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INTRODUCTION

All groups in question are finite. It is known that the set of all formations F is a complete lattice with
respect to the inclusion ⊆. Recall that a nonempty set of formations Θ is called a complete lattice of
formations ([1], P. 151) if the intersection of any family of formations from Θ belongs to Θ and there
is a formation F in Θ such that H ⊆ F for any formation H from Θ. Various families of formations can
form complete lattices, in particular, the family of all saturated formations L and the family of all solubly
saturated formations C ([1], P. 151; [2], P. 97).

It is well-known that a sublattice of a complete lattice P may be a complete lattice and be not a
complete sublattice of P ([3], Chap. V, P. 195). A sublattice H of a complete lattice P is called complete
if sup

P
X ∈ H and inf

P
X ∈ H for any nonempty subset X ⊆ H.

This being the case, we have sup
H

X = sup
P

X and inf
H

X = inf
P

X .

The property of completeness for sublattices of formations was studied in [1], [4–6], [7] (P. 273). Note
that the fact that sublattices of saturated and solubly saturated formations are complete was established
due to functor methods in the study of formations (see A. N. Skiba’s monograph [1]). A formation F is
called saturated if the condition G/Φ(G) ∈ F implies G ∈ F. A formation F is called solubly saturated
if the condition G/Φ(R(G)) ∈ F always implies G ∈ F. The symbol R(G) denotes the greatest soluble
normal subgroup of a group G. For a nonempty saturated formation F, it is accepted to write F = LF (f)
and say that F is a saturated formation with local satellite f ([2], P. 20; [8], P. 356).

In [9], A. N. Skiba introduced multiply saturated and totally saturated formations. Every formation
is considered to be 0-tuply saturated. For n ≥ 1, a formation F is called an n-tuply saturated if
F = LF (f), where all nonempty values of the local satellite f are (n − 1)-tuply saturated formations. A
formation is called totally saturated if it is n-tuply saturated for all natural numbers n.

Let τ(G) be a system of subgroups in a group G. It is said that τ is a subgroup functor (in the sense
of A. N. Skiba, [1], P. 16) if the following conditions hold:

1) G ∈ τ(G);
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2) for any epimorphism ϕ : A �→ B and any groups H ∈ τ(A), T ∈ τ(B), we have

Hϕ ∈ τ(B) and Tϕ−1 ∈ τ(A).

If τ(G) = {G}, then the functor τ is called trivial. We will consider only subgroup functors τ such
that, for any group G, all subgroups from τ(G) are subnormal in G. A formation F is called τ-closed
([1], P. 23) if τ(G) ⊆ F for any group G from F.

In [1] (P. 158) it is proved that the lattice of all τ-closed n-tuply saturated formations Lτ
n is a complete

sublattice of the lattice of all n-tuply saturated formations Ln and the following question was posed.

Question 1 ([1], question 4.1.15, P. 159). Is it true that the lattice of all τ-closed totally saturated
formations Lτ

∞ is a complete sublattice of the lattice of all totally saturated formations L∞?

The affirmative answer to Question 1 was obtained by V. G. Safonov and L. A. Shemetkov [4]. The
following analog of Question 1 is of interest.

Question 2. Is it true that the lattice of all τ-closed saturated formations Lτ is a complete sublattice of
the lattice of all τ-closed solubly saturated formations Cτ ?

The answer to Question 2 is the main result of this paper. We prove the following

Theorem. The lattice of all τ-closed saturated formations Lτ is a complete sublattice of the
lattice of all τ-closed solubly saturated formations Cτ .

As a consequence of the theorem, in the case when τ is a trivial subgroup functor, we obtain the
following

Corollary ([6], theorem 1.1). The lattice of all saturated formations L is a complete sublattice of the
lattice of all solubly saturated formations C.

We will use the standard terminology adopted in [1], [2], [7], [8], [10]–[14].

1. PRELIMINARIES

Recall that π(G) denotes the set of all prime divisors of the order of a group G. For an arbitrary
totality of groups X, Com (X) denotes the class of all simple abelian groups A such that A ∼= H/K for
some composition factor H/K of a group G ∈ X.

Cp(G) denotes the intersection of the centralizers of the principal factors of a group G whose
composition factors have prime order p (if a group G has no such factors, it is assumed that Cp(G) = G).

The symbols G, Np, Gp′ , and S denote, respectively, the class of all groups, the class of all p-groups,
the class of all p′-groups, and the class of all soluble groups. For an arbitrary class of groups F ⊇ (1),
GF denotes the product of all normal F-subgroups of G. In particular, we write

Op(G) = GNp , R(G) = GS, Fp(G) = GGp′Np .

Let P be the set of all prime numbers. Then, for every formation function of the form

f : P → {formations of groups}, (1)

LF (f) denotes the totality of all groups G such that either G = 1 or G 	= 1 and G/Fp(G) ∈ f(p) for
all p ∈ π(G). If a formation F is such that F = LF (f) for some function f of the form (1), then F is
called a saturated formation with local satellite f ([2], P. 20; [8], P. 356). If F = LF (f) and f(p) ⊆ F

for all p ∈ P, then f is called an inner local satellite of F. The symbol GpF (p) denotes the set of all
groups A such that AF (p) is a p-group. According to [8] (Chap. IV, proposition 3.8, P. 360), for any
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nonempty saturated formation F, there exists a unique formation function F such that F = LF (F ) and
F (p) = NpF (p) ⊆ F for all prime p. The formation function F is called the canonical local satellite
of F.

For any formation function

f : P ∪ {0} → {formations of groups}, (2)

we let [14] CF (f) = (G | G/R(G) ∈ f(0) and G/Cp(G) ∈ f(p) for all p ∈ π(Com (G))). If a formation
F is such that F = CF (f) for some function f of the form (2), then F is called solubly saturated
formation with composition satellite f . If F = CF (f) and f(p) ⊆ F for all p ∈ P, then f is called an
inner composition satellite of F. According to [14], for any nonempty solubly saturated formation F,
there exists a unique formation function F of the form (2) such that F = CF (F ), F (p) = NpF (p) ⊆ F

for all prime p, and F (0) = F. The formation function F is called the canonical composition satellite
of F.

Let Θ be a complete lattice of formations. A formation function f of the form either (1) or (2) is called
Θ-valued if all its values belong to Θ. The symbol Θl denotes the set of all formations possessing a local
Θ-valued satellite ([2], P. 78). The symbol Θc denotes the set of all formations possessing a composition
Θ-valued satellite.

We denote by Lτ the set of all τ-closed saturated formations and by Cτ the set of all τ-closed solubly
saturated formations. The sets Lτ and Cτ are complete lattices with respect to the inclusion ⊆ ([1],
P. 151). In a lattice Lτ (Cτ ), for an arbitrary nonempty totality Σ = {Hi | i ∈ Λ} of its elements, ∩

i∈Λ
Hi

is the greatest lower bound for Σ in the lattice Lτ (in the lattice Cτ , respectively); lτ form
(

∪
i∈Λ

Hi

)
is

the least upper bound for Σ in the lattice Lτ
(
cτ form

(
∪

i∈Λ
Hi, respectively

)
is the least upper bound

for Σ in the lattice Cτ
)

. The symbol lτ form(X) (cτ form(X), respectively) denotes the intersection of all

τ-closed saturated (τ-closed solubly saturated) formations containing a totality of groups X.

In the proof of the theorem we will use the following results.

Lemma 1 ([1], theorem 1.3.7, P. 29). Let F be a saturated formation. Then the following assertions
hold:

1) if F has an inner τ-valued local satellite, then F is a τ-closed formation;

2) if F is a τ-closed formation, then its canonical local satellite is τ-valued.

Lemma 2 ([2], lemma 18.3, P. 168). Let F and H be formations, H be saturated, and let G be a group
of the minimal order from F \ H. Then G is monolithic, its monolith coincides with GH and if GH

is a p-group, then GH = CG(GH) = Fp(G).

Lemma 3 ([8], Chap. IV, proposition 1.5, P. 335). Let F be a formation and R/S a normal section of
a F-group G. Let K be a normal subgroup of G contained in CG(R/S). Let H = (R/S) � (G/K)
be the semidirect product with respect to the following action of G/K on R/S:

(rS)gK = g−1rgS, r ∈ R, g ∈ G.

Then H ∈ F.

Let Θ be a complete lattice of formations. For any totality of groups X, denote by Θ form(X) the
intersection of all formations from Θ which contain all groups from X. In the case when Θ = Fτ is the
lattice of all τ-closed formations, we write τ form(X) instead of Θ form(X).
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For any totality of formations {Fi | i ∈ I} from Θ, we let

∨Θ(Fi | i ∈ I) = Θ form
( ⋃

i∈I

Fi

)
.

In the case when Θ = Fτ , we write ∨τ (Fi | i ∈ I) instead of ∨Θ(Fi | i ∈ I).
Let {fi | i ∈ I} be an arbitrary totality of Θ-valued satellites. Then ∨Θ(fi | i ∈ I) denotes a satellite f

such that f(p) = Θ form
(

∪
i∈I

fi(p)
)

for all p ∈ P.

A complete lattice of formations Θl is called inductive ([1], P. 151) if, for any collection {Fi | i ∈ I}
of formations Fi from Θl and every such a collection {fi | i ∈ I} of inner Θ-valued local satellites fi of
formations Fi, we have

∨Θl(Fi | i ∈ I) = LF
(
∨Θ (fi | i ∈ I)

)
.

Lemma 4 ([1], theorem 4.1.1, P. 152). The lattice of all τ-closed saturated formations Lτ is
inductive.

Similarly, a complete lattice of formations Θc is called inductive ([1], P. 151; [12], P. 220) if, for any
collection {Fi | i ∈ I} of formations Fi from Θc and every such a collection {fi | i ∈ I} of inner Θ-valued
composition satellites fi of formations Fi, we have

∨Θc(Fi | i ∈ I) = CF
(
∨Θ (fi | i ∈ I)

)
.

Lemma 5 ([5], theorem 2.1). The lattice Cτ of all τ-closed solubly saturated formations is
inductive.

2. PROOF OF THE THEOREM

Let {Fi | i ∈ I} be an arbitrary collection of τ-closed saturated formations, and let Fi be the canonical
local satellite of Fi. Then, by Lemma 1, the satellite Fi is τ-valued. Let

F = ∨Lτ (Fi | i ∈ I) = lτ form
(

∪
i∈I

Fi

)
and H = ∨Cτ (Fi | i ∈ I) = cτ form

(
∪

i∈I
Fi

)
.

It is clear that ∩
i∈I

Fi is the τ-closed saturated formation which is the greatest lower bound for {Fi | i ∈ I}
in the lattice Lτ . On the other hand, it is clear that F is the least upper bound for {Fi | i ∈ I} in the lattice
Lτ and H is the least upper bound for {Fi | i ∈ I} in the lattice Cτ . Let us prove that F = H. The inclusion
H ⊆ F is obvious. Therefore, we only need to prove that F ⊆ H.

Let Hi = CF (Hi), where the composition satellite Hi is such that

Hi(a) =

⎧⎨
⎩

Fi, if a = 0;

Fi(a), if a = p ∈ P.

Let us first show that Fi = Hi for all i.
Assume that Hi 	⊆ Fi. Let G be a group of the minimal order from Hi \ Fi. Then G is a monolithic

group with monolith R = GFi .
If R is a nonabelian group, then R(G) = 1. Therefore, G ∼= G/1 = G/R(G) ∈ Hi(0) = Fi, a

contradiction. Consequently, R is an abelian p-group, where p ∈ π(Com (R)). By Lemma 2, R =
CG(R) = Fp(G). Therefore, R = Op(G) = Cp(G). Consequently,

G/Fp(G) = G/Cp(G) ∈ Hi(p) = Fi(p).

Therefore, G ∈ Fi, a contradiction. Thus, Hi ⊆ Fi.
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We show now that Fi ⊆ Hi. Assume the contrary. Let G be a group of the minimal order from Fi \Hi.
Then G is a monolithic group with monolith R = GHi . Let p ∈ π(R).

If R is a nonabelian group, then Fp(G) = 1. Therefore, G ∼= G/1 = G/Fp(G) ∈ Fi(p) = Hi(p) ⊆ Hi,
a contradiction.

Thus, R is an abelian p-group. Let T = R � (G/CG(R)). Since G ∈ Fi, by Lemma 3, we have
T ∈ Fi.

If |T | < |G|, then T ∈ Hi by the choice of G. Consequently,

G/CG(R) ∼= T/R = T/CT (R) = T/Cp(T ) ∈ Hi(p).

Therefore, G ∈ Hi, a contradiction.

Thus, |T | = |G|. Consequently, R = CG(R), which implies R = CG(R) = Op(G) = Cp(G) =
Fp(G). Thus, G/Cp(G) = G/Fp(G) = G/Op(G) ∈ Fi(p) = Hi(p). Therefore, G ∈ NpHi(p) =
Hi(p) ⊆ Hi. Consequently, G ∈ Hi, a contradiction. Therefore, Fi ⊆ Hi. Thus, Fi = Hi for all i ∈ I.

Since, by Lemma 4, the lattice Lτ is inductive, we have

F = ∨Lτ (Fi | i ∈ I) = LF
(
∨τ (Fi | i ∈ I)

)
.

By Lemma 5, the lattice Cτ is inductive, then

H = ∨Cτ (Fi | i ∈ I) = CF
(
∨τ (Hi | i ∈ I)

)
.

Now we proceed to the proof of the equality F = H. It is easy to see that H ⊆ F. Assume that F 	⊆ H.
Let G be a group of the minimal order from F \H. Then G is a monolithic group with monolith R = GH.
Let p ∈ π(R).

If R is a nonabelian group, then Fp(G) = 1. Since the canonical local satellite Fi is inner, we have

G ∼= G/1 = G/Fp(G) ∈
(
∨τ (Fi | i ∈ I)

)
(p) = ∨τ (Fi(p) | i ∈ I)

⊆ ∨τ (Fi | i ∈ I) ⊆ ∨Cτ (Fi | i ∈ I) = H,

a contradiction. Therefore, R is an abelian p-group. Let T = R � (G/CG(R)). Since G ∈ F, by
Lemma 3, we have T ∈ F.

If |T | < |G|, then T ∈ H by the choice of G. Consequently,

G/CG(R) ∼= T/R = T/CG(R) = T/CT (R) = T/Cp(T ) ∈
(
∨τ (Hi | i ∈ I)

)
(p).

Therefore, G ∈ H, a contradiction. Therefore, |T | = |G|. Consequently, by Lemma 2, we have R =
CG(R) = Op(G) = Cp(G) = Fp(G). Since Fi = Hi for all i ∈ I, we have

G/Cp(G) = G/Fp(G) ∈
(
∨τ (Fi | i ∈ I)

)
(p) = ∨τ (Fi(p) | i ∈ I)

= ∨τ (Hi(p) | i ∈ I) =
(
∨τ (Hi | i ∈ I)

)
(p).

Consequently, G ∈ H. Therefore, F ⊆ H. Thus, F = H. The theorem has been proved.
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