
ISSN 1066-369X, Russian Mathematics, 2017, Vol. 61, No. 10, pp. 44–53. c© Allerton Press, Inc., 2017.
Original Russian Text c© I.V. Konnov, Salahuddin, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2017, No. 10, pp. 50–61.

Two-Level Iterative Method for Non-Stationary
Mixed Variational Inequalities

I. V. Konnov1* and Salahuddin2**

1Kazan Federal University
ul. Kremlyovskaya 18, Kazan, 420008 Russia

2Jazan University
Jazan, K. S. A.

Received June 3, 2016

Abstract—We consider a mixed variational inequality problem involving a set-valued non-
monotone mapping and a general convex function, where only approximation sequences are known
instead of exact values of the cost mapping and function, and feasible set. We suggest to apply a
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attained without concordance of penalty, accuracy, and approximation parameters under coercivity
type conditions.
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PRELIMINARIES

Let D be a nonempty set in the real n-dimensional space R
n, h : D → R a convex function, and let

G : D → Π(Rn) be a point-to-set mapping. Here Π(A) denotes the family of all nonempty subsets of a
set A.

Then one can define the mixed variational inequality problem (MVI, for short), which is to find an
element x∗ ∈ D such that

∃g∗ ∈ G(x∗), 〈g∗, y − x∗〉 + h(y) − h(x∗) ≥ 0 ∀y ∈ D. (1)

Suppose also that D is a set of the form

D = V
⋂

W, (2)

V and W are convex and closed sets in the space R
n. This partition of the feasible set is optional

and usually means that V represents “simple” constraints whereas W corresponds to complex or
“functional” ones and a suitable penalty function should be used for this set.

Problem (1) was first proposed in [1], [2] (with the single-valued mapping G) and further investigated
by many authors (see, e.g., [3–7]). MVIs give a suitable format for various problems arising in Eco-
nomics, Mathematical Physics, and Operations Research. Besides, the usual variational inequalities
and convex optimization problems can be viewed as particular cases of MVI (1).

We observe that most existing solution methods for these problems require exact values of the cost
mapping G, function h, and feasible set D. However, this is often impossible due to the calculation errors
and lack of the necessary information. The same situation arises if we find it useful to replace the initial
problem by a sequence of auxiliary ones with better properties, as in regularization and penalty methods.
Within this approach, we can also replace general nonlinear functions with their simple (for example,
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TWO-LEVEL ITERATIVE METHOD 45

piecewise-linear) approximations, and the set-valued mapping G with a sequence of its single-valued
approximations, etc. In other words, we have to develop methods for non-stationary problems, where
only sequences of approximations are known instead of the exact values.

There exist a number of methods for non-stationary optimization and variational inequality problems,
but they are based essentially upon monotonicity assumptions and restrictive concordance rules for
accuracy, approximation, penalty, and iteration parameters, which creates serious difficulties for their
implementation (see, e.g., [8–12] and the references therein).

In [13–15] several penalty based methods for non-stationary optimization and variational inequality
problems were suggested. They do not require special concordance of parameters and their convergence
was established under coercivity conditions without any monotonicity assumptions. However, the
question about existence of an implementable iterative method within this approach, which is applied to
approximate problems within some evaluated accuracy and can find a solution of the initial limit problem
was still open, because exact solutions of approximate problems utilized in the above papers can not be
found explicitly. In this paper, we give the positive answer to this question for some problems of form (1)–
(2) and present an implementable method, which involves an inexact solution of approximate problems
and does not require special concordance of the parameters or monotonicity assumptions.

Namely, we intend to describe an iterative method for the case when we have only some sequences,
i.e.,

i) sets {Vl} approximate the set V ,

ii) auxiliary penalty functions Pl : Vl → R approximate some penalty function P : V → R for the
set W ,

iii) single-valued gradient mappings {Gl} approximate the mapping G,

iv) functions hl : Vl → R approximate the function h.

We consider MVI (1)–(2) as an unknown limit problem. The above approximation properties will be
specialized. In addition, we only notice that the approximation condition iii) implies certain potentiality
properties of the mapping G, but no monotonicity will be assumed.

We suggest to find for each l an inexact solution of the auxiliary penalized MVI: find zl ∈ Vl such that

〈Gl(zl), v − zl〉 + hl(v) − hl(zl) + τl[Pl(v) − Pl(zl)] ≥ 0 ∀y ∈ Vl, (3)

where τl > 0, with a descent method in a finite number of inner iterations. Clearly, any descent method
for the above MVI will require either monotonicity or potentiality of the mapping Gl together with
the convexity of the function hl for convergence (see, e.g., [5, 6]). However, we do not require the
monotonicity of Gl and of G in this work. We impose the potentiality condition on Gl, i.e., our MVIs
(3), hence (1), represent necessary optimality conditions for non-convex optimization problems, but the
joint monotonicity/convexity does not hold here. For this reason, the solution set of MVI (3) need not
to be convex, but we suggest to utilize a gap function and show that it enables one to evaluate a desired
accuracy even in the non-monotone case that yields the general convergence. In such a way we create
a two-level convergent iterative method for the initial limit problem.

1. DESCENT SPLITTING METHOD FOR THE AUXILIARY PROBLEM

Recall some definitions. Let X be a nonempty subset of a finite dimensional space E. A function
f : X → R is said to be

a) convex on a convex set K ⊆ X if for each pair of points x, y ∈ K and for all α ∈ [0, 1], it holds that

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y);
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46 I. V. KONNOV, SALAHUDDIN

b) strongly convex with constant κ > 0 on a convex set K ⊆ X, if for each pair of points x, y ∈ K
and for all α ∈ [0, 1] it holds that

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) − 0.5κα(1 − α)‖x − y‖2;

c) upper (lower) semicontinuous on a set K ⊆ X if for each sequence {xl} → x, xl ∈ K, we have

lim sup
l→∞

f(xl) ≤ f(x) (lim inf
l→∞

f(xl) ≥ f(x)).

d) coercive if f(x) → +∞ as ‖x‖ → ∞.

We see that b)=⇒a) and b)=⇒d), but converse is not true in general. A sequence of sets {Xk} is called
Mosco convergent to a set X if and only if

i) for each sequence {xk} → x, xk ∈ Xk, we have x ∈ X;

ii) for each point x ∈ X there exists a sequence {xk} → x with xk ∈ Xk.

Let us first consider the problem of finding the minimal value of some goal function μ : R
n → R on a

feasible set X ⊆ R
n. For brevity, we write this problem as

min
x∈X

→ μ(x), (4)

its solution set is denoted by X∗ and the optimal value of the function by μ∗. Next, we further suppose
that the set X ⊆ R

n is non-empty, convex, and closed,

μ(x) = μ1(x) + μ2(x) (5)

where μ1 : R
n → R is a smooth, but not necessary convex function, and μ2 : R

n → R is not necessary
smooth, but rather simple and convex function. We obtain a non-convex optimization problem, whose
solution with respect to μ2 is not supposed to be difficult. For this reason, we take the following MVI:
Find a point x∗ ∈ X such that

〈μ′
1(x

∗), y − x∗〉 + [μ2(y) − μ2(x∗)] ≥ 0 ∀y ∈ X; (6)

its solution set is denoted by X0 (cf. (3)).
We recall the known relations between problems (4)–(5) and (6) (see [4], proposition 2.2.2 and also

[5], p. 7) with their full proof.

Proposition 1. Each solution to problem (4)–(5) is a solution to MVI (6). The reverse assertion is
true if μ1 is convex.

Proof. If x∗ solves MVI (6) and μ1 is convex, then, by convexity, we have

μ1(y) − μ1(x∗) + μ2(y) − μ2(x∗) ≥ 〈μ′
1(x

∗), y − x∗〉 + μ2(y) − μ2(x∗) ≥ 0

for every y ∈ X, i.e., x∗ ∈ X∗. Conversely, let x∗ solve problem (4)–(5). If x∗ /∈ X0, there is a point
x′ ∈ X such that

〈μ′
1(x

∗), x′ − x∗〉 + μ2(x′) − μ2(x∗) = δ < 0.

Take λ > 0 and set x(λ) = λx′ + (1 − λ)x∗. Then x(λ) ∈ X if λ ∈ (0, 1). At the same time, we have

〈μ′
1(x

∗), x(λ) − x∗〉 + μ2(x(λ)) − μ2(x∗)

≤ λ〈μ′
1(x

∗), x′ − x∗〉 + λμ2(x′) + (1 − λ)μ2(x∗) − μ2(x∗)

= λ
{
〈μ′

1(x
∗), x′ − x∗〉 + μ2(x′) − μ2(x∗)

}
= λδ < 0.
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It follows that

μ1(x(λ)) − μ1(x∗) + μ2(x(λ)) − μ2(x∗)

= 〈μ′
1(x

∗), x(λ) − x∗〉 + o(λ) + μ2(x(λ)) − μ2(x∗) ≤ λδ + o(λ) < 0

for some λ ∈ (0, 1) small enough, a contradiction.

Due to the above properties of the functions μ1 and μ2, we can solve MVI (6) with a splitting type
descent method (see [16] and also [5, 17]).

Fix α > 0. For each point x ∈ X we can define y(x) ∈ X such that

〈μ′
1(x) + α−1(y(x) − x), y − y(x)〉 + [μ2(y) − μ2(y(x))] ≥ 0 ∀y ∈ X. (7)

Clearly, this MVI determines the forward-backward splitting iteration with fixed stepsize. Besides, MVI
(7) gives a necessary and sufficient optimality condition for the optimization problem:

min
y∈X

→ Φ(x, y), where Φ(x, y) = 〈μ′
1(x), y〉 + 0.5α−1‖x − y‖2 + μ2(y). (8)

Under the above assumptions Φ(x, ·) is strongly convex, hence problem (8)(or (7)) has the unique
solution y(x), thus defining the single-valued mapping x �→ y(x), which will be used for calculation
of the descent direction. We recall its basic properties (see, e.g,. [17], [5], Chap. 2, and [7], lemma 9.5).

Lemma 1. a) x = y(x) ⇐⇒ x ∈ X0,

b) The mapping x �→ y(x) is continuous on X,

c) For any point x ∈ X it holds that

μ′(x; y(x) − x) ≤ −α−1‖y(x) − x‖2.

Here and below, μ′(x; d) denotes the directional derivative of μ at a point x in d.
The descent splitting algorithm, which is based on these properties and utilizes an inexact Armijo

type linesearch procedure (DSI for short), is described as follows.

Algorithm (DSI). Choose a point x0 ∈ X and numbers α > 0, β ∈ (0, 1), γ ∈ (0, 1).

At the kth iteration, k = 0, 1, . . . , we have a point xk ∈ X, compute y(xk) and set dk = y(xk) − xk.
If dk = 0, stop. Otherwise, we find m as the smallest non-negative integer such that

μ(xk + γmdk) ≤ μ(xk) − βγm‖dk‖2,

set λk = γm, xk+1 = xk + λkd
k and go to the next iteration.

We give the known convergence properties of this algorithm (see, e.g., [17], [5], theorem 5.11, and
[7], theorem 9.16).

Proposition 2. Let a sequence {xk} be generated by Algorithm (DSI). Then

i) if the algorithm terminates, xk ∈ X0,
ii) the linesearch procedure is always finite,
iii) if the set

X(x0) =
{
y ∈ X | μ(y) ≤ μ(x0)

}

is bounded, then

lim
k→∞

μ(xk) = μ̃ and lim
k→∞

‖y(xk) − xk‖ = 0; (9)

{xk} has limit points and all these limit points are solutions to MVI (6). If, additionally, μ1 is
convex, then μ̃ = μ∗, and all the limit points of {xk} are solutions of problem (4)–(5).
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We are interested in finding an inexact solution of (4)–(5) in a finite number of iterations. In order to
estimate a desired accuracy in the non-convex/non-monotone MVI we apply the gap function approach
with respect to MVI (6) (see, e.g., [5, 7] and references therein).

Let us consider the function

ϕα(x) = max
y∈X

{〈μ′
1(x), x − y〉 + μ2(x) − μ2(y) − 0.5α−1 ‖x − y‖2}

= 〈μ′
1(x), x − y(x)〉 + μ2(x) − μ2(y(x)) − 0.5α−1 ‖x − y(x)‖2 . (10)

Calculation of ϕα(x) is equivalent to the usual forward-backward splitting iteration. We recall its basic
properties (see, e.g., [5], Chap. 2).

Lemma 2. a) ϕα(x) ≥ 0 for each x ∈ X,

b) x = y(x) ⇐⇒ ϕα(x) = 0 ⇐⇒ x ∈ X0,
c) the function ϕα is lower semi-continuous on X.

In addition to Lemmas 1 and 2, we give the basic estimates.

Proposition 3. The following inequalities hold true:
i)

ϕα(x) ≥ (2α)−1 ‖x − y(x)‖2 ∀x ∈ X; (11)

ii)

〈μ′
1(x) + α−1(y(x) − x), y − x〉 + [μ2(y) − μ2(x)] ≥ −ϕα(x) + (2α)−1 ‖x − y(x)‖2 ∀y ∈ X. (12)

Proof. By definition, from (7) with y = x we have

〈μ′
1(x) + α−1(y(x) − x), x − y(x)〉 + [μ2(x) − μ2(y(x))] ≥ 0,

which yields (11). It also follows from (7) that

0 ≤ 〈μ′
1(x) + α−1(y(x) − x), y − x〉 + [μ2(y) − μ2(x)]

+ 〈μ′
1(x), x − y(x)〉 + [μ2(x) − μ2(y(x))] − α−1‖x − y(x)‖2

= 〈μ′
1(x) + α−1(y(x) − x), y − x〉 + [μ2(y) − μ2(x)] + ϕα(x) − (2α)−1‖x − y(x)‖2,

i.e., (12) holds true.

Combining this property with Proposition 2, we obtain the inexact approximation estimate for
Algorithm (DSI).

Theorem 1. Suppose that the set X(x0) is bounded, a sequence {xk} is generated by Algorithm
(DSI). Then,

lim
k→∞

ϕα(xk) = 0, (∗)

for any number ε > 0, there exists a number k = k(ε) such that ϕα(xk) ≤ ε and

〈μ′
1(x

k) + α−1(y(xk) − xk), y − xk〉 + [μ2(y) − μ2(xk)] ≥ −ε ∀y ∈ X. (13)

Proof. From Proposition 2 we now have that the sequence {xk} is bounded and all its limit points are
solutions to MVI (6). Next, due to (10) we have

ϕα(x) = 〈μ′
1(x), x − y(x)〉 + μ2(x) − μ2(y(x)) − 0.5α−1 ‖x − y(x)‖2

≤ 〈μ′
1(x) + g(x), x − y(x)〉 − 0.5α−1 ‖x − y(x)‖2 ,

where g(x) is a subgradient of μ2 at x. Now from (9) it follows (∗). Therefore, the number k = k(ε)
exists and (13) follows from (12).
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2. TWO-LEVEL METHOD AND ITS CONVERGENCE

We now intend to describe a general iterative method for MVI (1)–(2). We need several additional
assumptions for its substantiation.

First we introduce the approximation assumptions.

(A1) There exists a sequence of nonempty convex closed sets {Vl} which is Mosco convergent to the
set V ;

(A2) There exists a sequence of continuous mappings Gl : Vl → R
n, which are the gradients of func-

tions fl : Vl → R, l = 1, 2, . . . , such that the relations {yl} → y and yl ∈ Vl imply {Gl(yl)} →
g ∈ G(y);

(A3) There exists a sequence of convex subdifferentiable functions hl : Vl → R such that the relations
{yl} → y and yl ∈ Vl imply {hl(yl)} → h(y).

Moreover, the fixed set W is also approximated with a sequence of sets {Wl}, which will be defined
implicitly. So, instead of MVI (1)–(2) we have in fact a sequence of MVIs: Find a point zl ∈ Dl =
Vl

⋂
Wl such that

〈Gl(zl), y − zl〉 + hl(y) − hl(zl) ≥ 0 ∀y ∈ Dl. (14)

The perturbed set Dl can be empty for some l, although the limit feasible set D is usually supposed to
be non-empty. Moreover, it seems more suitable to deal with an MVI having only “simple” constraints.
For these reasons, we apply the penalty approach, i.e., the set W will be approximated via a sequence of
auxiliary penalty functions. Let P : R

n → R be a general penalty function for W , i.e.,

P (w)

{
= 0, if w ∈ W,

> 0, if w /∈ W.

We utilize its approximation sequence.

(B1) There exists a sequence of convex, subdifferentiable, and non-negative functions Pl : Vl → R;

(B2) if vl ∈ Vl, {vl} → w, and lim inf
l→∞

Pl(vl) = 0, then P (w) = 0;

(B3) for each point w ∈ D there exist a sequence {vl} → w with vl ∈ Vl and a number m such that
Pl(vl) = 0 if l ≥ m.

Clearly, conditions (B2) and (B3) give a kind of the Mosco convergence of the functions {Pl} to P .
However, Pl is treated as a penalty function for some set Wl, then (B2) and (B3) give a kind of the
Mosco convergence of the sequence {Wl} to W .

For each l = 1, 2, . . . , instead of (14) we now consider the problem of finding a point zl ∈ Vl such that

〈Gl(zl), v − zl〉 + hl(v) − hl(zl) + τl[Pl(v) − Pl(zl)] ≥ 0 ∀v ∈ Vl, (15)

where τl > 0 is a penalty parameter (cf. (3) and (6)).

Remark 1. Condition (A2) means that the limit set-valued mapping G at any point is approximated
by a sequence of gradients {Gl}. It follows that G also possesses some properties of a generalized
gradient set. For instance, if G is the Clarke subdifferential of a locally Lipschitz function f , it can be
always approximated by a sequence of gradients within condition (A2) [18, 19]. This approach seems
suitable from the computational point of view. Moreover, in the case where a sequence of non-smooth
functions {f̃l}, which converges to the function f , is known, we can simply replace each f̃l with its
smooth approximation fl.
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The point zl is an exact solution of the penalized MVI (15). We describe the two-level implementable
combined penalty and descent method (PD for short), which utilizes approximate solutions. Let us
define the gap function

ϕl
α(z) = max

v∈Vl

{〈Gl(z), z − v〉 + hl(z) − hl(v) + τl[Pl(z) − Pl(v)] − 0.5α−1‖z − v‖2}

= 〈Gl(z), z − yl(z)〉 + hl(z) − hl(yl(z)) + τl[Pl(z) − Pl(yl(z))] − 0.5α−1‖z − yl(z)‖2

(cf. (10)). Due to Theorem 1 and the absence of any concordance rules, we can take its values for error
evaluations. Denote by πX(x) the projection of a point x onto a set X.

Method (PD). Choose a point z0 = z̃0 ∈ V0 and positive sequences {εl}, {τl}. Fix α > 0.

At the lth stage, l = 1, 2, . . . , we have a point zl−1 ∈ Vl−1 and a number εl. Set z̃l−1 = πVl
(zl−1) and

apply Algorithm (DSI) with the starting point x0 = z̃l−1,

μ1(x) = fl(x), μ2(x) = hl(x) + τlPl(x),

obtain a point x̃ = xk such that ϕl
α(x̃) ≤ εl, and set zl = x̃.

Remark 2. We can clearly remove the projection of the point zl−1 onto Vl above in case of the inner
approximation of V , i.e., when Vl ⊆ Vl+1. This condition then should be substituted in (A1).

Since the feasible set may be unbounded, we introduce certain coercivity conditions.

(C1) For each fixed l = 1, 2, . . . , the function fl(x) + hl(x) is coercive on the set Vl, i.e., {fl(wk) +
hl(wk)} → +∞ if {wk} ⊂ Vl, ‖wk‖ → ∞ as k → ∞.

(C2) There exist a number σ > 0 and a point v ∈ D such that for any sequences {ul}, {vl}, and {dl},
satisfying the conditions:

ul ∈ Vl, v
l ∈ Vl, {vl} → v, {‖ul‖} → +∞, {dl} → 0;

it holds that

lim inf
l→∞

{
〈Gl(ul) + dl, vl − ul〉 + [hl(vl) − hl(ul)]

}
≤ −σ. (16)

Clearly, (C1) presents a rather mild coercivity condition for each function fl(x) + hl(x) and is destined
for providing existence of solutions of each particular problem (14) or (15). Obviously, (C1) holds if Vl

is bounded. At the same time, (C2) gives a similar coercivity condition for the whole sequence of these
problems approximating the limit MVI (1)–(2). It also holds if the sequence {Vl} is uniformly bounded.
Let us turn to the unbounded case. Then we can consider the following coercivity condition for the limit
problem:

(C2′). There exist a point v ∈ D such that for any sequence {ul} with {‖ul‖} → +∞ it holds that

‖v − ul‖−1
{
〈G(ul), v − ul〉 + [h(v) − h(ul)]

}
→ −∞, as l → ∞.

This condition is rather usual for providing both existence of solutions and convergence of penalty
methods solving problem (1) (see, e.g., [20, 21]). However, it implies that

‖v − ul‖−1
{
〈G(ul) + dl, v − ul〉 + [h(v) − h(ul)]

}
→ −∞ as l → ∞

for each sequence {dl} such that {‖dl‖} → 0 as l → ∞. Obviously, the condition

lim inf
l→∞

{
‖v − ul‖−1{〈G(ul) + dl, v − ul〉 + [h(v) − h(ul)]}

}
≤ −σ (17)

for some σ > 0 is weaker essentially. Replacing G and h in (17) with their approximations Gl and hl,
respectively, we obtain (16). We therefore conclude that conditions (C1) and (C2) are not restrictive.

We now establish the main convergence result.
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Theorem 2. Suppose that assumptions (A1)–(A3), (B1)– (B3), and (C1)–(C2) are fulfilled,
the parameters {εl} and {τl} satisfy

{εl} ↘ 0, {τl} ↗ +∞.

Then

i) problem (15) has a solution for any τl > 0,

ii) the number of iterations at each stage of Method (PD) is finite,

iii) the sequence {zl} generated by Method (PD) has limit points and all these limit points are
solutions of MVI (1)–(2).

Proof. We first observe that (C1) implies that each problem MVI (15) has a solution since the cost
function

μ(x) = fl(x) + hl(x) + τlPl(x)

becomes coercive, hence the set

Vl(x0) =
{
y ∈ Vl | μ(y) ≤ μ(x0)

}

is bounded. It follows that the optimization problem

min
x∈Vl

→ μ(x)

has a solution and so is MVI (15) due to Proposition 1. Hence, assertion i) is true. From Theorem 1 we
now have that assertion ii) is also true.

By ii), the sequence {zl} is well-defined and (13) implies

〈Gl(zl) + α−1(yl(zl) − zl), y − zl〉 + [hl(y) − hl(zl)] + τl[Pl(y) − Pl(zl)] ≥ −εl ∀y ∈ Vl. (18)

Besides, (11) gives

εl ≥ ϕl
α(zl) ≥ (2α)−1‖zl − yl(zl)‖2. (19)

We now proceed to show that {zl} is bounded. Conversely, suppose that {‖zl‖} → +∞. By
definition, zl ∈ Vl, besides, by (B3) and (C2) there exists a sequence {vl} → v such that vl ∈ Vl and
Pl(vl) = 0 for l large enough. Applying (18), we have

0 ≤ 〈gl + dl, vl − zl〉 + [hl(vl) − hl(zl)] + τl[Pl(vl) − Pl(zl)] + εl

= 〈gl + dl, vl − zl〉 + [hl(vl) − hl(zl)] − τlPl(zl) + εl

≤ 〈gl + dl, vl − zl〉 + [hl(vl) − hl(zl)] + εl.

Here and below, for brevity we set gl = Gl(zl) and dl = α−1(y(zl) − zl). Take a subsequence {ls} such
that

lim
s→∞

{
〈gls + dls , vls − zls〉 + [hls(v

ls) − hls(z
ls)]

}
= lim inf

l→∞

{
〈gl + dl, vl − zl〉 + [hl(vl) − hl(zl)]

}
,

then, by (C2), we have

0 ≤ lim
s→∞

{
〈gls + dls , vls − zls〉 + [hls(v

ls) − hls(z
ls)]

}
≤ −σ < 0,

a contradiction. Therefore, the sequence {zl} is bounded and has limit points. Let z be an arbitrary limit
point for {zl}, i.e., z = lim

s→∞
zls . Since zl ∈ Vl, we have z ∈ V due to (A1). From (18) it follows that

0 ≤ Pls(z
ls) ≤ τ−1

ls

{
〈gls + dls , v − zls〉 + [hls(v) − hls(z

ls)]
}

+ Pls(v) + τ−1
ls

εls ∀v ∈ Vls .

Note that the sequence {gls} is bounded due to (A2).
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For any w ∈ D there exists a sequence {vl} → w with vl ∈ Vl and Pl(vl) = 0 for l large enough due
to (B3). Taking v = vls above, we obtain

0 ≤ lim inf
s→∞

Pls(z
ls) ≤ lim sup

s→∞
Pls(z

ls)

≤ lim sup
s→∞

τ−1
ls

{
〈gls + dls , vls − zls〉 + [hls(v

ls) − hls(z
ls)]

}
= 0

on account of (A2), (A3), and (19), i.e., lim
s→∞

Pls(z
ls) = 0. Due to (B2), this gives z ∈ W , i.e., z ∈ D.

Now, by (B3), there exists a sequence {vl} → z with vl ∈ Vl and Pl(vl) = 0 for l large enough. Again
from (18) and (A3) we have

0 ≤ τlsPls(z
ls) ≤ 〈gls + dls , vls − zls〉 + [hls(v

ls) − hls(z
ls)] + εls → 0

as s → ∞, hence lim
s→∞

[
τlsPls(z

ls)
]

= 0. Take an arbitrary point w ∈ D, then, again by (B3), there

exists a sequence {vl} → w with vl ∈ Vl and Pl(vl) = 0 for l large enough. Using again (18), we have

〈gls + dls , vls − zls〉 + [hls(v
ls) − hls(z

ls)] − τlsPls(z
ls) + εls

= 〈gls + dls , vls − zls〉 + [hls(v
ls) − hls(z

ls)] + τls [Pls(v
ls) − Pls(z

ls)] + εls ≥ 0.

It now follows from (A2) that lims→∞ gls = g ∈ G(z) and

〈g,w − z〉 + [h(w) − h(z)] = lim
s→∞

{
〈gls , vls − zls〉 + [hls(v

ls) − hls(z
ls)]

}

= lim
s→∞

{
〈gls + dls , vls − zls〉 + [hls(v

ls) − hls(z
ls)]

}
≥ lim

s→∞

[
τlsPls(z

ls)
]

= 0,

therefore z solves MVI (1)–(2) and assertion iii) holds true.

We observe that the above proof implies that MVI (1)–(2) has a solution.

3. CONCLUSIONS

We considered a mixed variational inequality problem involving a set-valued non-monotone potential
mapping and a convex function, where only approximation sequences are known instead of exact values
of the cost mapping and function, and feasible set. In particular, the cost mapping is approximated by
a sequence of gradient mappings. We proposed to apply a two-level approach with inexact solutions
of each particular problem with a descent splitting method and partial penalization. Its convergence is
attained without concordance of penalty, accuracy, and approximation parameters under coercivity type
conditions. We suggested to utilize a gap function for evaluation of accuracy approximation of particular
penalized problems.
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