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Abstract—We consider a second-order linear differential equation whose coefficients are bounded
operators acting in a complex Banach space. For this equation with a bounded right-hand side,
we study the question on the existence of solutions which are bounded on the whole real axis. An
asymptotic behavior of solutions is also explored. The research is conducted under condition that the
corresponding “algebraic” operator equation has separated roots or provided that an operator placed
in front of the first derivative in the equation has a small norm. In the latter case we apply the method
of similar operators, i.e., the operator splitting theorem. To obtain the main results we make use
of theorems on the similarity transformation of a second order operator matrix to a block-diagonal
matrix.
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1. INTRODUCTION. MAIN RESULTS

Let X be a complex Banach space and let EndX be a Banach algebra of all bounded linear operators
acting in X . We denote by X 2 = X × X the Banach space whose elements are all ordered pairs
x = (x1, x2), where x1, x2 ∈ X , and the norm is given by the formula ‖(x1, x2)‖ =

√
‖x1‖2 + ‖x2‖2.

In what follows, the symbol Cb(J,X ), where J ∈ {R+, R}, stands for the Banach space of all bounded

continuous functions x : J → X endowed with the norm ‖x‖C = sup
t∈J

‖x(t)‖. We denote by C
(k)
b (J,X )

the Banach space of k times continuously differentiable functions x ∈ Cb(J,X ) with the kth derivative
x(k) belonging to the space Cb(J,X ) and the norm defined by the formula ‖x‖C(k) = ‖x‖C + ‖x(k)‖C .

Throughout, we will write X ∼
(

X11 X12
X21 X22

)
to denote the correspondence (the relation) between an

operator X ∈ EndX 2 and its matrix, where Xij ∈ EndX and i, j = 1, 2. This matrix is defined by the
following equalities: X(x1, x2) = (y1, y2), X11x1 = y1, X21x1 = y2, X12x2 = y1, X22x2 = y2, where
(x1, x2), (y1, y2) ∈ X 2. Sometimes, we identify an operator acting in the Cartesian product of Banach
spaces with its matrix.

In the space Cb = Cb(R,X ) we consider a second-order differential equation

ẍ(t) + B1ẋ(t) + B2x(t) = g(t), t ∈ R, (1)

where B1, B2 ∈ EndX , g ∈ Cb. We rewrite this equation in the form Lx = g, where the second-order
differential operator L : D(L) ⊂ Cb → Cb is defined by the formula

Lx = ẍ + B1ẋ + B2x, x ∈ D(L),
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and its domain D(L) coincides with the space C
(2)
b = C(2)(R,X ).

Along with Eq. (1), we write out a first order differential equation

ẏ + By = f, f = (f1, f2) ∈ Cb(R,X 2). (2)

This equation is considered in the Banach space Cb(R,X 2) which is isomorphic to the space Cb(R,X )×
Cb(R,X ). Here, the operator B ∈ EndX 2 is defined by the matrix

B ∼

⎛

⎝ 0 −I

B2 B1

⎞

⎠ ,

i.e., we have the equality B(y1, y2) = (−y2, B2y1 + B1y2) for (y1, y2) ∈ X 2.
We note that Eqs. (1) and (2) are equivalent, and one differential equation is transformed into another

by setting f = (0, g).

Naturally, the question arises about the simultaneous invertibility of the operators L : D(L) ⊂
Cb(R,X ) → Cb(R,X ) and L : D(L) ⊂ Cb(R,X 2) → Cb(R,X 2), where the latter is defined by the
following rule:

Ly = ẏ + By, y = (y1, y2) ∈ D(L) = C
(1)
b (R,X 2),

i.e.,

Ly = (Dy1 − y2, B2y1 + (D + B1)y2).

Here, as usual, the differentiation operator D : C
(1)
b (R,X ) ⊂ Cb(R,X ) → Cb(R,X ) is defined by the

formula Dx = ẋ, where x ∈ C
(1)
b (R,X ).

The answer to this question is given by the following statement.

Theorem 1. The operator L : D(L) ⊂ Cb(R,X ) → Cb(R,X ) is invertible if and only if the operator
L : D(L) ⊂ Cb(R,X 2) → Cb(R,X 2) is invertible.

Moreover, if the operator L : D(L) ⊂ Cb(R,X ) → Cb(R,X ) is invertible, then the inverse L−1 ∈
EndX 2 of the operator L : D(L) ⊂ Cb(R,X 2) → Cb(R,X 2) is given by the matrix

⎛

⎝ (D − λ0I)−1 − L−1
(
(B2 + λ0B1 + λ2

0I)(D − λ0I)−1 + λ0I
)

L−1

λ0(D − λ0I)−1 − D L−1
(
(B2 + λ0B1 + λ2

0I)(D − λ0I)−1 + λ0I
)

D L−1

⎞

⎠ . (3)

Here, λ0 is an arbitrary number in the set C \ (iR).

Theorem 1 allows us to use the results of [1–7].
The study of differential equations (1) and (2) is carried out using some properties of roots of the

“algebraic” operator equation

X2 + B1X + B2 = 0 (4)

in the Banach algebra EndX . This method of studying a second-order differential equation was
proposed in [8] and showed its effectiveness.

In general, the set of roots for Eq. (4) may be infinite.
Let Λ1 and Λ2 be two roots of Eq. (4). They are said to be separated roots provided that the operator

Λ1 −Λ2 is an invertible element of the algebra EndX . Conditions for the existence of separated roots are
given, for example, in [1] (Chap. II, § 4). It is worth noting here that the fractional powers of operators
are defined in [2] (Chap. I, § 5). In particular, we recall the sufficient conditions for Eq. (4) with B1 = 0.
It possesses two separated roots ±

√
−B2, provided that the following two conditions are fulfilled. The

operator B2 is invertible as well as the origin z = 0 and the point ∞ in the extended plane belong to the
same connected component of the resolvent set �(−B2) of the operator −B2.
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For linear operators A1, A2 ∈ EndX , we denote by A1 ⊕ A2 the direct sum of the operators defined

by a block-diagonal matrix: A1 ⊕ A2 ∼
(

A1 0
0 A2

)
.

One of the main result of the present paper is the following statement.

Theorem 2. Assume that Eq. (4) possesses two separated roots Λ1,Λ2 ∈ EndX . Then the
operator B ∈ EndX 2 is similar to the block-diagonal operator Λ ∈ EndX 2 defined by the matrix

Λ ∼

⎛

⎝−Λ1 0

0 −Λ2

⎞

⎠ .

Moreover, the equalities hold true:

B = U−1ΛU, e−Bt = U−1(eΛ1t ⊕ eΛ2t)U. (5)

Here the operators U,U−1 ∈ EndX 2 are defined by matrices in the following way:

U ∼ U =

⎛

⎝ I I

Λ1 Λ2

⎞

⎠ , U−1 ∼ U−1 =

⎛

⎝−(Λ1 − Λ2)−1Λ2 (Λ1 − Λ2)−1

(Λ1 − Λ2)−1Λ1 −(Λ1 − Λ2)−1

⎞

⎠ . (6)

As the example constructed by A. S. Markus [9] showed, the continuous spectrum is not always
contained in the spectrum of the operator B. However, the similarity of the operators B and Λ together
with equalities (5) imply the the following result.

Theorem 3. Let Λ1 and Λ2 be separated roots of Eq. (4). Then the operators L : D(L) ⊂
Cb(R,X ) → Cb(R,X ) and L : D(L) ⊂ Cb(R,X 2) → Cb(R,X 2) are invertible if and only if the fol-
lowing condition is satisfied:

(σ(Λ1) ∪ σ(Λ2)) ∩ (iR) = ∅, (7)

where σ(Λk) is the spectrum of the operator Λk for k = 1, 2.

In the hypotheses of the following theorem we consider a pair of separated roots Λ1 and Λ2 of Eq. (4)
such that condition (7) holds. Since the spectrum of the operator Λk and the imaginary axis iR are
mutually disjoint for each k = 1, 2, we have the decompositions σ(Λk) = σ−

k ∪ σ+
k , k = 1, 2, where the

spectral sets σ−
k and σ+

k lie in the left and the right half-planes, respectively, and one of these sets may
be empty, k = 1, 2.

Further, let us denote by P∓
k the Riesz spectral projections corresponding to the spectral sets σ∓

k ,
k = 1, 2. We consider the convolution integral operators

(Gk ∗ g)(t) =
∫

R

Gk(t − s)g(s) ds, t ∈ R, g ∈ Cb, k = 1, 2,

where

Gk(t) =

{
−eΛktP+

k , t ≤ 0;
eΛktP−

k , t > 0, k = 1, 2,
(8)

is the Green function ([1], Chap. II, § 4) constructed for the corresponding differential equation

ẋ = Λkx, k = 1, 2.

Theorem 4. Assume that condition (7) holds. The inverse to the operators L and L have
the following form:

L−1g = (Λ1 − Λ2)−1Λ2(G2 − G1) ∗ g, g ∈ Cb(R,X ), (9)

L
−1f = ϕ = (ϕ1, ϕ2) ∈ Cb(R,X 2), f = (f1, f2) ∈ Cb(R,X 2),
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where

ϕ1 = (Λ1 − Λ2)−1(−Λ2G1 ∗ (f1 + f2) + G2 ∗ (Λ1f1 + Λ2f2)),

ϕ2 = (Λ1 − Λ2)−1(Λ1G1 ∗ (f1 + f2) − G2 ∗ (Λ1f1 + Λ2f2)).

For the homogeneous differential equation

ẍ(t) + B1ẋ(t) + B2x(t) = 0, t ≥ 0, (10)

decomposition (5) of the operator exponential in Theorem 2 and the results of [10] allow us to obtain an
asymptotic representation of its bounded solutions on the real semiaxis R+ = [0,∞).

We have the following theorem.

Theorem 5. Let Λ1 and Λ2 be separated roots of Eq. (4). Assume that all solutions to the
differential equation (10) are bounded on R+, and the set

(σ(−Λ1) ∪ σ(−Λ2)) ∩ (iR) = {iλ1, . . . , iλm} (11)

is finite. Then there exist projection-valued uniformly continuous functions

Pk : R+ → EndX 2, Pk ∈ Cb(R+,EndX 2), 1 ≤ k ≤ m,

such that the representation

(x(t), ẋ(t)) =
m∑

k=1

eiλkt
Pk(t)(x(0), ẋ(0)), t ≥ 0

is valid for every solution x : R+ → X to the homogeneous differential equation (10).

The functions Pk, 1 ≤ k ≤ m, possess the following properties:
1) the operators Pk(t), t ≥ 0, 1 ≤ k ≤ m, belong to the smallest closed subalgebra generated by both

the operator B and the identity operator I ∈ EndX 2;
2) the functions Pk(t), t ≥ 0, 1 ≤ k ≤ m are extendable to C up to entire functions of the exponential

type whose derivatives satisfy the condition

lim
t→∞

‖Ṗk(t)‖ = 0, 1 ≤ k ≤ m;

3) lim
t→∞

‖BPk(t) − iλkPk(t)‖ = 0, 1 ≤ k ≤ m;

4) lim
t→∞

‖Pk(t)Pj(t)‖ = 0, k �= j, 1 ≤ k, j ≤ m;

5) lim
t→∞

‖P2
k(t) − Pk(t)‖ = 0, 1 ≤ k ≤ m;

6) lim
t→∞

‖
m∑

k=1

Pk(t) − I‖ = 0.

The family of the functions P1, . . . , Pm is called the resolution of the identity at infinity. By
property 2) these functions are slowly varying at infinity (see [11, 12]).

Theorem 6. Under condition (11), each bounded solution x0 : R+ → X to the homogeneous
differential equation (10) is representable in the form

x0(t) =
m∑

k=1

ak(t)eiλkt, t ≥ 0. (12)

Here the functions ak : R+ → X , 1 ≤ k ≤ m, belonging to C
(l)
b (R+,X ) for every l ∈ N, are extend-

able to C up to functions of exponential type. In addition, the following condition holds:

lim
t→∞

ȧk(t) = 0, 1 ≤ k ≤ m.
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It is worth noting that according to [11] and [12], any function represented in the form (12) is almost
periodic at infinity.

Also we notice that under the hypotheses of Theorems 5 and 6, the complex numbers iλ1, . . . , iλm

may belong to a single connected component of the set (σ(−Λ1) ∪ σ(−Λ2)) ∩ (iR).

In mathematical models which describe real world processes, the operator B1 in Eq. (1) and (2)
reflects the presence of a friction in mechanical systems, a resistance in electrical networks etc. It is
natural to assume that the influence of B1 is small enough. In Section 3 of the present paper our study
is carried out under the assumption

0 /∈ σ(B2), (13)

as well as we suppose that the norm of the operator B1 is sufficiently small. The main result is contained
in Theorem 7 about splitting operators. This theorem allows us to obtain the analogs of Theorems 2–6.

2. PROOFS OF THEOREMS

Proof of Theorem 1. Assume that the operator L is invertible.

At first, we prove that the operator L is injective, i.e., the equality Ker L = {0} holds, where
Ker L = {y = (y1, y2) ∈ D(L) | Ly = 0}. To this end, we take an element y = (y1, y2) ∈ Ker L. Then
we have ẏ1 = y2, ẏ2 = −B2y1 − B1y2 , whence, y1 ∈ D(L) and Ly1 = 0. In other words, we have
y1 ∈ Ker L = {0}. Therefore, we get y2 = 0 and y = (y1, y2) = 0. Thus, the condition KerL = {0} is
fulfilled, as desired.

Next, we check that the operator L is surjective. To do this, we consider the equation Ly = f , where
f = (f1, f2) is an arbitrary function from the space Cb(R,X 2) � Cb ×Cb. Further, we take any complex
number λ0 such that Re λ0 �= 0. Then the operator D− λ0I is invertible in Cb ([1, 3, 5]), and the operator
L is representable in the form

L = (D − λ0I)2 + (B1 + 2λ0I)(D − λ0I) + B2 + λ0B1 + λ2
0I.

It is straightforward to see that the equation Ly = f is solvable, and the coordinates of its solution
y = (y1, y2) ∈ Cb × Cb have the following forms:

y1 = ((D − λ0I)−1 − L−1(B2 + λ0B1 + λ2
0I)(D − λ0I)−1 + λ0I)f1 + L−1f2,

y2 = (λ0(D − λ0I)−1 − DL−1((B2 + λ0B1 + λ2
0I)(D − λ0I)−1 + λ0I))f1 + DL−1f2.

Obviously, we have yk ∈ D(L) for k = 1, 2.
It follows from the above representation of the solution that the inverse of the operator L is given by

matrix (3).
Now, we assume that the operator L is invertible.
We claim that the operator L is injective. We take an arbitrary element x ∈ Ker L. Let us

show that x = 0. Indeed, we note that (x, ẋ) ∈ D(L) = C
(1)
b × C

(1)
b and L(x, ẋ) = (Dx − Dx,B2x +

(D + B1)Dx) = (0,Lx) = (0, 0). The injectivity of the operator L immediately implies the equality
x = 0, as desired.

Finally, we prove that the operator L is surjective. To this end, we consider the equation Lx = g,
where g is an arbitrary function from the space Cb. The invertibility of the operator L implies the existence

of a solution y = (x1, x2) ∈ C
(1)
b × C

(1)
b to the equation Ly = (0, g). Therefore, we have the equalities

ẋ1 − x2 = 0, ẋ2 + B2x1 + B1x2 = g.

Hence, we get x1 ∈ C
(2)
b = D(L) and Lx1 = g. Thus, the surjectivity of the operator L is proved. �

Proof of Theorem 2. Since Λ1 and Λ2 are separated roots, the operator Λ1 − Λ2 is invertible. It is
straightforward to check that the inverse of the operator U has the matrix U−1 in (6). Also one can easily
see that the first equality in (5) holds. The second equality in (5) for the operator exponential follows from
the similarity of the operators B and Λ. �
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Since the spectra of similar operators coincide, we have the equality σ(B) = σ(Λ). This equality
together with the decomposition σ(Λ) = −σ(Λ1) ∪ (−σ(Λ2)) as well as condition (7) and the corre-
sponding result in [1] (Chap. II, § 4) yield the proof of Theorem 3.

Proof of Theorem 4. Let us consider the operators Lk : C
(1)
b (R,X ) ⊂ Cb(R,X ) → Cb(R,X ) defined by

equalities Lkx = ẋ − Λkx, where x ∈ C
(1)
b (R,X ) and k = 1, 2. According to [1] (Chap. II, § 4), under

condition (7), each differential operator Lk, k = 1, 2, is invertible. Their inverses are the convolution
operators given by the formulas

L−1
k y = Gk ∗ y, y ∈ Cb, k = 1, 2,

where Gk, k = 1, 2, is defined by (8). It follows from Theorem 2 that the differential operator L is similar

to the direct sum L1 ⊕L2 : C
(1)
b (R,X 2) ⊂ Cb(R,X 2) → Cb(R,X 2). Here the operator Ũ : Cb(R,X 2) →

Cb(R,X 2) of multiplication by the operator U in (6) serves as the operator of transforming L into the
operator L1 ⊕ L2. Thus, we have the equalities

L = U−1(L1 ⊕ L2)U, L
−1 = U−1(L−1

1 ⊕ L−1
2 )U.

These observations together with the above representations for L−1
k , k = 1, 2, establish the represen-

tation for L−1 mentioned in the assertion of the theorem which, in turn, yields formula (9) for the
operator L−1. Indeed, one should put f1 = 0, f2 = g and take into account the permutability of the
operator Λ2 and the Green function G2. �

Proof of Theorem 5. The boundedness of all solutions to the homogeneous differential equation (10)
on the semiaxis R+ implies the boundedness of all solutions to the homogeneous differential equation

ẏ + By = 0, t ≥ 0. (14)

Since, by Theorem 2, the spectrum σ(B) of the operator B coincides with the set σ(−Λ1) ∪ σ(−Λ1),
condition (11) means that

σ(B) ∩ (iR) = {iλ1, . . . , iλm}. (15)

Each bounded solution x ∈ Cb(R+,X ) to Eq. (14) can be represented on R+ in the form x(t) =
(x1(t), x2(t)) = eBt(x(0), ẋ(0)). The operator function t �→ eBt : R+ → EndX 2 is bounded and is
extendable to C up to entire function of exponential type [11, 12]. The fulfilment of condition (15) allows
us to make use of the result from [10] which guarantees the existence of a family of operator-valued
functions Pk : R+ → EndX 2 possessing the properties stated in Theorem 5. �

Theorem 6 is an immediate consequence of Theorem 5. The properties of the functions ak, 1 ≤ k ≤ m,
in representation (12) follow from property 2) of the functions Pk, 1 ≤ k ≤ m.

3. ON SPLITTING A DIFFERENTIAL OPERATOR BY THE METHOD OF SIMILAR
OPERATORS

In this Section we deal with the differential equations (1), (2) as well as the corresponding operators
L : D(L) ⊂ Cb(R,X ) → Cb(R,X ) and L : D(L) ⊂ Cb(R,X 2) → Cb(R,X 2) provided that the operator
coefficient B2 is representable in the form B2 = C2 for some invertible operator C ∈ EndX . We denote
by B the operator (−B1). Thus, we assign to the operator B ∈ EndX 2 the matrix

B ∼

⎛

⎝ 0 −I

B2 B1

⎞

⎠ =

⎛

⎝ 0 −I

C2 −B

⎞

⎠ .

Further, let us consider the representation

B = A0 − B0,
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where the operators A0, B0 belong to EndX 2 and their matrices are written as follows:

A0 ∼

⎛

⎝ 0 −I

C2 0

⎞

⎠ , B0 ∼

⎛

⎝0 0

0 B

⎞

⎠ .

Condition (13) means that 0 /∈ σ(C) and guarantees the existence of the separated roots Λ1 = −iC
and Λ2 = iC for the operator equation

X2 + C2 = 0.

By Theorem 2, the operator A0 is similar to the operator A ∈ EndX 2 defined by the matrix

A ∼

⎛

⎝−Λ1 0

0 −Λ2

⎞

⎠ =

⎛

⎝iC 0

0 −iC

⎞

⎠ .

The operator U and its inverse U−1 have, respectively, the following matrices:

U ∼ U =

⎛

⎝ I I

−iC iC

⎞

⎠ , U−1 ∼ U−1 =
1
2

⎛

⎝I iC−1

I −iC−1

⎞

⎠ .

One can easily see that the equalities

U−1
BU = U−1A0U − U−1B0U = A− B

are valid. This means that the operator B is similar to the operator A− B. The matrix of the operator B
is given by the formula

U−1

⎛

⎝0 0

0 B

⎞

⎠U =
1
2

⎛

⎝ C−1BC −C−1BC

−C−1BC C−1BC

⎞

⎠ ,

whence the following estimate is valid for the norm on the space X 2:

‖B(x1, x2)‖2 =
1
4
(‖C−1BCx1 − C−1BCx2‖2 + ‖ − C−1BCx1 + C−1BCx2‖2)

≤ 1
4
‖C−1BC‖24(‖x1‖2 + ‖x2‖2) = ‖C−1BC‖2‖(x1, x2)‖2, (x1, x2) ∈ X 2.

As a consequence, we have the estimate

‖B‖ ≤ ‖C‖ ‖C−1‖ ‖B‖. (16)

Thus, we have proved

Lemma 1. The operator B is similar to the operator A− B, and estimate (16) holds.

We will apply the method of similar operators to the operators A− B and B. This method was
developed in [13–17].

The main result of this Section is Theorem 7 about the similarity of the operator A− B and hence,
by Lemma 1, about the similarity of the operator B, to the operator whose matrix has the following

block-diagonal form: A− B ∼
(

Λ̃1 0

0 Λ̃2

)
, where Λ̃1, Λ̃2 ∈ EndX .

Further, we will consider two so-called transformers J : EndX 2 → EndX 2, Γ : EndX 2 → EndX 2.
We recall that, according to M. G. Krein’s terminology, an operator acting in the space of operators is
called a transformer. To this end, we introduce the canonical projections P1, P2 ∈ EndX 2 defined by the
formulas

P1x = (x1, 0), P2x = (0, x2), x = (x1, x2) ∈ X 2.
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Of course, we have the following properties: P1 + P2 = I, ‖P1‖ = ‖P1‖ = 1.

The transformer J : EndX 2 → EndX 2 is defined by the formula

JX = P1XP1 + P2XP2, X ∈ EndX 2.

Thus, if X ∼ (Xij), i, j = 1, 2, then the matrix of the operator JX has the block-diagonal form
⎛

⎝X11 0

0 X22

⎞

⎠ .

The image of an operator X ∈ EndX 2 under the transformer Γ : EndX 2 → EndX 2 is defined as the
solution Y 0 ∈ EndX 2 to the linear equation

AY − Y A = X − JX

satisfying the additional condition JY 0 = 0. In that case, the matrix
(

0 Y 0
12

Y 0
21 0

)
of the operator Y 0 is a

solution to the matrix equation
⎛

⎝iC 0

0 −iC

⎞

⎠

⎛

⎝ 0 Y12

Y21 0

⎞

⎠ −

⎛

⎝ 0 Y12

Y21 0

⎞

⎠

⎛

⎝iC 0

0 −iC

⎞

⎠ =

⎛

⎝ 0 X12

X21 0

⎞

⎠ .

Therefore, the operators Y 0
12, Y

0
21 ∈ EndX are solutions to the equations

iCY12 + iY12C = X12, −iCY21 − iY21C = X21. (17)

In what follows, we assume that the following condition holds:

0 /∈ σ(C) + σ(C) = {λ + μ | λ ∈ σ(C), μ ∈ σ(C)}.
This condition guarantees (see [1], Chap. I, § 3) the solvability as well as the uniqueness of solution to
both of Eqs. (17). For these solutions we have the integral representations

Y 0
12 = − 1

4π2

∮

∂(iC)

∮

∂(−iC)

(iC − λI)−1X12(−iC − μI)−1

λ − μ
dλ dμ, (18)

Y 0
21 = − 1

4π2

∮

∂(−iC)

∮

∂(iC)

(−iC − λI)−1X21(iC − μI)−1

λ − μ
dλ dμ, (19)

where ∂(−iC) and ∂iC are closed curves surrounding the spectra of the operators −iC and iC,
respectively (see [1], Chap. I, § 3).

We define the transformers Γ12 : EndX → EndX , Γ21 : EndX → EndX by means of the formulas
Γ12X12 = Y 0

12 and Γ21X21 = Y 0
21. Consequently, we have the following equalities:

iC(Γ12X12) + i(Γ12X12)C = X12, −iC(Γ21X21) − i(Γ21X21)C = X21. (20)

It follows from representations (18)–(20) that the transformers Γ12 and Γ21 are bounded. Further, we
put

γ = max{‖Γ12‖, ‖Γ21‖}. (21)

Under the transformer Γ : EndX 2 → EndX 2, to each operator X ∈ EndX 2 with a matrix (Xij),
i, j = 1, 2, there corresponds the operator with the matrix

ΓX ∼

⎛

⎝ 0 Γ12X12

Γ21X21 0

⎞

⎠ .

In other words, we have the formula

(ΓX)x = ((Γ12X12)x2, (Γ21X21)x1), x = (x1, x2) ∈ X 2.
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It is worth noting that for an arbitrary operator X ∈ EndX 2 and for every element x = (x1, x2) ∈ X 2 we
have the estimate

‖(ΓX)x‖2 = ‖(Γ12X12)x2‖2 + ‖(Γ21X21)x1‖2 ≤ max{‖Γ12X12‖2, ‖Γ21X21‖2}‖x‖2. (22)

In the case when we deal with a Hilbert space and a self-adjoint operator C, the number γ can be
effectively calculated. More precisely, we have the following statement.

Lemma 2. Let X be a Hilbert space and C = C∗ a self-adjoint operator. Assume that C is either
uniformly positive or uniformly negative. Then the following equalities hold:

2γ = ‖C−1‖ = r(C−1) = 1/ min
λ∈σ(C)

|λ|, (23)

where r(C−1) denotes the spectral radius of the operator C−1.

Proof. For definiteness, we suppose that the operator C is uniformly negative. In (17) we consider
the first equation which defines the transformer Γ12. It follows from the results of [12] and [17] that the
following integral representation is valid:

Γ12X = i

∫ ∞

0
eCtXeCt dt, X ∈ EndX . (24)

As an immediate consequence of (24), we obtain (23). Indeed, it follows from the inequality

‖Γ12X‖ ≤
∫ ∞

0
e
−2t min

λ∈σ(C)
|λ|
‖X‖ dt =

1
2minλ∈σ(C) |λ|

‖X‖, X ∈ EndX . �

Further, we make use of the method of similar operators for determining conditions for the existence
of an operator X ∈ EndX satisfying the equality

(A− B)(I + ΓX) = (I + ΓX)(A− JX), (25)

where the operator I + ΓX is invertible in the algebra EndX .
Using the matrix representations of the operators A, B, X, ΓX, JX and formulas (20), in view of

(25), we get the following system of operator equations:

2X11 = −C−1BC(Γ21X21) + C−1BC,

2X12 = C−1BC(Γ12X12) − (Γ12X12)C−1BC + (Γ12X12)C−1BC(Γ12X12) − C−1BC,

2X21 = C−1BC(Γ21X21) − (Γ21X21)C−1BC + (Γ21X21)C−1BC(Γ21X21) − C−1BC,

2X22 = −C−1BC(Γ12X12) + C−1BC.

(26)

We note that representations (18)–(20) for the transformers Γij , i, j = 1, 2, i �= j, yield the equalities

C(ΓijXij)C−1 = Γij(CXijC
−1), i, j = 1, 2, i �= j. (27)

The next step is the change of variables Yij = CXijC
−1, i, j = 1, 2, in system (26). As a result, we

get the following system of equations in EndX :

2Y11 = −B(Γ21Y21) + B,

2Y12 = B(Γ12Y12) − (Γ12Y12)B + (Γ12Y12)B(Γ12Y12) − B,

2Y21 = B(Γ21Y21) − (Γ21Y21)B + (Γ21Y21)B(Γ21Y21) − B,

2Y22 = −B(Γ12Y12) + B.

(28)

Before solving this system we make a few observations about its properties. It is enough to find
solutions Ỹ12 and Ỹ21 to the second and third equations of the system for determining the operators
Ỹ11 = −1

2B(Γ21Ỹ21) + 1
2B and Ỹ22 = −1

2B(Γ12Ỹ12) + 1
2B in the first and fourth equations, and hence,

for solving the whole system (28). We note that the second and third equations in this system are
identical. Therefore, it suffices to solve only one of these equations.
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Let us consider the second equation in system (28). We define the transformer Φ : EndX → EndX
by the equality

2Φ(Y ) = B(Γ12Y ) − (Γ12Y )B + (Γ12Y )B(Γ12Y ) − B, Y ∈ EndX .

We claim that there exists a real number r > 0 such that the inequality ‖Y ‖ ≤ ‖B‖r implies the estimate
‖Φ(Y )‖ ≤ ‖B‖r. In other words, the operator Φ transforms the ball B(0, βr) ⊂ EndX of radius βr,
where β = ‖B‖, into itself. Indeed, the estimate

‖Φ(Y )‖ ≤ γ‖B‖2r +
1
2
γ2‖B‖3r2 +

1
2
‖B‖ ≤ ‖B‖r

implies that r must satisfy the inequality

γ2‖B‖2r2 + 2(γ‖B‖ − 1)r + 1 ≤ 0.

We assume that the condition

2γ‖B‖ < 1 (29)

holds, where γ is defined in (21). Then one can easily see that the required r exists. Indeed, it is given by
the formula

0 < r =
1 − γ‖B‖ −

√
1 − 2γ‖B‖

γ2‖B‖2
= (1 − γ‖B‖ +

√
1 − 2γ‖B‖)−1. (30)

Further, we will show that the operator Φ : EndX → EndX is contractive on the ball B(0, βr). To this
end, let us fix two points Z1, Z2 ∈ B(0, βr). Obviously, we have the inequality

‖Φ(Z1) − Φ(Z2)‖ ≤ (γ‖B‖ + rγ2‖B‖2)‖Z1 − Z2‖ = q‖Z1 − Z2‖,
where q = γ‖B‖(1 + γ‖B‖r). Using the first expression for r in (30) and assumption (29), one can easily
see that the inequality q ≤ 2γ‖B‖ < 1 holds. Thus, the operator Φ : B(0, βr) ⊂ EndX → B(0, βr) is a
contraction mapping with the Lipschitz constant q < 1. Therefore, there exists a unique solution to the
second equation of system (28) in the ball B(0, βr). As is well-known, this solution can be found by the
successive approximations method.

Under the same hypotheses, the third equation of system (28) is also solvable.

The inclusions Ỹij ⊂ B(0, βr), i �= j, i, j = 1, 2, and the representations of Ỹii, i = 1, 2, together with
the first and last equations of system (28) yield the following estimates:

‖Ỹij‖ ≤
{
‖B‖(1 − γ‖B‖ +

√
1 − 2γ‖B‖)−1, i �= j;

1
2‖B‖(1 + γ‖B‖(1 − γ‖B‖ +

√
1 − 2γ‖B‖)−1), i = j.

(31)

Next we will show that the operator I + ΓX̃ is invertible in EndX . Here X̃ is the operator given by
the matrix (X̃ij), i, j = 1, 2. To do this, we consider the matrix representation of the operator I + ΓX̃
and make use of property (27) of the transformers Γij : EndX → EndX , i �= j, i, j = 1, 2. We have the
following formulas:

I + ΓX̃ ∼

⎛

⎝ I (Γ12X̃12)

(Γ21X̃21) I

⎞

⎠ =

⎛

⎝ I C−1(Γ12Ỹ12)C

C−1(Γ21Ỹ21)C I

⎞

⎠

=

⎛

⎝C−1 0

0 C−1

⎞

⎠

⎛

⎝ I (Γ12Ỹ12)

(Γ21Ỹ21) I

⎞

⎠

⎛

⎝C 0

0 C

⎞

⎠ .

Note that the estimates ‖ΓỸ12‖ ≤ γ‖B‖r = γ‖B‖(1 − γ‖B‖ +
√

1 − 2γ‖B‖)−1 < 2γ‖B‖ < 1 are

valid. Analogously, we have the inequality ‖ΓỸ21‖ < 2γ‖B‖ < 1. Therefore, estimate (22) implies
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the inequality ‖ΓỸ ‖ < 1 which guarantees that the operator I + ΓỸ is invertible. Hence, the operator
I + ΓX̃ is also invertible.

Thus, equality (25) is proved. It implies the following representation:

A− B = (I + ΓX̃)(A− JX̃)(I + ΓX̃)−1.

Moreover, by Lemma 1, we have the decomposition A− B = U−1BU . Equating these two expressions
for the operator A− B, we get

U−1
BU = (I + ΓX̃)(A− JX̃)(I + ΓX̃)−1

and, hence,

BU(I + ΓX̃) = U(I + ΓX̃)(A− JX̃).

This means the similarity of the operators B and A− JX̃ .
Therefore, we have proved the following statement.

Theorem 7. Assume that the operators C ∈ EndX and B ∈ EndX satisfy the conditions 0 /∈
σ(C) + σ(C) and (29), respectively. Here the number γ is defined by equality (21) and, moreover,
γ = ‖C−1‖/2 = (2minλ∈σ(C) |λ|)−1 provided that C is a self-adjoint uniformly definite operator.

Then there exist operators X̃ij ∈ EndX , i, j = 1, 2, such that the operator B is similar to
the operator B̃ possessing the block-diagonal matrix B̃ ∼ (iC − X̃11) ⊕ (−iC − X̃22), and the
differential operator L is similar to the operator (D + iC − X̃11) ⊕ (D − iC − X̃22).

The operators X̃ij ∈ EndX , i, j = 1, 2, are representable in the form X̃ij = C−1ỸijC, where
the operators Ỹij ∈ EndX , i, j = 1, 2, are the solutions to the system of operator equations (28)
and can be found by the the successive approximations method. Furthermore, the estimates
‖X̃ij‖ ≤ ‖C‖ ‖C−1‖ ‖Ỹij‖, i, j = 1, 2, hold, and for the operators Ỹij , i, j = 1, 2, inequalities (31)
are valid.
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