On Complete Sublattices of Formations of Finite Groups

N. N. Vorob'ev^{1*}

¹P. M. Masherov Vitebsk State University Moskovskii pr. 33, Vitebsk, 2100 Republic of Belarus Received September 3, 2016

Abstract—We prove that the lattice of all τ -closed saturated formations of finite groups is a complete sublattice of the lattice of all τ -closed solubly saturated formations of finite groups.

DOI: 10.3103/S1066369X18010036

Keywords: finite group, formation of groups, subgroup functor, τ -closed formation, saturated formation, solubly saturated formation, complete lattice of formations, complete sublattice.

INTRODUCTION

All groups in question are finite. It is known that the set of all formations \mathcal{F} is a complete lattice with respect to the inclusion \subseteq . Recall that a nonempty set of formations Θ is called a *complete lattice of formations* ([1], P. 151) if the intersection of any family of formations from Θ belongs to Θ and there is a formation \mathfrak{F} in Θ such that $\mathfrak{H} \subseteq \mathfrak{F}$ for any formation \mathfrak{H} from Θ . Various families of formations can form complete lattices, in particular, the family of all saturated formations \mathcal{L} and the family of all solubly saturated formations \mathcal{C} ([1], P. 151; [2], P. 97).

It is well-known that a sublattice of a complete lattice \mathcal{P} may be a complete lattice and be not a complete sublattice of $\mathcal{P}([3], \text{Chap. V, P. 195})$. A *sublattice* \mathcal{H} of a complete lattice \mathcal{P} is called *complete* if $\sup_{\mathcal{P}} \mathcal{X} \in \mathcal{H}$ and $\inf_{\mathcal{P}} \mathcal{X} \in \mathcal{H}$ for any nonempty subset $\mathcal{X} \subseteq \mathcal{H}$.

This being the case, we have $\sup_{\mathcal{H}} \mathcal{X} = \sup_{\mathcal{P}} \mathcal{X}$ and $\inf_{\mathcal{H}} \mathcal{X} = \inf_{\mathcal{P}} \mathcal{X}$.

The property of completeness for sublattices of formations was studied in [1], [4–6], [7] (P. 273). Note that the fact that sublattices of saturated and solubly saturated formations are complete was established due to functor methods in the study of formations (see A. N. Skiba's monograph [1]). A formation \mathfrak{F} is called *saturated* if the condition $G/\Phi(G) \in \mathfrak{F}$ implies $G \in \mathfrak{F}$. A formation \mathfrak{F} is called *solubly saturated* if the condition $G/\Phi(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$. The symbol R(G) denotes the greatest soluble normal subgroup of a group G. For a nonempty saturated formation \mathfrak{F} , it is accepted to write $\mathfrak{F} = LF(f)$ and say that \mathfrak{F} is a saturated formation with local satellite f([2], P. 20; [8], P. 356).

In [9], A. N. Skiba introduced multiply saturated and totally saturated formations. Every formation is considered to be 0-*tuply saturated*. For $n \ge 1$, a formation \mathfrak{F} is called an *n*-*tuply saturated* if $\mathfrak{F} = LF(f)$, where all nonempty values of the local satellite f are (n - 1)-tuply saturated formations. A formation is called *totally saturated* if it is *n*-tuply saturated for all natural numbers n.

Let $\tau(G)$ be a system of subgroups in a group *G*. It is said that τ is a *subgroup functor* (in the sense of A. N. Skiba, [1], P. 16) if the following conditions hold:

1) $G \in \tau(G);$

^{*}E-mail: vornic2001@mail.ru.

VOROB'EV

2) for any epimorphism $\varphi: A \mapsto B$ and any groups $H \in \tau(A), T \in \tau(B)$, we have

$$H^{\varphi} \in \tau(B)$$
 and $T^{\varphi^{-1}} \in \tau(A)$.

If $\tau(G) = \{G\}$, then the functor τ is called *trivial*. We will consider only subgroup functors τ such that, for any group G, all subgroups from $\tau(G)$ are subnormal in G. A formation \mathfrak{F} is called τ -*closed* ([1], P. 23) if $\tau(G) \subseteq \mathfrak{F}$ for any group G from \mathfrak{F} .

In [1] (P. 158) it is proved that the lattice of all τ -closed *n*-tuply saturated formations \mathcal{L}_n^{τ} is a complete sublattice of the lattice of all *n*-tuply saturated formations \mathcal{L}_n and the following question was posed.

Question 1 ([1], question 4.1.15, P. 159). Is it true that the lattice of all τ -closed totally saturated formations $\mathcal{L}_{\infty}^{\tau}$ is a complete sublattice of the lattice of all totally saturated formations \mathcal{L}_{∞} ?

The affirmative answer to Question 1 was obtained by V. G. Safonov and L. A. Shemetkov [4]. The following analog of Question 1 is of interest.

Question 2. Is it true that the lattice of all τ -closed saturated formations \mathcal{L}^{τ} is a complete sublattice of the lattice of all τ -closed solubly saturated formations \mathcal{C}^{τ} ?

The answer to Question 2 is the main result of this paper. We prove the following

Theorem. The lattice of all τ -closed saturated formations \mathcal{L}^{τ} is a complete sublattice of the lattice of all τ -closed solubly saturated formations \mathcal{C}^{τ} .

As a consequence of the theorem, in the case when τ is a trivial subgroup functor, we obtain the following

Corollary ([6], theorem 1.1). The lattice of all saturated formations \mathcal{L} is a complete sublattice of the lattice of all solubly saturated formations \mathcal{C} .

We will use the standard terminology adopted in [1], [2], [7], [8], [10]-[14].

1. PRELIMINARIES

Recall that $\pi(G)$ denotes the set of all prime divisors of the order of a group G. For an arbitrary totality of groups \mathfrak{X} , Com (\mathfrak{X}) denotes the class of all simple abelian groups A such that $A \cong H/K$ for some composition factor H/K of a group $G \in \mathfrak{X}$.

 $C^{p}(G)$ denotes the intersection of the centralizers of the principal factors of a group G whose composition factors have prime order p (if a group G has no such factors, it is assumed that $C^{p}(G) = G$).

The symbols $\mathfrak{G}, \mathfrak{N}_p, \mathfrak{G}_{p'}$, and \mathfrak{S} denote, respectively, the class of all groups, the class of all *p*-groups, the class of all *p*'-groups, and the class of all soluble groups. For an arbitrary class of groups $\mathfrak{F} \supseteq (1)$, $G_{\mathfrak{F}}$ denotes the product of all normal \mathfrak{F} -subgroups of G. In particular, we write

$$O_p(G) = G_{\mathfrak{N}_p}, \ R(G) = G_{\mathfrak{S}}, \ F_p(G) = G_{\mathfrak{G}_{n'}\mathfrak{N}_p}.$$

Let \mathbb{P} be the set of all prime numbers. Then, for every formation function of the form

$$f: \mathbb{P} \to \{\text{formations of groups}\},\tag{1}$$

LF(f) denotes the totality of all groups G such that either G = 1 or $G \neq 1$ and $G/F_p(G) \in f(p)$ for all $p \in \pi(G)$. If a formation \mathfrak{F} is such that $\mathfrak{F} = LF(f)$ for some function f of the form (1), then \mathfrak{F} is called a *saturated formation* with *local satellite* f([2], P. 20; [8], P. 356). If $\mathfrak{F} = LF(f)$ and $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$, then f is called an *inner local satellite* of \mathfrak{F} . The symbol $\mathfrak{G}_pF(p)$ denotes the set of all groups A such that $A^{F(p)}$ is a p-group. According to [8] (Chap. IV, proposition 3.8, P. 360), for any nonempty saturated formation \mathfrak{F} , there exists a unique formation function F such that $\mathfrak{F} = LF(F)$ and $F(p) = \mathfrak{N}_p F(p) \subseteq \mathfrak{F}$ for all prime p. The formation function F is called the *canonical local satellite* of \mathfrak{F} .

For any formation function

$$f: \mathbb{P} \cup \{0\} \to \{\text{formations of groups}\},\tag{2}$$

we let [14] $CF(f) = (G | G/R(G) \in f(0) \text{ and } G/C^p(G) \in f(p) \text{ for all } p \in \pi(\text{Com }(G)))$. If a formation \mathfrak{F} is such that $\mathfrak{F} = CF(f)$ for some function f of the form (2), then \mathfrak{F} is called *solubly saturated* formation with composition satellite f. If $\mathfrak{F} = CF(f)$ and $f(p) \subseteq \mathfrak{F}$ for all $p \in \mathbb{P}$, then f is called an *inner composition satellite* of \mathfrak{F} . According to [14], for any nonempty solubly saturated formation \mathfrak{F} , there exists a unique formation function F of the form (2) such that $\mathfrak{F} = CF(F)$, $F(p) = \mathfrak{N}_p F(p) \subseteq \mathfrak{F}$ for all prime p, and $F(0) = \mathfrak{F}$. The formation function F is called the *canonical composition satellite* of \mathfrak{F} .

Let Θ be a complete lattice of formations. A formation function f of the form either (1) or (2) is called Θ -valued if all its values belong to Θ . The symbol Θ^l denotes the set of all formations possessing a local Θ -valued satellite ([2], P. 78). The symbol Θ^c denotes the set of all formations possessing a composition Θ -valued satellite.

We denote by \mathcal{L}^{τ} the set of all τ -closed saturated formations and by \mathcal{C}^{τ} the set of all τ -closed solubly saturated formations. The sets \mathcal{L}^{τ} and \mathcal{C}^{τ} are complete lattices with respect to the inclusion \subseteq ([1], P. 151). In a lattice \mathcal{L}^{τ} (\mathcal{C}^{τ}), for an arbitrary nonempty totality $\Sigma = \{\mathcal{H}_i \mid i \in \Lambda\}$ of its elements, $\bigcap_{i \in \Lambda} \mathcal{H}_i$ is the greatest lower bound for Σ in the lattice \mathcal{L}^{τ} (in the lattice \mathcal{C}^{τ} , respectively); l^{τ} form $\left(\bigcup_{i \in \Lambda} \mathcal{H}_i\right)$ is the least upper bound for Σ in the lattice \mathcal{L}^{τ} (c^{τ} form $\left(\bigcup_{i \in \Lambda} \mathcal{H}_i\right)$ is the least upper bound for Σ in the lattice \mathcal{C}^{τ}). The symbol l^{τ} form(\mathfrak{X}) (c^{τ} form(\mathfrak{X}), respectively) denotes the intersection of all τ -closed saturated (τ -closed solubly saturated) formations containing a totality of groups \mathfrak{X} .

In the proof of the theorem we will use the following results.

Lemma 1 ([1], theorem 1.3.7, P. 29). Let \mathfrak{F} be a saturated formation. Then the following assertions hold:

1) if \mathfrak{F} has an inner τ -valued local satellite, then \mathfrak{F} is a τ -closed formation;

2) if \mathfrak{F} is a τ -closed formation, then its canonical local satellite is τ -valued.

Lemma 2 ([2], lemma 18.3, P. 168). Let \mathfrak{F} and \mathfrak{H} be formations, \mathfrak{H} be saturated, and let G be a group of the minimal order from $\mathfrak{F} \setminus \mathfrak{H}$. Then G is monolithic, its monolith coincides with $G^{\mathfrak{H}}$ and if $G^{\mathfrak{H}}$ is a p-group, then $G^{\mathfrak{H}} = C_G(G^{\mathfrak{H}}) = F_p(G)$.

Lemma 3 ([8], Chap. IV, proposition 1.5, P. 335). Let \mathfrak{F} be a formation and R/S a normal section of a \mathfrak{F} -group G. Let K be a normal subgroup of G contained in $C_G(R/S)$. Let $H = (R/S) \rtimes (G/K)$ be the semidirect product with respect to the following action of G/K on R/S:

$$(rS)^{gK} = g^{-1}rgS, \ r \in R, \ g \in G.$$

Then $H \in \mathfrak{F}$.

Let Θ be a complete lattice of formations. For any totality of groups \mathfrak{X} , denote by Θ form(\mathfrak{X}) the intersection of all formations from Θ which contain all groups from \mathfrak{X} . In the case when $\Theta = \mathcal{F}^{\tau}$ is the lattice of all τ -closed formations, we write τ form(\mathfrak{X}) instead of Θ form(\mathfrak{X}).

RUSSIAN MATHEMATICS Vol. 62 No. 1 2018

For any totality of formations $\{\mathfrak{F}_i \mid i \in I\}$ from Θ , we let

$$\vee_{\Theta}(\mathfrak{F}_i \mid i \in I) = \Theta \operatorname{form}\left(\bigcup_{i \in I} \mathfrak{F}_i\right).$$

In the case when $\Theta = \mathcal{F}^{\tau}$, we write $\forall^{\tau}(\mathfrak{F}_i \mid i \in I)$ instead of $\forall_{\Theta}(\mathfrak{F}_i \mid i \in I)$.

Let $\{f_i \mid i \in I\}$ be an arbitrary totality of Θ -valued satellites. Then $\vee_{\Theta}(f_i \mid i \in I)$ denotes a satellite f such that $f(p) = \Theta$ form $\left(\bigcup_{i \in I} f_i(p)\right)$ for all $p \in \mathbb{P}$.

A complete lattice of formations Θ^l is called *inductive* ([1], P. 151) if, for any collection $\{\mathfrak{F}_i \mid i \in I\}$ of formations \mathfrak{F}_i from Θ^l and every such a collection $\{f_i \mid i \in I\}$ of inner Θ -valued local satellites f_i of formations \mathfrak{F}_i , we have

$$\vee_{\Theta^{l}}(\mathfrak{F}_{i} \mid i \in I) = LF(\vee_{\Theta} (f_{i} \mid i \in I)).$$

Lemma 4 ([1], theorem 4.1.1, P. 152). The lattice of all τ -closed saturated formations \mathcal{L}^{τ} is inductive.

Similarly, a complete lattice of formations Θ^c is called *inductive* ([1], P. 151; [12], P. 220) if, for any collection $\{\mathfrak{F}_i \mid i \in I\}$ of formations \mathfrak{F}_i from Θ^c and every such a collection $\{f_i \mid i \in I\}$ of inner Θ -valued composition satellites f_i of formations \mathfrak{F}_i , we have

$$\vee_{\Theta^c}(\mathfrak{F}_i \mid i \in I) = CF(\vee_{\Theta} (f_i \mid i \in I)).$$

Lemma 5 ([5], theorem 2.1). The lattice C^{τ} of all τ -closed solubly saturated formations is inductive.

2. PROOF OF THE THEOREM

Let $\{\mathfrak{F}_i \mid i \in I\}$ be an arbitrary collection of τ -closed saturated formations, and let F_i be the canonical local satellite of \mathfrak{F}_i . Then, by Lemma 1, the satellite F_i is τ -valued. Let

$$\mathfrak{F} = \vee_{\mathcal{L}^{\tau}}(\mathfrak{F}_i \mid i \in I) = l^{\tau} \operatorname{form}\left(\bigcup_{i \in I} \mathfrak{F}_i\right) \text{ and } \mathfrak{H} = \vee_{\mathcal{C}^{\tau}}(\mathfrak{F}_i \mid i \in I) = c^{\tau} \operatorname{form}\left(\bigcup_{i \in I} \mathfrak{F}_i\right).$$

It is clear that $\bigcap_{i \in I} \mathfrak{F}_i$ is the τ -closed saturated formation which is the greatest lower bound for $\{\mathfrak{F}_i \mid i \in I\}$ in the lattice \mathcal{L}^{τ} . On the other hand, it is clear that \mathfrak{F} is the least upper bound for $\{\mathfrak{F}_i \mid i \in I\}$ in the lattice \mathcal{L}^{τ} and \mathfrak{H} is the least upper bound for $\{\mathfrak{F}_i \mid i \in I\}$ in the lattice \mathcal{C}^{τ} . Let us prove that $\mathfrak{F} = \mathfrak{H}$. The inclusion $\mathfrak{H} \subseteq \mathfrak{F}$ is obvious. Therefore, we only need to prove that $\mathfrak{F} \subseteq \mathfrak{H}$.

Let $\mathfrak{H}_i = CF(H_i)$, where the composition satellite H_i is such that

$$H_{i}(a) = \begin{cases} \mathfrak{F}_{i}, & \text{if } a = 0; \\ F_{i}(a), & \text{if } a = p \in \mathbb{P} \end{cases}$$

Let us first show that $\mathfrak{F}_i = \mathfrak{H}_i$ for all *i*.

Assume that $\mathfrak{H}_i \not\subseteq \mathfrak{F}_i$. Let G be a group of the minimal order from $\mathfrak{H}_i \setminus \mathfrak{F}_i$. Then G is a monolithic group with monolith $R = G^{\mathfrak{F}_i}$.

If R is a nonabelian group, then R(G) = 1. Therefore, $G \cong G/1 = G/R(G) \in H_i(0) = \mathfrak{F}_i$, a contradiction. Consequently, R is an abelian p-group, where $p \in \pi(\text{Com}(R))$. By Lemma 2, $R = C_G(R) = F_p(G)$. Therefore, $R = O_p(G) = C^p(G)$. Consequently,

$$G/F_p(G) = G/C^p(G) \in H_i(p) = F_i(p)$$

Therefore, $G \in \mathfrak{F}_i$, a contradiction. Thus, $\mathfrak{H}_i \subseteq \mathfrak{F}_i$.

RUSSIAN MATHEMATICS Vol. 62 No. 1 2018

We show now that $\mathfrak{F}_i \subseteq \mathfrak{H}_i$. Assume the contrary. Let *G* be a group of the minimal order from $\mathfrak{F}_i \setminus \mathfrak{H}_i$. Then *G* is a monolithic group with monolith $R = G^{\mathfrak{H}_i}$. Let $p \in \pi(R)$.

If R is a nonabelian group, then $F_p(G) = 1$. Therefore, $G \cong G/1 = G/F_p(G) \in F_i(p) = H_i(p) \subseteq \mathfrak{H}_i$, a contradiction.

Thus, R is an abelian p-group. Let $T = R \rtimes (G/C_G(R))$. Since $G \in \mathfrak{F}_i$, by Lemma 3, we have $T \in \mathfrak{F}_i$.

If |T| < |G|, then $T \in \mathfrak{H}_i$ by the choice of G. Consequently,

$$G/C_G(R) \cong T/R = T/C_T(R) = T/C^p(T) \in H_i(p).$$

Therefore, $G \in \mathfrak{H}_i$, a contradiction.

Thus, |T| = |G|. Consequently, $R = C_G(R)$, which implies $R = C_G(R) = O_p(G) = C^p(G) = F_p(G)$. Thus, $G/C^p(G) = G/F_p(G) = G/O_p(G) \in F_i(p) = H_i(p)$. Therefore, $G \in \mathfrak{N}_pH_i(p) = H_i(p) \subseteq \mathfrak{H}_i$. Consequently, $G \in \mathfrak{H}_i$, a contradiction. Therefore, $\mathfrak{F}_i \subseteq \mathfrak{H}_i$. Thus, $\mathfrak{F}_i = \mathfrak{H}_i$ for all $i \in I$.

Since, by Lemma 4, the lattice \mathcal{L}^{τ} is inductive, we have

$$\mathfrak{F} = \vee_{\mathcal{L}^{\tau}} (\mathfrak{F}_i \mid i \in I) = LF \big(\vee^{\tau} (F_i \mid i \in I) \big).$$

By Lemma 5, the lattice C^{τ} is inductive, then

$$\mathfrak{H} = \vee_{\mathcal{C}^{\tau}} (\mathfrak{F}_i \mid i \in I) = CF \big(\vee^{\tau} (H_i \mid i \in I) \big).$$

Now we proceed to the proof of the equality $\mathfrak{F} = \mathfrak{H}$. It is easy to see that $\mathfrak{H} \subseteq \mathfrak{F}$. Assume that $\mathfrak{F} \not\subseteq \mathfrak{H}$. Let *G* be a group of the minimal order from $\mathfrak{F} \setminus \mathfrak{H}$. Then *G* is a monolithic group with monolith $R = G^{\mathfrak{H}}$. Let $p \in \pi(R)$.

If R is a nonabelian group, then $F_p(G) = 1$. Since the canonical local satellite F_i is inner, we have

$$\begin{split} G &\cong G/1 = G/F_p(G) \in \left(\vee^{\tau} (F_i \mid i \in I) \right)(p) = \vee^{\tau}(F_i(p) \mid i \in I) \\ &\subseteq \vee^{\tau} (\mathfrak{F}_i \mid i \in I) \subseteq \vee_{\mathcal{C}^{\tau}} (\mathfrak{F}_i \mid i \in I) = \mathfrak{H}, \end{split}$$

a contradiction. Therefore, R is an abelian p-group. Let $T = R \rtimes (G/C_G(R))$. Since $G \in \mathfrak{F}$, by Lemma 3, we have $T \in \mathfrak{F}$.

If |T| < |G|, then $T \in \mathfrak{H}$ by the choice of G. Consequently,

$$G/C_G(R) \cong T/R = T/C_G(R) = T/C_T(R) = T/C^p(T) \in (\vee^{\tau} (H_i \mid i \in I))(p).$$

Therefore, $G \in \mathfrak{H}$, a contradiction. Therefore, |T| = |G|. Consequently, by Lemma 2, we have $R = C_G(R) = O_p(G) = C^p(G) = F_p(G)$. Since $\mathfrak{F}_i = \mathfrak{H}_i$ for all $i \in I$, we have

$$G/C^{p}(G) = G/F_{p}(G) \in (\vee^{\tau} (F_{i} \mid i \in I))(p) = \vee^{\tau}(F_{i}(p) \mid i \in I)$$

= $\vee^{\tau}(H_{i}(p) \mid i \in I) = (\vee^{\tau} (H_{i} \mid i \in I))(p).$

Consequently, $G \in \mathfrak{H}$. Therefore, $\mathfrak{F} \subseteq \mathfrak{H}$. Thus, $\mathfrak{F} = \mathfrak{H}$. The theorem has been proved.

ACKNOWLEDGMENTS

The author wishes to express his gratitude to the referee for valuable comments which allowed the author to improve the paper.

Supported by the State Research Program "Conversions-2020" (State registration number 20160350), Republic of Belarus.

RUSSIAN MATHEMATICS Vol. 62 No. 1 2018

VOROB'EV

REFERENCES

- 1. Skiba, A. N. Algebra of Formations (Belarusk. Navuka, Minsk, 1997) [in Russian].
- 2. Shemetkov, L. A. and Skiba, A. N. "Formations of Algebraic Systems", in *Modern Algebra* (Nauka, Moscow, 1989)[in Russian].
- 3. Artamonov, V. A. Salii, V. N. Skornyakov, L. A. et al. *General Algebra*, L. A. Skornyakov (Ed.), Spravochnaya Matematicheskaya Biblioteka (Nauka, Moscow, 1991), Vol. 2 [in Russian].
- 4. Safonov, V. G. and Shemetkov, L. A. "Sublattices of the Lattice of Totally Saturated Formations of Finite Groups", Dokl. Nats. Akad. Belarusi **52**, No. 4, 34–37 (2008) [in Russian].
- 5. Vorob'ev, N. N. and Tsarev, A. A. "On the Modularity of a Lattice of τ -closed *n*-Multiply ω -Composite Formations", Ukr. Mat. Zh. **62**, No. 4, 453–463 (2010).
- Skiba, A. N. and Vorob'ev, N. N. "On the Lattices of Saturated and Solubly Saturated Formations of Finite Groups", Southeast Asian Bull. Math. 37, No. 5, 771–780 (2013).
- 7. Guo Wenbin, *Structure Theory for Canonical Classes of Finite Groups* (Springer-Verlag, Berlin–Heidelberg, 2015).
- 8. Doerk, K. and Hawkes, T. *Finite Soluble Groups*, De Gruyter Expo. Math. (Walter de Gruyter & Co., Berlin-New York, 1992), Vol. 4.
- 9. Skiba, A. N. "Characterization of Finite Solvable Groups of a Given Nilpotent Length", Vopr. Algebry, No. 3, 21–31 (1987) [in Russian].
- 10. Guo Wenbin, "The Theory of Classes of Groups", in *Mathematics and its Applications* (Sci. Press/Kluwer Academic Publishers, Beijing–New York–Dordrecht–Boston–London, 2000), Vol. 505.
- 11. Ballester-Bolinches, A. and Ezquerro, L. M. "Classes of Finite Groups", in *Mathematics and Applications* (Springer, Dordrecht, 2006), Vol. 584.
- 12. Vorob'ev, N. N. *Algebra of Classes of Finite Groups* (P. M. Masherov Vitebsk State University, Vitebsk, 2012) [in Russian].
- Shemetkov, L. A. and Skiba, A. N. "Multiply ω-Local Formations and Fitting Classes of Finite Groups", Sib. Adv. Math. 10, No. 2, 112–141 (2000).
- 14. Skiba, A. N. and Shemetkov, L. A. "Multiply *L*-Composite Formations of Finite Groups", Ukr. Math. J. **52**, No. 6, 898–913 (2000).

Translated by V. V. Shurygin