z2) = 0, Φ−−

k (∞, z2) = 0, z2 ∈ D±
2 , Φ+−

k (z1,∞) = 0, Φ−−
k (z1,∞) = 0, z1 ∈ D±

1 .

Let us represent the functions A(t, ω), C(t, ω), F (t, ω) in complex form: A(t, ω) = A1(t, ω)e0 +
A2(t, ω)e1, C(t, ω) = C1(t, ω)e0 + C2(t, ω)e1, F (t, ω) = F1(t, ω)e0 + F2(t, ω)e1. By the equalities
Ake1 = e1Ak, Cke1 = e1Ck we can rewrite boundary equations (8), (9) as

φ+
1t(ω)A1(t, ω) − φ+

2t(ω)A2(t, ω) + φ−
1t(ω)C1(t, ω) − φ−

2t(ω)C2(t, ω) = F1(t, ω),

φ+
1t(ω)A2(t, ω) + φ+

2t(ω)A1(t, ω) + φ−
1t(ω)C2(t, ω) + φ−

2t(ω)C1(t, ω) = F2(t, ω), (11)

φ−
1t(∞) = 0, φ−

2t(∞) = 0.

We represent the boundary conditions (11) in the matrix form

R(t, ω)φ+
t (ω) + G(t, ω)φ−

t (ω) = F (t, ω), (12)

φ−
t (∞) = 0,
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here

R(t, ω) =

⎛

⎝A1(t, ω) −A2(t, ω)

A2(t, ω) A1(t, ω)

⎞

⎠ , G(t, ω) =

⎛

⎝C1(t, ω) −C2(t, ω)

C2(t, ω) C1(t, ω)

⎞

⎠ ,

φ+
t (ω) =

⎛

⎝φ+
1t(ω)

φ+
2t(ω)

⎞

⎠ , φ−
t (ω) =

⎛

⎝φ−
1t(ω)

φ−
2t(ω)

⎞

⎠ , F (t, ω) =

⎛

⎝F1(t, ω)

F2(t, ω)

⎞

⎠ ,

φ−
t (∞) = (φ−

1t(∞), φ−
2t(∞)).

Let us find the solution to problem (12). Since det R(t, ω) = |A1(t, ω)|2 + |A2(t, ω)|2 �= 0, multiplication
of (12) with the inverse matrix R−1(t, ω) provides us with inhomogeneous Riemann boundary-value
problem for a vector-valued function

φ+
t (ω) − G1(t, ω)φ−

t (ω) = F ∗(t, ω), ω ∈ L2, (13)

φ−
t (∞) = 0,

here the matrix G1(t, ω) = −R−1(t, ω)G(t, ω) is of class H and detG1(t, ω) = det G(t,ω)
det R(t,ω) �= 0 on L1,

F ∗(t, ω) = R−1(t, ω)F (t, ω). Since the determinant detG1(t, ω) �= 0 and is a real function for any
values t, ω, we have χ = InddetG1(t, ω) = 0. Let Xβ

t (z2) = (Xβ
1t(z2),X

β
2t(z2)), β = 1, 2, be the

canonical system of the homogeneous problem solutions, and Xt(z2) be the corresponding canonical
matrix ([1], pp. 427–430) of type

Xt(z2) =
∥
∥
∥Xβ

αt(z2)
∥
∥
∥ =

⎛

⎝X1
1t(z2) X2

1t(z2)

X1
2t(z2) X2

2t(z2)

⎞

⎠ .

The canonical system of solutions has the following properties:

1) The canonical matrix is normal, i.e., its determinant Δt(z2) = det Xt(z2) vanishes nowhere in the
finite part of the plane z2;

2) let (−χβ) denote the order of the solution Xβ
t (z2) at infinity. Then the determinant Δ0(z2) =

det
∥
∥z

χβ

2 Xβ
tα(z2)

∥
∥ = z

χ1+χ2

2 Δt(z2) is non-zero for z2 = ∞;

3) X+
t (ω) = G1(t, ω)X−

t (ω).

Put G1(t, ω) into (13) and obtain

[X+
t (ω)]−1φ+

t (ω) = [X−
t (ω)]−1φ−

t (t) + [X+
t (ω)]−1F ∗(t, ω).

Since the index of the problem χ = 0, the solution of the problem under consideration exists and is given
by

φt(z2) =
Xt(z2)
2πe12

∫

Lk

[X+
t (ω)]−1F ∗(t, ω)dω

t − z2
. (14)

The solution to problem (8), (9) we derive from (10) by formulas

Φ±±
k (z1, z2) = ± 1

2πe12

∫

L1

φ+
kt(z2)dt

t − z1
, Φ±∓

k (z1, z2) = ± 1
2πe12

∫

L1

φ−
kt(z2)dt

t − z1
. (15)

3. Algebra R2,0. The algebra R2,0 is a real associative noncommutative algebra of dimension m = 4,
generated by vectors e1, e2. The basis of the algebra consists of elements e0, e1, e2, e12, here e0 is the
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algebra unity, e12 = e1e2, and the elements e1, e2, e12 possess the properties: e2
1 = e2

2 = e0, e2
12 = −e0,

ei · ej + ej · ei = 0, i �= j. These relations define the multiplication operation in R2,0.
An arbitrary element of an algebra can be represented in real and complex form w = x0e0 + x1e1 +

x2e2 + x12e12 = e0z1 + e1z2, here z1 = x0e0 + x12e12, z2 = x1e0 + x2e12 are complex numbers. The
conjugate element w takes the form w = x0e0 + x1e1 + x2e2 − x12e12 = z1e0 − z2e1, here z1 = x0e0 −
x12e12, z2 = x1e0 − x2e12. Zero divisors in R2,0 are defined either by the relation (see [20]) |z1|2 = |z2|2
or by x2

0 + x2
12 = x2

1 + x2
2.

Denote by f(w) = f0(w)e0 + f1(w)e1 + f2(w)e2 + f12(w)e12 a function with values in algebra R2,0,
defined in the domain Ω ⊂ R

4, and by

D =
1
4

(

e0
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
+ e12

∂

∂x12

)

the differential operator. The function f(w) and the differential operator D can be represented in the com-
plex form: f(w) = Φ1(z1,, z2)e0 + Φ2(z1, z2)e1, here Φ1(z1, z2) = f0e0 + f12e12,Φ2(z1, z2) = f1e0 −
f2e12; D = 1

2(e0
∂

∂z1
+ e1

∂
∂z2

), here ∂
∂z1

= 1
2(e0

∂
∂x0

+ e12
∂

∂x12
), ∂

∂z2
= 1

2(e0
∂

∂x1
+ e12

∂
∂x2

). Let 12D =
1
2(e0

∂
∂z1

− e1
∂

∂z2
) be the differential operator. A function f(w) ∈ F 1

2,0(Ω) is [19] strongly regular on the

left if D · f = 0, 12D · f = 0, Ω ⊂ R
4. Conditions of strong regularity [19] are equivalent to the equalities

∂Φ1

∂z1
=

∂Φ1

∂z2
=

∂Φ2

∂z1
=

∂Φ2

∂z2
= 0,

which mean that the functions Φ1(z1, z2), Φ2(z1, z2) are analytic in the variables z1, z2.

3.1. Riemann boundary-value problem (3) for a regular function f(w) = Φ1(zk)e0 + Φ2(zk)e1 with
Clifford-valued coefficients is studied similarly to the previous situations. We consider the spatial case.

Let L2 = L1 × L2 be the common frame of four domains D±± = D±
1 × D±

2 . Find a strongly regular
function f(z1, z2) = Φ1(z1, z2)e0 + Φ2(z1, z2)e1 by conditions

f++(t, ω)A(t, ω) + f−+(t, ω)B(t, ω) + f+−(t, ω)C(t, ω) + f−−(t, ω)D(t, ω) = F (t, ω), (16)

f±=(z1,∞) = 0, z1 ∈ D±
1 , f=±(∞, z2) = 0, z2 ∈ D±

2 , (17)

here the variables (t, ω) ∈ L2 = L1 × L2, L1 = ∂D1, L2 = ∂D2, and the coefficients A(t, ω), B(t, ω),
C(t, ω), D(t, ω) are Clifford-valued functions that are non-zero on L2, components of which belong to
the class H(L2), F (t, ω) ∈ H(L2).

Consider the degenerate case of the problem for A(t, ω) = B(t, ω), C(t, ω) = D(t, ω). Represent the
functions A(t, ω), C(t, ω), F (t, ω) in complex form. By equalities (10) boundary condition (16), (17)
turns into

φ+
1t(ω)A1(t, ω) + φ+

2t(ω)A2(t, ω) + φ−
1t(ω)C1(t, ω) + φ−

2t(ω)C2(t, ω) = F1(t, ω),

φ+
1t(ω)A2(t, ω) + φ+

2t(ω)A1(t, ω) + φ−
1t(ω)C2(t, ω) + φ−

2t(ω)C1(t, ω) = F2(t, ω), (18)

φ−
1t(∞) = 0, φ−

2t(∞) = 0.

We represent boundary conditions (18) in the matrix form

R(t, ω)φ+
t (ω) + G(t, ω)φ−

t (ω) = F (t, ω), (19)

φ−
t (∞) = 0,

here

R(t, ω) =

⎛

⎝A1(t, ω) A2(t, ω)

A2(t, ω) A1(t, ω)

⎞

⎠ , G(t, ω) =

⎛

⎝C1(t, ω) C2(t, ω)

C2(t, ω) C1(t, ω)

⎞

⎠ ,
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φ+
t (ω) =

⎛

⎝φ+
1t(ω)

φ+
2t(ω)

⎞

⎠ , φ−
t (ω) =

⎛

⎝φ−
1t(ω)

φ−
2t(ω)

⎞

⎠ , F (t, ω) =

⎛

⎝F1(t, ω)

F2(t, ω)

⎞

⎠ ,

φ−
t (∞) = (φ−

1t(∞), φ−
2t(∞)).

Let us find the solution to problem (19). Determinants of matrices R(t, ω), G(t, ω) equal detR(t, ω) =
|A1(t, ω)|2 − |A2(t, ω)|2, detG(t, ω) = |C1(t, ω)|2 − |C2(t, ω)|2, respectively. Let us consider the case
det R(t, ω) �= 0, detG(t, ω) �= 0.

Multiplying (19) by the inverse matrix R−1(t, ω) we obtain an inhomogeneous Riemann boundary-
value problem for a vector-valued function

φ+
t (ω) − G1(t, ω)φ−

t (ω) = F ∗(t, ω), ω ∈ L2,

φ−
t (∞) = 0,

here G1(t, ω) = −R−1(t, ω)G(t, ω) is of class H and detG1(t, ω) = det G(t,ω)
det R(t,ω) �= 0 on L2 for any value

of the parameter t, F ∗(t, ω) = R−1(t, ω)F (t, ω). Since the determinant detG1(t, ω) is a real function
for any values t, ω, we have χ = InddetG1(t, ω) = 0. Degenerate Riemann problem (16), (17) has a
solution given by formulas (14), (15).

3.2. Special partial cases. Consider problem (16), (17) for detR(t, ω) = 0, detG(t, ω) = 0. Then
|A1(t, ω)| = |A2(t, ω)|, |C1(t, ω)| = |C2(t, ω)| .

Let A(t, ω), C(t, ω) be spinors. It is known that the spinor space V is a left ideal in R2,0, i.e.,
multiplying an arbitrary element of the algebra R2,0 by a spinor, we obtain an element of the space V .
Thus, in order for the boundary-value problem(16), (17) to have a solution, a function F (t, ω) should be
a spinor. The basis of the spinors in R2,0 ([21], P. 15) is formed by the elements f0 = e0+e1

2 , f1 = e2−e12
2 .

The coefficients A(t, ω), C(t, ω), F (t, ω) are representable in the form A(t, ω) = A1(t, ω)(e0 + e1),
C(t, ω) = C1(t, ω)(e0 + e1), F (t, ω) = F1(t, ω)(e0 + e1). Degenerate boundary-value problem (16),
(17) is represented by the equalities

φ+
1t(ω)A1(t, ω) + φ+

2t(ω)A1(t, ω) + φ−
1t(ω)C1(t, ω) + φ−

2t(ω)C1(t, ω) = F1(t, ω), ω ∈ L2, (20)

φ−
1t(∞) = 0, φ−

2t(∞) = 0.

Problem (20) has an infinite set of solutions.

In the general case we have A1(t, ω) = |A1(t, ω)| ee12θ1 , A2(t, ω) = |A1(t, ω)| ee12θ2 , C1(t, ω) =
|C1(t, ω)| ee12θ3 , C2(t, ω) = |C1(t, ω)| ee12θ4 . In what follows we assume that θ1 = θ3, θ2 = θ4. Equa-
tions (18) turn into

|A1(t, ω)| ee12
θ1−θ2

2

(
φ+

1t(ω)ee12
θ1+θ2

2 + φ+
2t(ω)e−e12

θ1+θ2
2

)

+ |C1(t, ω)| ee12
θ1−θ2

2
(
φ−

1t(ω)ee12
θ1+θ2

2 + φ−
2t(ω)e−e12

θ1+θ2
2

)
= F1(t, ω),

|A1(t, ω)| ee12
θ2−θ1

2
(
φ+

1t(ω)ee12
θ1+θ2

2 + φ+
2t(ω)e−e12

θ1+θ2
2

)

+ |C1(t, ω)| ee12
θ2−θ1

2
(
φ−

1t(ω)ee12
θ1+θ2

2 + φ−
2t(ω)e−e12

θ1+θ2
2

)
= F2(t, ω).

If F2(t, ω) = F1(t, ω)ee12(θ2−θ1), then degenerate boundary-value problem (16), (17) is equivalent to the
equalities

φ+
1t(ω)A∗

1(t, ω) + φ+
2t(ω)A∗

1(t, ω) + φ−
1t(ω)C∗

1 (t, ω) + φ−
2t(ω)C∗

1 (t, ω) = F ∗
1 (t, ω), ω ∈ L2,

φ−
1t(∞) = 0, φ−

2t(∞) = 0,
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here A∗
1(t, ω) = |A1(t, ω)| ee12

θ1+θ2
2 , C∗

1 (t, ω) = |C1(t, ω)| ee12
θ1+θ2

2 , F ∗
1 (t, ω) = |F1(t, ω)| ee12

θ1+θ2
2 .

This problem also has an infinite number of solutions.

4. The Pauli algebra R3,0. The Pauli algebra R3,0 is a real associative noncommutative algebra of
dimension m = 8, generated by the vectors e1, e2, e3. The basis of the algebra is formed by the elements
{eα}α∈Γ3 = {e0, e1, e2, e12, e3, e13, e23, e123}, here Γ3 is a collection of subsets of the set {1, 2, 3}, e0 is
the algebra unity, eij = eiej , e123 = e1e2e3, and the elements e1, e2, e3 have the properties

e2
1 = e2

2 = e2
3 = e0, eiej + ejei = 0, i �= j, i, j = 1, 2, 3. (21)

Relation (21) yields that e2
12 = e2

13 = e2
23 = e2

123 = −e0, e123 commutes with all elements of the basis.
The basis of the Pauli algebra can be decomposed into B-sets of two elements [16]: {eα}α∈Γ3 =
B0 
 B1 
 B2 
 B3, B0 = {e0, e123}, B1 = {e1, e23}, B2 = {e2, e23}, B3 = {e3, e12}.

An arbitrary element of an algebra can be represented in real and complex form w =
∑

α∈Γ3

xαeα =

z0e0 + z1e12 + z2e13 + z3e23, here z0 = x0e0 + x123e123, z1 = x12e0 − x3e123, z2 = x13e0 + x2e123, z3 =
x23e0 − x1e123 are complex numbers (e123 plays the part of the imaginary unit).

Denote by

f(w) = Φ0(w)e0 + Φ1(w)e12 + Φ2(w)e13 + Φ3(w)e23,

Φ0(w) = f0e0 + f123e123, Φ1(w) = f12e0 − f3e123, Φ2(w) = f13e0 + f2e123, Φ3(w) = f23e0 − f1e123

a function with values in the algebra R3,0, and defined in the domain Ω ⊂ R
8, and by

D =
1
4

(

e0
∂

∂z0
+ e12

∂

∂z1
+ e13

∂

∂z2
+ e23

∂

∂z3

)

,

∂

∂z0
=

1
2

(

e0
∂

∂x0
+ e123

∂

∂x123

)

,
∂

∂z1
=

1
2

(

e0
∂

∂x12
− e123

∂

∂x3

)

,

∂

∂z2
=

1
2

(

e0
∂

∂x13
+ e123

∂

∂x2

)

,
∂

∂z3
=

1
2

(

e0
∂

∂x23
− e123

∂

∂x3

)

,

the differential operator.
A function f(w) ∈ F 1

3,0(Ω) is said to be strongly regular on the left [19] if for all ν ∈ Γ2

νD · f = 0, νD = ενeνDeν .

Conditions of strong regularity [19] are equivalent to the equalities

∂Φi

∂zj
= 0, i, j = 0, 1, 2, 3,

which mean that Φi(z0, z1, z2, z3) are analytic functions with respect to variables z0, z1, z2, z3.

4.1. The Riemann boundary-value problem in R3,0. Consider the case of the Clifford-
valued function f(w) depending only on one complex variable zk, i.e., f(w) = Φ0(zk)e0 + Φ1(zk)e12 +
Φ2(zk)e13 + Φ3(zk)e23. Let Lk be a simple smooth closed contour bounding in the complex variable
plane a domain D+

k ⊂ C, D−
k completes D+

k

⋃
Lk to the extended complex plane C.

Statement of the Riemann problem: Find a regular function f(w) by conditions

f+(t)A(t) + f−(t)C(t) = F (t), t ∈ Lk, (22)

f−(∞) = 0,

here A(t), C(t), F (t) are Clifford-valued functions that are non-zero on Lk, the components of which
belong to the class H(Lk). The functions A(t), C(t), F (t) are representable in the complex form:

A(t) = A0(t)e0 + A1(t)e12 + A2(t)e13 + A3(t)e23, C(t) = C0(t)e0 + C1(t)e12 + C2(t)e13 + C3(t)e23,
(23)
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F (t) = F0(t)e0 + F1(t)e12 + F2(t)e13 + F3(t)e23.

Since e123 commutes with all elements of the Pauli algebra, we rewrite boundary condition (22) in the
matrix form

R(t)Φ+(t) + G(t)Φ−(t) = F (t), t ∈ Lk, (24)

Φ−(∞) = 0,

R(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, G(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C0 −C1 −C2 −C3

C1 C0 −C3 C2

C2 C3 C0 −C1

C3 −C2 C1 C0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Φ+(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Φ+
0 (t)

Φ+
1 (t)

Φ+
2 (t)

Φ+
3 (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Φ−(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Φ−
0 (t)

Φ−
1 (t)

Φ−
2 (t)

Φ−
3 (t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, F (t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

F0(t)

F1(t)

F2(t)

F3(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We obtain a matrix problem for a vector-valued function. We note that the matrices R(t) and G(t)
are orthogonal, det R(t) = (A2

0 + A2
1 + A2

2 + A2
3)

2, det G(t) = (C2
0 + C2

1 + C2
2 + C2

3 )2. Further on we
assume that det R(t) �= 0, detG(t) �= 0. Multiplying (24) by the inverse matrix R−1(t) we obtain an
inhomogeneous Riemann boundary-value problem for the vector-function Φ(z):

Φ+(t) − G1(t)Φ−(t) = F ∗(t), t ∈ Lk, (25)

Φ−(∞) = 0,

here the matrix G1(t) = −R−1(t)G(t) is of class H and det G1(t) = det G(t)
det R(t) �= 0 on Lk, F ∗(t) =

R−1(t)F (t). Denote by χ = InddetG1(t). Let Xβ(zk) = (Xβ
0 (zk), Xβ

1 (zk), Xβ
2 (zk)X

β
3 (zk)), β =

0, 1, 2, 3 be the canonical system of solutions to the homogeneous problem, and X(zk) be the
corresponding canonical matrix ([1], pp. 427–430) of the form

X(zk) = ‖Xβ
α(zk)‖ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X0
0 X1

0 X2
0 X3

0

X0
1 X1

1 X2
1 X3

1

X0
2 X1

2 X2
2 X3

2

X0
3 X1

3 X2
3 X3

3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The canonical system has the following properties:

1) the canonical matrix is normal, i.e., its determinant Δ(zk) = detX(zk) does not vanish anywhere
in the finite part of the plane;

2) let (−χβ) be the order of the solution Xβ(zk) at infinity. Then the determinant Δ0(zk) =

det
∥
∥
∥z

χβ

k Xβ
α(zk)

∥
∥
∥ = z

χ0+χ1+χ2+χ3

k Δ(zk) is non-zero for zk = ∞;

3) X+(t) = G1(t)X−(t).

Put G1(t) into (25) and obtain

[X+(t)]−1Φ+(t) = [X−(t)]−1Φ−(t) + [X+(t)]−1F ∗(t).
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Hence all the solutions to the problem under consideration are given by the formula

Φ(zk) =
X(zk)
2πe123

∫

Lk

[X+(t)]−1F ∗(t)dt

t − zk
+ X(zk)P (zk),

here P (zk) = (P0(zk), P1(zk), P2(zk), P3(zk)) is a vector with arbitrary polynomial coefficients.
If the index χ = χ0 + χ1 + χ2 + χ3 is nonnegative, then ([1], pp. 440–445) the solution vanishes at

infinity if and only if P (zk) is a vector whose components are polynomials of degree at most χ − 1, and if
χ ≤ 0 then P (zk) ≡ 0. If χ < 0, then the solution vanishes at infinity if we have the solvability conditions

∫

Lk

Q(t)[X+(t)]−1F ∗(t)dt = 0,

Q(zk) = (Q−χ0−1, Q−χ1−1, Q−χ2−1, Q−χ3−1), here Qα = Qα(zk) are arbitrary polynomials of degree at
most α, Qα(zk) = 0 for α < 0.

4.2. Now consider the case det R(t) = 0, det G(t) = 0. Then [20] the coefficients A(t), C(t) of
the boundary-value problem (22) are zero divisors in the algebra R3,0. We consider a special case
of problem (22), where the coefficients A(t) and C(t) are spinors. Boundary-value problem (22) has
a solution if the function F (t) is a spinor. The basis of the spinors ([21], P. 60) in R3,0 is formed by
the elements f0 = e0+e3

2 , f1 = e23+e2
2 , f2 = −e13−e1

2 , f1 = e12+e123
2 . In the spinor space, the coefficients

A(t), C(t), F (t) can be represented as (23), where the coefficients Ak(t), Ck(t), Fk(t) are real functions.
Boundary problem (22) can be written in the form of (24), where the matrices R(t), G(t) depend on the
real variables, detR(t) �= 0, det G(t) �= 0. Multiplying (24) by the inverse matrix R−l (t), we obtain the
inhomogeneous Riemann boundary-value problem (25) for the vector-valued function Φ(z). The index
χ = Inddet G1(t) = 0. The solution to the problem is given by the formula

Φ(zk) =
X(zk)
2πe123

∫

Lk

[X+(t)]−1F ∗(t)dt

t − zk
.

4.3. We consider the case of the function f(w) dependent on two complex variables. For definiteness,
we take as variables the variables z0 and z1.

Statement of the Riemann problem. Let L2 = L0 × L1 be the common frame of four do-
mains D±± = D±

1 × D±
2 . Find a strongly regular function f(z0, z1) = Φ0(z0, z1)e0 + Φ1(z0, z1)e12 +

Φ2(z0, z1)e13 + Φ3(z0, z1)e23 by the conditions

f++(t0, t1)A(t0, t1) + f−+(t0, t1)B(t0, t1) + f+−(t0, t1)C(t0, t1) + f−−(t0, t1)D(t0, t1) = F (t0, t1),

f±=(z0,∞) = 0, z0 ∈ D±
0 , f=±(∞, z1) = 0, z1 ∈ D±

1 , (26)

here the variables (t, ω) ∈ L2 = L1 × L2, L1 = ∂D1, L2 = ∂D2 and the coefficients A(t0, t1), B(t0, t1),
C(t0, t1), D(t0, t1) are Clifford-valued functions that are not zero on L2, with components of the class
H(L2), F (t0, t1) ∈ H(L2).

We consider the degenerate case of A(t0, t1) = B(t0, t1), C(t0, t1) = D(t0, t1). Introduce the nota-
tion f++(t0, t1) + f−+(t0, t1) = φ+

t0(t1), f++(t0, t1) + f−+(t0, t1) = φ+
t0(t1), here t0 ∈ L0 is the param-

eter, and t1 is the variable. Boudary conditions (26) take the form

φ+
t0(t1)A(t0, t1) + φ−

t0(t1)C(t0, t1) = F (t0, t1),

φ∞(z1) = φz0(∞) = 0.

Represent the functions A(t0, t1), C(t0, t1), F (t0, t1), φ+
t0(t1), φ−

t0(t1) as (23), and write the boundary
conditions in the matrix form

R(t0, t1)φ+
t0(t1) + G(t0, t1)φ−

t0(t1) = F (t0, t1), t1 ∈ L1, (27)

φ∞(z1) = φz0(∞) = 0,
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R(t0, t1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, G(t0, t1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C0 −C1 −C2 −C3

C1 C0 −C3 C2

C2 C3 C0 −C1

C3 −C2 C1 C0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

φ+
t0(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ+
0t0

(t1)

φ+
1t0

(t1)

φ+
2t0

(t1)

φ+
3t0

(t1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, φ−
t0(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

φ−
0t0

(t1)

φ−
1t0

(t1)

φ−
2t0

(t1)

φ−
3t0

(t1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, F (t0, t1) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

F0(t0, t1)

F1(t0, t1)

F2(t0, t1)

F3(t0, t1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

We then have a matrix problem for the vector function. Note that the matrices R(t0, t1) and G(t0, t1)
are orthogonal, det R(t) = (A2

0 + A2
1 + A2

2 + A2
3)

2, detG(t) = (C2
0 + C2

1 + C2
2 + C2

3 )2. Assume further
on that detR(t) �= 0, detG(t) �= 0. Multiplying (27) by the inverse matrix R−1(t0, t1), we obtain an
inhomogeneous Riemann boundary-value problem for the vector function φt0(z1):

φ+
t0(t1) − G1(t0, t1)φ−

t0(t1) = F ∗(t0, t1), t1 ∈ L1, (28)

φ∞(z1) = φz0(∞) = 0,

here the matrix G1(t0, t1) = −R−1(t0, t1)G(t0, t1) is of the class H and detG1(t0, t1) = det G(t0,t1)
det R(t0,t1) �= 0

on L1, F ∗(t0, t1) = R−1(t0, t1)F (t0, t1). Denote by χ = Inddet G1(t0, t1). Let Xβ
t0(z1) = (Xβ

0t0
(z1),

Xβ
1t0

(z1),X
β
2t0

(z1)X
β
3t0

(z1)), β = 0, 1, 2, 3, be the canonical system of solutions to the homogeneous
problem, and Xt0(z1) be the corresponding canonical matrix of the form

Xt0(z1) = ‖Xβ
αt0(z1)‖ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

X0
0t0

X1
0t X2

0t0
X3

0t0

X0
1t0

X1
1t0

X2
1t0

X3
1t0

X0
2t0 X1

2t0 X2
2t0 X3

2t0

X0
3t0 X1

3t0 X2
3t0 X3

3t0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Put G1(t0, t1) into (28) and achieve

[X+
t0(t1)]

−1φ+
t0(t1) = [X−

t0(t1)]
−1φ−

t0(t1) + [X+
t0(t1)]

−1F ∗(t0, t1).

Hence all the solutions of the problem under consideration are given by the formula

φt0(z1) =
Xt0(z1)
2πe123

∫

L1

[X+
t0(t1)]

−1F ∗(t0, t1)dt1

t1 − z1
+ Xt0(z1)Pt0(z1),

here Pt0(z1) = (P0t0(z1), P1t0(z1), P2t0(z1), P3t0(z1)) is a vector with arbitrary polynomial coefficients
depending on the variable t0. The solution to problem (26) we obtain from formulas (15).

Remark. If InddetG(t0, t1) = InddetR(t0, t1) then χ = Inddet G(t0, t1)=0 and degenerate problem
(26) meets the Noether theory.

5. An arbitrary Clifford algebra Rp,q. Let Rp,q be an arbitrary Clifford algebra. The commutation
coefficients aαβ are determined from the equality eαeβ = aαβeβeα. Note that aαβ = 1 if the elements
eα, eβ commute with each other, and aαβ = −1 if the elements eα, eβ anticommute. In order to split
the basis of the algebra Rp,q into disjoint B-sets of two elements, it is necessary to construct the set
B0 = {e0, ek}, where e2

k = −1. If q �= 0, then we can take en, e2
n = −1, n = p + q as the generating
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element; if q = 0, e2
τ = e2

12...n = −1, then the generating element is eτ ; If q = 0, e2
τ = 1, then the

generating element can be taken as en−1,n, e2
n−1,n = −1.

In what follows we consider the Clifford algebra Rp,q, q �= 0. The basis of the algebra is decomposed
into disjoint B-sets of two elements {eβ}β∈Γn = 


α∈Γn−1

Bα
0 , where B0 = {e0, en}. An arbitrary element,

a differential operator, and a function with values in the Clifford algebra can be represented in the form

w =
∑

α∈Γn−1

eαwBα
0
, f(w) =

∑

α∈Γn−1

eαgBα
0

=
∑

α∈Γn−1

g̃Bα
0
eα, D =

1
2n

∑

α∈Γn−1

eαDBα
0
,

wBα
0

= xαeα + xαnen, gBα
0

= fαe0 + fαnen, g̃Bα
0

= fαe0 + aαnfαnen,DBα
0

= e0
∂

∂xα
+ en

∂

∂xαn

.

Let Lk be a simple smooth closed contour bounding in the complex variable plane the domain D+
k ⊂ C,

D−
k completes D+

k

⋃
Lk to the extended complex plane C.

Statement of the Riemann problem: Find a regular function f(w) =
∑

α∈Γn−1

ΦBα
0
(zk)eα by the

conditions

f+(t)A(t) + f−(t)C(t) = F (t), t ∈ Lk, (29)

f−(∞) = 0,

here A(t), C(t), F (t) are Clifford-valued functions that are non-zero on Lk, the components of which
belong to the class H(Lk). Functions A(t), C(t), F (t) have the form

A(t) =
∑

α∈Γn−1

ABα
0
(t)eα, C(t) =

∑

α∈Γn−1

CBα
0
(t)eα, F (t) =

∑

α∈Γn−1

FBα
0
(t)eα.

Write boundary condition (29) in the matrix form

R(t)Φ+(t) + G(t)Φ−(t) = F (t), t ∈ Lk,

Φ−(∞) = 0,

here the matrices R(t), G(t) are determined from the equalities

f+(t)A(t) =
∑

α∈Γn−1

Φ+
Bα

0
(t)eα ·

∑

α∈Γn−1

A
Bβ

0
(t)eβ =

∑

α∈Γn−1

Φ+
Bα

0
(t)

∑

α∈Γn−1

Ã
Bβ

0
(t)eαeβ,

f−(t)C(t) =
∑

α∈Γn−1

Φ−
Bα

0
(t)eα ·

∑

α∈Γn−1

C
Bβ

0
(t)eβ =

∑

α∈Γn−1

Φ−
Bα

0
(t)

∑

α∈Γn−1

C̃
Bβ

0
(t)eαeβ ,

where Ã
Bβ

0
(t) = Aβe0 + aβnAβnen, C̃

Bβ
0
(t) = Cβe0 + aβnCβnen,

Φ+(t) =

⎛

⎜
⎜
⎜
⎝

Φ+
1 (t)
...

Φ+
2n−1(t)

⎞

⎟
⎟
⎟
⎠

, Φ−(t) =

⎛

⎜
⎜
⎜
⎝

Φ−
1 (t)
...

Φ−
2n−1(t)

⎞

⎟
⎟
⎟
⎠

, F (t) =

⎛

⎜
⎜
⎜
⎝

F1(t)
...

F2n−1(t)

⎞

⎟
⎟
⎟
⎠

.

If the determinants of the matrices detR(t) and det G(t) are non-zero, then repeating verbatim the
arguments of Item 1.4 we find the solution to the problem (29) by the formula

Φ(zk) =
X(zk)
2πek

∫

Lk

[X+(t)]−1F ∗(t)dt

t − zk
+ X(zk)P (zk),

RUSSIAN MATHEMATICS Vol. 62 No. 1 2018



ON RIEMANN BOUNDARY-VALUE PROBLEM FOR REGULAR FUNCTIONS 49

here X(zk) is the canonical matrix, F ∗(t) = R−1(t)F (t), P (zk) = (P0(zk), . . . , P2n−1(zk)) is a vector
with arbitrary polynomial coefficients.

If the index χ =
∑

α∈Γn−1

χα is nonnegative, then by [1] (pp. 440-445) the solution vanishes at infinity

if and only if P (zk) is a vector whose components are polynomials of degree at most χ − 1, and if χ ≤ 0,
then P (zk) ≡ 0. If χ < 0, then the solution vanishes at infinity if it meets the solvability conditions

∫

Lk

Q(t)[X+(t)]−1F ∗(t)dt = 0,

Q(zk) = (Q−χ0−1, . . . , Q−χ2n−1−1), here Qα = Qα(zk) are arbitrary polynomials of degree at most α,
Qα(zk) = 0 for α < 0.
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